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A B S T R A C T   

Situational Awareness (SA) assessment is of paramount importance in various domains, with 
particular significance in the military for safe aviation decision-making. It involves encompassing 
perception, comprehension, and projection levels in human beings. Accurate evaluation of SA 
statuses across these three levels is crucial for mitigating human false-positive and false-negative 
rates in monitoring complex scenarios in the aviation context. This study proposes a compre
hensive comparative analysis by involving two types of physiological records: electroencepha
logram (EEG) signals and brain electrical activity mapping (BEAM) images. These two modalities 
are leveraged to automate precise SA evaluation using both conventional machine learning and 
advanced deep learning techniques. Benchmarking experiments reveal that the BEAM-based deep 
learning models attain state-of-the-art performance scores of 0.955 for both SA perception and 
comprehension levels, respectively. Conversely, the EEG signals-based manual feature extraction, 
selection, and classification approach achieved a superior accuracy of 0.929 for the projection 
level of SA. These findings collectively highlight the potential of deploying diverse physiological 
records as valuable computational tools for enhancing SA evaluation throughout aviation 
decision-making safety.   

1. Introduction 

Situation awareness (SA) is the understanding of the current situation given a complex environmental setting, which is also a 
critical component within the information processing perceptions in human beings [1]. The SA assessment has been considered 
indispensable in a variety of domains [2,3], particularly vital in military operations, for safe aviation decision-making [4,5]. 

The widely acknowledged concept of SA assessment was formulated by Mica Endsley, the former Chief Scientist of the United States 
Air Force, in the late 80s [6]. SA was characterized by three distinctive yet intricate levels: Level 1 involves the perception of envi
ronmental factors, Level 2 indicates the comprehension of those factors with respect to the aviator’s objectives, and Level 3 interprets 
the projection of forecasting the operating system for timely decision-making. This definition elucidates the overall status of an avi
ator’s comprehension of critical elements given a complex environment within a volume of time and space [6]. 

The three-level SA assessment plays a pivotal role in aviation as it is highly correlated with fatigue and cognition, ensuring the 
seamless and smooth execution of missions for aviators, air traffic controllers, and drone operators. However, attaining accurate SA is a 
formidable challenge, particularly in the context of the cooperative mission mode of crewed aircraft and crewless aerial vehicles. The 
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workload of aviators increases sharply, which is bound to affect their SA status assessment significantly [7]. Moreover, human errors 
were crucially attached to SA status, which was identified in 88% of accidents by commercial airlines [7]. Therefore, precise SA 
assessment is imperative for reducing human errors within the intricate realm of complex aviation systems. 

In recent years, the implementation of machine learning-driven techniques in SA assessment was extensively analysed in the 
existing literature body [6,7]. However, deploying deep learning-driven biomedical image-based approaches has yielded unprece
dented detection rates across varied domains [8–10], yet it has not been adequately applied for SA evaluation within the aviation 
decision-making domain. To address such an existing limitation, this paper sought to evaluate the SA status confronting pilots and 
unmanned system operators. More specifically, real-time electroencephalogram (EEG) signals are leveraged to evaluate the three-level 
SA status through conventional machine learning techniques. In the meantime, deep convolutional neural networks are employed to 
process brain electrical activity mapping (BEAM) images for SA evaluation. EEG signals are obtained by amplifying and recording the 
brain’s spontaneous biopotentials from the scalp through sophisticated electronic instruments. EEG signals are decomposed by the 
Independent Component Analysis (ICA) method to obtain subcomponents, each with a specific IC activation and terrain. BEAM is the 
abbreviation for brain electrical activity mapping. It is a two-dimensional flat figure formed by a spherical scalp showing the power 
values in each frequency band of the brain wave in different colours. It objectively reflects the spatial distribution of potential changes 
in various brain regions. BEAM images are the topological graphs of independent components obtained by ICA processing of EEG 
signals in different frequency bands. Each row of the EEG signal matrix represents the change in the potential difference between each 
channel and the reference channel with time. After ICA decomposition, each row of data represents the change of independent 
components over time after spatial filtering from channel data. Therefore, the results of ICA decomposition provide the temporal and 
spatial attributes of independent components, while BEAM shows the distribution of different components in the scalp. Therefore, it is 
worth digging into the performance of the two modalities on the SA evaluation task. Thus, a comparative analysis is conducted with the 
two modalities through the two distinctive approaches. 

1.1. Related works 

Extensive studies adopted various techniques to detect SA status, aiming to elevate personnel performance and prevent potential 
human errors. For instance, the SA global assessment technique (SAGAT) is the most well-known approach proposed by Endsley [11], 
and it has been widely applied in varied situations [12–16]. There are other types of SA assessment criteria, such as the SA rating 
technique (SART) [17–20], the situation-present assessment method (SPAM) [21,22], and the SA behavioural rating scale (SABRS) 
[23], to name a few. However, those traditional approaches are majorly built upon subjectivity, as they require the operators or 
observers to fill in questionnaires during or after tasks, sometimes even demanding interruption of missions. Moreover, many of those 
questionnaires were answered after finishing the required tasks instead of real-time measurement, leading to increased error rates. 

Due to those limitations, more advanced techniques were employed for precise SA evaluation. For instance, Kwok and Virdi [24] 
proposed an artificial intelligence (AI) technique which adopted computer vision and behavioural learning modules for SA assessment. 
Other scholars tend to apply more objective tools in assisting evaluate SA automatically, such as eye-trackers, physiological collection 
equipment, and many more [25,26]. For example, Zhou et al. [27] combined eye-tracking and self-reported data to predict SA through 
an ensemble model, and they have reached a mean absolute error (MAE) of 0.096. Kastle et al. [28] utilised EEG signals to investigate 
their hidden correlations with SA status, attaining an accuracy rate of 67% on test data. Yiu et al. [29] utilised Bayesian neural 
networks to process EEG signals and have obtained an accuracy of 66.5% for SA assessment. Chen et al. [30] adopted EEG signals for 
fatigue identification, reaching an accuracy rate of 75.26% for the three-class classification task. Similar studies were conducted by de 
Winter et al. [31], Li et al. [32], Li et al. [33], Feng et al. [34], Zhang et al. [35], Ye et al. [36], and [37,38] all demonstrating superior 
performance on SA assessment with sensor data than classic inference questionnaires. 

Nevertheless, those techniques mainly require manual processing of feature extraction, selection, and classification approaches. 
With the selected “hand-crafted” features, the SA evaluation was implemented on the basis of machine learning classifiers. Such a 
procedure is time-consuming, and each of the stages confronts with varying degrees of uncertainty, aggravating the final error rates. 
Deep learning-based techniques, on the other hand, in particular, deep convolutional neural networks (CNN) have outstanding 

Table 1 
Literature review summary on intelligent SA evaluation.   

Type Feature Selection Method Data No. Subject Performance 

[25] Binary class (Low/High) – Brain network topology EEG 109 EER = 0.04 
[26] Binary class – D-UDA EEG 13 ACC = 0.98 
[27] Binary class SHAP LightGBM Eye-track data 32 RMSE = 0.12 
[28] Binary class ICA Random forest, Boosted trees EEG 32 ACC = 0.67 
[29] Binary class ANOVA, Mutual Information Bayesian neural network EEG 30 ACC = 0.67 
[30] Multi-class – Graph neural network EEG 10 ACC = 0.75 
[32] Binary class – Graph neural network EEG 27 ACC = 0.71 
[34] Binary class ANOVA, PCA Bayesian Model EEG 48 ACC = 0.71 
[35] Binary class DNN Autoencoder, LSTM EEG, EOG  RMSE = 0.08 
[36] Binary class Logistic-ARFE Logistic regression EEG – ACC = 0.90 
[37] Binary class – MATCN-GT EEG 23 ACC = 0.94 
[38] Binary class EEMD + PSD PSO–H-ELM EEG 6 ACC = 0.97  
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performance in interpreting images by automatically selecting significant features [39]. For instance, Liu et al. [8] proposed a 
CNN-based multi-modal image fusion model to enhance SA for target detection. Wang et al. [9] generated a CNN-LSTM model to 
predict post fault actions (PFA) in electric power systems. Table 1 summarises some related works on SA evaluation through the 
utilisation of computerised methods using physiological data. Nevertheless, based on the literature review analysis, the automatic SA 
evaluation for aviation decision-making is still absent in existing studies. Accordingly, this paper aims to have a comparative analysis 
of the conventional machine learning process and advanced deep CNN implementation on SA evaluation through two types of 
physiological records, more specifically, EEG signals and BEAM images. 

1.2. Contributions 

This work facilitates the implementation of deep learning techniques in the aviation domain for precise and automatic SA eval
uation. Overall, this paper makes the following four contributions:  

• This work is the first of its kind, which proposes a comparative analysis between classic machine learning approaches and deep 
learning techniques for SA assessment. The two procedures were evaluated and compared to identify the better approach for 
precise and automatic SA detection.  

• Two distinctive types of physiological records were employed in this study. Biomedical EEG signals were incorporated with classic 
machine learning approaches for manual feature extraction and selection, and BEAM images were deployed for deep CNN 
implementation. Their results were analysed and compared to ameliorate future research recommendations.  

• Existing studies majorly apply binary classification tasks to evaluate SA status (i.e., normal or abnormal), whereas the precise three- 
level SA assessment was neglected. Hence, this study implements a multi-class classification task for a more precise three-level SA 
evaluation. 

Fig. 1. SA assessment framework.  
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2. Methodology 

With the objective of conducting comparative analysis on different machine learning approaches, this section presents the proposed 
SA assessment framework in Fig. 1, which consists of four main components: A) the experimental setup process for SA data collection; 
B) the indispensable pre-processing steps for EEG and BEAM data preparation; C) the feature extraction and selection process for 
choosing appropriate “hand-crafted” features; and D) the discriminative model implementation including conventional classifiers and 
CNN models for accurate and automatic SA evaluation. 

2.1. Experimental setup 

Fig. 1 Component A demonstrates the proposed experimental setup module. In order to collect data and assign labels accordingly 
for the three levels of SA, the overall experimental design adhered to the guidelines outlined in the Psychology Experiment Building 
Language (PEBL) [40], the SAGAT designing principles [6], the work conducted by Kästle [28], and considering the key personnel (i.e., 
pilots and operators) working environment. More specifically, the simulation system is designed with reference to the Vigilant Spirit 
Control Station system developed by the U.S. Air Force Research Laboratory. The experiments involved simulating three tasks to 
collect the three levels of SA status, including identifying positions for each aircraft, identifying types for each aircraft, and predicting 
motions for each aircraft. A touchable 27-inch display forms a human-computer interaction system utilised to collect all task per
formance records. Throughout the data collection phase, the participant would be wearing an EEG cap, and each of the pre-established 
experiments would be interrupted at a random time interval, then, he/she would be queried a series of questions regarding the tasks 
they were actively engaged in just now. 

Five aircrafts move continuously on the designed application platform, with diversified shapes and colours. Following the SAGAT 
guidelines, those aircraft would disappear after a random time interval. At which, participants were supposed to answer a set of related 
questions to assess their SA. Then, their performance would be analysed for the labelling purpose. Details can be summarized as 
follows:  

• To evaluate the perception of participants (Level 1 of SA), they were expected to target and define the last positions of the five 
aircraft before disappearing.  

• To assess the comprehension of participants (Level 2 of SA), they were required to illustrate the type of each aircraft given a 
particular position.  

• To assess the projection of participants (Level 3 of SA), they were queried to predict the motion directions of each aircraft. 

With those three proposed tasks (exhibited in Fig. 2), the participants’ biomedical EEG signals were recorded throughout the 
simulation procedure for further processing and labelling purposes. 

2.2. Data pre-processing 

Fig. 1 Components A and B showcase the adopted data collection equipment used in this research, which is the NE wireless EEG 
system. In accordance with the 10–20 international system guidelines, the conventional EEG collection typically involves electrode 
counts of 16, 32, 62, 64, or 128 leads. However, insights gleaned from the experiments conducted by Montoya-Martínez et al. [41] 
revealed that higher correlations could be obtained when reducing the number of electrodes for EEG collection. Their findings 
indicated that a 20-channel configuration delivered the most optimal performance. Drawing inspiration from their research, this study 
adopted the 20-lead system selected based on the standard 64-lead EEG electrode distribution for data collection (refer to Fig. 3 and 
Table 2 for the chosen 20-lead EEG electrode system). 

The raw signals and event information were obtained from the NE EEG equipment in the European Data Format (EDF). With the 
collected raw EEG signals, pre-processing techniques were applied to normalize the data and prepare them for further analysis. 
Detailed procedures are explained in Fig. 4 and Algorithm 1. 

Fig. 2. Three-levels of SA collection tasks.  
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• Step 1: Data transforming. Filtering data to obtain signals in different frequency bands using a 50 Hz high-pass filter and 0.1 Hz 
low-pass filter.  

• Step 2: Independent component analysis (ICA). Separate the multi-channel multivariate EEG signals into subcomponents from the 
filtered signals.  

• Step 3: Fourier transform (FFT) and Final power spectrum (PSD). EEG records of each component were calculated.  
• Step 4: Band-pass filtering. The corresponding EEG data of the selected channel was filtered through band-pass filtering.  
• Step 5: Remove damaged segments. The initial 3–4 s signals of the experiments were eliminated, as the testing subjects were not yet 

immersed in the experimental states.  
• Step 6: 3-sigma principle. The outliers were eliminated using the 3-sigma principle.  
• Step 7: Data wrangling. Data cleaning, duplicates removal, and addressing missing data. 

Fig. 3. 20-Lead EEG electrode system utilised.  

Table 2 
Electrodes and corresponding brain regions and functions.  

Index Electrode Brain region Functions 

1 P7 Parietal Lobe Process sensations such as touching, pressuring, temperature, and pain, in the meantime, regulate or allocate spatial 
attention 2 P4 

4 PZ 
5 P3 
6 P8 
3 CZ Paracentral 

Lobe 
Responsible for thinking, calculating, and anything related to individual needs and emotions 

11 C4 
15 C3 
7 O1 Occipital Lobe Involved in the integration of visual information 
8 O2 
9 T8 Temporal Lobe Process auditory stimulation, (hearing, language, memory) 
18 T7 
10 F8 Frontal Lobe Related to body movement, pronunciation, language, and advanced thinking activities 
12 F4 
13 FP2 
14 FZ 
16 F3 
17 FP1 
19 F7 
20 FPZ – Ground, reference signal  

Fig. 4. 20-Lead EEG electrode system utilised.  
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Algorithm 1. Pseudo-code for EEG pre-processing. 

Afterwards, the SA was conducted to label the transformed EEG signals. In order to label the data for Level 1 of SA, the SA state of 
the observer was judged based on distance errors between the predicted aircraft position and its actual position. The smaller the sum of 
the position error was, the better the SA status of the observer was. Details on labelling the Level 1 SA status can be found in Table 3. 

To label the records for Level 2 of SA, the state was judged based on the number of correctly identified aircraft types. The higher 
number of correctly selected aircraft was, the better the SA of the observer was. Details on Level 2 SA status identification rules can be 
found in Table 4. 

With respect to label Level 3 SA status, the observer was judged based on the angular errors between the predicted motion and the 
actual motion of the target aircraft. The smaller the sum of the angular error was, the better the SA status of the observer was. 
Judgmental rules can be found in Table 5. The processed signals were further input into the feature selection Component C module for 
correlation analysis. 

2.3. Feature extraction and selection 

The characteristic dimension of the processed EEG samples was with 100 dimensions, including 100 characteristic indicators of 

Table 3 
Judgmental rules for SA Level 1 perception.  

Sum of position errors SA Status Labels 

[1000, + ∞) Status 1 
[250,1000) Status 2 
[0,250) Status 3  
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EEG data with 20 electrodes × 5 bands (including Alpha, Beta, Delta, Theta, and Gamma waves). With such high dimensions, the 
potential difficulties might be brought by directly classifying them, such as the “curse of dimensionality”, “empty space”, or even 
“algorithm failure” [42]. To avoid such potentials, the 100-dimensional EEG records were initially processed with the principal 
component analysis (PCA) [43] to obtain a new principal component for dimension reduction in the feature extraction stage. 

Feature extraction and selection techniques were applied through the Shapiro-Wilk test [44] to evaluate the sample for normality. 
Afterwards, with the objective to better select critical features, a set of feature selection algorithms were compared on the basis of the 
EEG data analysis procedure [45], including fisher score [46], mutual information [47], and sensitivity analysis. Accordingly, the 
extracted and selected mutual features contain five components in each electrode, including the α, β, δ, θ , and γ waves, ready for SA 
evaluation. 

2.4. Discriminative model implementation 

In the Component D discriminative model implementation stage, the classic machine learning classifiers were compared to the 
advanced deep learning CNN models to ultimately evaluate the three-levels of SA. 

With the selected salient EEG signal features, a series of machine learning models were adopted in the conventional classifier (CC) 
module, including the most commonly used algorithms: K-Nearest Neighbour (KNN), Decision Tree (DT), Support Vector Machines 
(SVM), Random Forest (RF), AdaBoost (AdaB), and Back Propagation (BP) network. In order to conduct the comparative analysis of the 
two alternative approaches, the image-based CNN models were applied to process BEAM images. More specifically, the collected EEG 
signals from the 20-lead electrodes were imported into the EEGLAB software [48]. We used EEGLAB software embedded Topoplot 
function to construct BEAM images from EEG signals with the independent components of EEG signal after ICA processing. With the 
obtained BEAM images, a set of highly acknowledged CNN models were deployed in the CNN module, including VGG [49], ResNet 
[50], Inception [51], DenseNet [52], and Xception [53]. This study selects the most widely used classifiers from different research 
domains for comprehensive analysis, including VGG-19, ResNet50, InceptionV3, DenseNet121, and Xception. Transfer learning was 
applied to use the pre-trained models from Keras applications on our dataset. The performance from the two approaches was compared 
for future research recommendations. 

Table 4 
Judgmental rules for SA Level 2 comprehension.  

Sum of correct selections SA Status Labels 

0 − 2 Status 1 
3 − 4 Status 2 
5 Status 3  

Table 5 
Judgmental rules for SA Level 3 projection.  

Sum of angular errors SA Status Labels 

[400, + ∞) Status 1 
[50,400) Status 2 
[0,50) Status 3  

Fig. 5. Raw data acquisition process and operational interface.  
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3. Experiment 

With the ethics obtained from the Medical and Experimental Human and Animal Ethics Committee of Northwestern Polytechnical 
University, this section describes the data acquisition and parameters setting to better demonstrate the conduction of experiments. 

3.1. Dataset acquisition 

A total of 25 subjects were involved in the data acquisition stage, including 20 male and 5 female operators, with an average age of 
23.5 (± 2.12). All the participants are graduate research students from Northwestern Polytechnical University. Before conducting the 
pre-established experimental simulations, all the subjects were selected under rigorous conditions that they have to be 1) in good 
health, 2) right-handed, 3) with normal vision, 4) with normal hearing, 5) adequate sleep, and 6) avoid strenuous exercise before 
experiments. 

In order to preserve the anonymity of the participants, their physiological records have all been de-identified during the data 
acquisition stage by removing their names, addresses, and contact information. Informed consents were obtained from all participants 
for this research. 

Fig. 5 illustrates the raw biomedical EEG signals acquisition process, where the participant will conduct the pre-mentioned three 
tasks for each SA level using the deployed human-computer interaction simulation system. The proposed simulation system was 
designed following the guidelines proposed by the U.S. Air Force Research Laboratory, including the battlefield situation information 
module, formation and weapon information module, single machine detailed information module, battlefield information module, and 
interactive control module. 

3.2. Parameters setting 

During the data acquisition stage, the NE Wireless EEG equipment has the sampling frequency set to 500 Hz, and the EEG 
acquisition electrodes use dry electrodes. 

With the band-pass filter, five different waves were filtered using 8–13 Hz for α waves, 13–30 Hz for β waves, 0–4 Hz for δ waves, 
4–8 Hz for θ waves, and 30–50 Hz for γ waves (details can be viewed in Fig. 6). 

The maximum offset between data points recorded from the EEG equipment and SA simulations was 2 ms, which was based on the 
temporal resolution of the EEG device. EEG data covering time t were isolated before the task was performed and only while the target 
was moving across the screen. Assuming participants’ SA statuses were independent between each run, the results of each test were 
considered as a separate sample. As a result, a total of 2500 labelled samples (25 participants × 100 runs) were obtained for EEG 
signals, including 100 runs for each SA level. Fig. 7 details the dataset acquisition process. 

The data obtained from the EEG acquisition system is composed of EEG signals and various noises. All the non-EGG signals are 
collectively called artefacts. Artefacts in EEG recordings can be divided into subject-related and technology-related categories. The 
subject-related artefacts mainly include electrooculography and electromyography. The technology-related artefacts mainly include 
electrical noise caused by the surrounding environment, that is, circuit noise. Therefore, the generated BEAM images from those EEG 
signals contain a large portion of images related to artefacts, rather than to EEG components, thus, those BEAM images have to be 
eliminated. As a result, a total of 660-sized 224 × 224 BEAM images were applied (see Fig. 8), and the specific distribution over 
different classes is outlined in Table 6. 

In the classifier implementation stage, all experiments were conducted under the same computational environment. All the SA 
evaluation experiments adopted the Adam optimizer. Initially, the learning rate was set to 1× 10− 3, and it was gradually updated using 
the gradient descents algorithm during fine-tuning; eventually, the learning rate of 1 × 10− 6 showed the most stable performance for 
VGG models and was fixed thereafter, and 1 × 10− 5 was the most stable learning rate for the rest of models. The 10-fold stratified cross- 
validation was applied in the experiments to reach consistency and address the data imbalance issue [54]. During each training 
iteration, the batch size was set to 5. 

Additionally, the categorical cross-entropy (CCE) was adopted as a loss function for the classification tasks. CCE is generally applied 
in multi-class classification tasks as it can be weighted based on different classes. In this case, CCE is appropriate as SA status was 
labelled under three levels so that it can adapt the penalty of a probabilistic false-negative rate for each class [55]. The CCE is 
calculated using Eq. (1). 

Fig. 6. EEG frequency band.  
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CCE = − log

(
esp

∑C
j esj

)

(1)  

With the one-hot encoded labels for each target, CCE will produce a vector indicating the probability of each class. Specifically, sp 
denotes the predicted score for the given class, sj is the inferred score for each class in C, and C is the total number of classes, in this 
case, 3 for the three levels of SA statuses. And the study deployed accuracy, precision, recall, and F1 scores for model evaluation. 

Additionally, this work is highly reproducible as all the algorithmic protocols are publicly available through the GithHub link: 
https://github.com/Amyyy-z/SA-Assessment. 

Fig. 7. Detailed setup for SA tasks during data acquisition.  

Fig. 8. Sample BEAM demonstration.  

Table 6 
BEAM image distribution in different SA levels.  

SA Levels SA Status No. of Images Total Number 

Level 1 1 60 220 
2 140 
3 20 

Level 2 1 40 220 
2 40 
3 140 

Level 3 1 40 220 
2 100 
3 80  
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4. Experimental results and analysis 

With the pre-defined steps for data pre-processing and feature selection, salient features were extracted for SA evaluation. This 
section interprets those features and the corresponding discriminative model performance. 

4.1. Salient features analysis 

Table 7 demonstrates the selected salient features under three levels of SA. The first level of SA perception is to grasp the battlefield 
information through cognition, thus, the parietal and occipital lobes areas are more prominent, and the β and γ bands are the 
dominating frequency bands. The parietal region functions are to regulate or allocate spatial attention, and the occipital region is 
associated with the integration of visual information. More specifically, the β band indicates whether the aviator is in a state of 
excitement or stress, and it is significant when the participant is with tension and anticipation [56]. The γ band is associated with 
cognitive and advanced information processing functions, such as learning, memory, and information processing. 

The understanding of the second level of SA comprehension is based on the perception of the first level, including integrating, 
memorizing, and understanding the information of the perceived elements of the battlefield situation. Therefore, the parietal lobe, the 
paracentral lobe (i.e., related to thinking and calculation), and the occipital lobe are more prominent, with the β and γ bands more 
outstanding. 

The projection level is mainly based on the perception level, including information understanding for judgmental decisions about 
the future, mainly referring to the thinking and inference processes. Therefore, salient regions, including the parietal lobe, the par
acentral lobe, and the occipital lobe, with the β, γ, and θ bands. The θ band can usually be found in healthy and alert infants, children, 
and adults with drowsiness, and it is also critical when encountering operation difficulties, and it is also detectable in deep meditative 
states. 

It should be noticed that the α and δ bands were not selected as salient during the feature selection phase, and this is due to the 
characteristics of these two bands. The α band is usually detectable in healthy, awake adults when they are relaxed or mentally inactive 
[56]. The δ band represents prolonged activity and generally can be detected in infants up to 1-year-old or healthy adults with deep 
sleep stage [56], therefore, the two bands were filtered out in this case. 

4.2. Classic discriminative model performance 

With the selected salient EEG features, Table 8 demonstrates the conventional machine learning-based discriminative model 
classification performance. When designing the data collection experiments, the three stages of SA status were outlined in each level, 
and the third stages of SA status among all three levels are the most critical ones, therefore, are interpreted and exhibited. 

For the perception level, the SVM algorithm demonstrated the optimal performance, achieving an accuracy of 0.893. The BP 
network performed as the second-best, with an accuracy of 0.857, whereas the least accuracy was obtained by the RF algorithm with an 
accuracy of 0.778. For the comprehension level of SA, the SVM model again achieved the highest accuracy of 0.893 when correctly 
identifying the aircraft type, the BP network obtained the same accuracy rate, whereas the AdaBoost generated the worst accuracy rate 
of 0.750. As for the projection level, SVM, AdaBoost, and BP models outperformed other models and reached an accuracy of 0.929 
when predicting the motion of aircraft, yet the KNN algorithm produced the worst accuracy of 0.821 (see Fig. 9). 

4.3. CNN performance 

Table 9 exhibits the CNN model performance when incorporating with BEAM images. For the first level of SA, the DenseNet model 
achieved the best performance with an accuracy of 0.955, which also outperforms the SVM classifier using EEG signals. The second- 
best model was VGG which generated an accuracy of 0.909 for the perception level of SA, again outperformed the classic machine 
learning algorithms. For the second level of SA, the VGG model obtained the most promising performance, with an accuracy of 0.955. 
Xception obtained the second-best performance with an accuracy of 0.909. The other models produced an accuracy of 0.864 as the 
bottom line, yet it is still superior to the KNN, AdaBoost, RF, and DT algorithms. As for the third level of SA, the DenseNet and Xception 
models produced the most optimal result, reaching an accuracy of 0.773, which is much lower than the results produced by classic 
machine learning models. In generally, the CNN-based performance obtained satisfying results for the perception and comprehension 
layers of SA, whereas they cannot compete with conventional EEG-based classifiers when assessing the projection layer. Details are 
illustrated in Fig. 10. 

5. Discussion 

Although there exist few studies on adopting EEG signals for SA assessment, there is still a paucity of work on using BEAM images 
for analysis, let alone the comparative study between the two approaches. This study bridges this gap and interprets the performance of 
both techniques. 

Fig. 11 displays the performance comparison with the best-performing models from the two approaches for the three levels of SA 
assessment. Specifically, the 3 bars represent three levels of SA, and the dashed line indicates the decrease of the projection level from 
the EEG-based method to the BEAM-based method. For the perception level, the DenseNet model obtained the best performance, with 
an average accuracy of 0.955. The VGG model generates and average accuracy 0f 0.909, which is also above SVM classifier. Xception 
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generates an average accuracy of 0.864, which is slightly lower than the SVM model. With the comprehension level, the VGG model is 
in the leading point, with an accuracy of 0.955, and the Xception model gains the second-best position with an accuracy of 0.909. For 
the projection level, three models achieved comparable performance, all from the classic machine learning approaches, being the SVM, 
BP, and AdaBoost models, reaching a weighted average of 0.929. Based on the results, this study provides a comprehensive analysis 
and investigations on the three-level SA assessment, and the evaluated models demonstrated promising performance, outperforming 
the accuracy obtained by Kästle et al. [28] and Li et al. [5]. 

The deep learning models eliminated the manual feature extraction and selection procedures, thus, being more efficient than the 
classic machine learning approaches. And notably, the BEAM-based CNN models produced superior classification results compared to 
the classic EEG-based discriminative models when evaluating the first and second levels of SA. Hence, the use of advanced CNN models 
in detecting the perception and comprehension levels of SA is quite feasible and advisable. 

However, based on the dashed line from Fig. 11, the CNN performance was significantly reduced when evaluating the third level of 

Table 7 
Salient Features for Three-Levels of SA  

Level 1 SA: Perception 
P7 β, P4 β, PZ β, P5 β, P8 β, O1 β, O2 β, CZ β, PZ γ, P8 γ, O1 γ, O2 γ, P4 θ, CZ θ 
Level 2 SA: Comprehension 
P7 β, P8 β, O1 β, O2 β, P4 γ, PZ γ, P5 γ, O1 γ, O2 γ, CZ γ, C3 γ, C4 γ, P4 θ, P5 θ, CZ θ 
Level 3 SA: Projection 
P4 β, P5 β,CZ β, P7 γ, PZ γ, P5 γ, P8 γ, O1 γ, O2 γ, CZ γ, C4 γ, CZ θ, C3 θ  

Table 8 
EEG salient features for three-levels of SA assessment.  

Model SA Level Measurement 

Accuracy Precision Recall F1 

KNN Level 1: Perception 0.821 0.824 0.821 0.821 
Level 2: Comprehension 0.857 0.880 0.857 0.856 
Level 3: Projection 0.821 0.848 0.821 0.824 

SVM Level 1: Perception 0.893 0.920 0.893 0.892 
Level 2: Comprehension 0.893 0.899 0.893 0.894 
Level 3: Projection 0.929 0.940 0.929 0.929 

AdaBoost Level 1: Perception 0.786 0.856 0.786 0.780 
Level 2: Comprehension 0.750 0.841 0.750 0.757 
Level 3: Projection 0.929 0.944 0.929 0.930 

DT Level 1: Perception 0.786 0.814 0.786 0.781 
Level 2: Comprehension 0.786 0.793 0.786 0.785 
Level 3: Projection 0.893 0.920 0.893 0.896 

RF Level 1: Perception 0.778 0.689 0.778 0.728 
Level 2: Comprehension 0.786 0.786 0.786 0.784 
Level 3: Projection 0.857 0.890 0.857 0.849 

BP Level 1: Perception 0.857 0.857 0.857 0.857 
Level 2: Comprehension 0.893 0.922 0.893 0.891 
Level 3: Projection 0.929 0.932 0.929 0.928  

Fig. 9. CC model performance.  
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SA from 0.929 to 0.773. The reason behind it might be due to the characteristics of EEG signals, which were established continuously 
with a time-to-event mechanism [57]. More specifically, the first two tasks were designed to emphasize the current cognition of 
operators in order to finish performing the tasks. However, the third task was built upon aviators’ judgements of current understanding 
and took a step further for making a prediction, and this is where EEG signals are more solid and accountable than BEAM images. With 

Table 9 
BEAM images with CNN for three-levels of SA assessment.  

Model SA Level Measurement 

Accuracy Precision Recall F1 

VGG Level 1: Perception 0.909 0.828 0.909 0.866 
Level 2: Comprehension 0.955 0.957 0.955 0.951 
Level 3: Projection 0.636 0.636 0.636 0.583 

ResNet Level 1: Perception 0.773 0.736 0.773 0.702 
Level 2: Comprehension 0.864 0.750 0.864 0.802 
Level 3: Projection 0.591 0.501 0.591 0.525 

Inception Level 1: Perception 0.750 0.671 0.750 0.684 
Level 2: Comprehension 0.864 0.760 0.864 0.805 
Level 3: Projection 0.659 0.695 0.659 0.641 

Xception Level 1: Perception 0.864 0.884 0.864 0.855 
Level 2: Comprehension 0.909 0.915 0.909 0.909 
Level 3: Projection 0.773 0.803 0.773 0.779 

DenseNet Level 1: Perception 0.955 0.957 0.955 0.948 
Level 2: Comprehension 0.864 0.846 0.864 0.844 
Level 3: Projection 0.773 0.768 0.773 0.767  

Fig. 10. CNN model performance.  

Fig. 11. CC & CNN model performance comparison.  
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respect to the physiological records involved in this study, it is more convincing that EEG signals and BEAM images both can generate 
competitive performance when interpreting different levels of SA. Accordingly, in our future research, we plan to make use of both 
modalities and integrate them into a multi-modal evaluation tool for automatic SA evaluation. 

6. Conclusion 

This study is the first of its kind, which deploys two types of physiological modalities for a comprehensive of three-level SA 
evaluation. The EEG signals were extracted and analysed with a series of conventional machine learning approaches, and the BEAM 
images were interpreted through more advanced deep learning-based CNN models. A comparative analysis was conducted among the 
two approaches in this research for future relevant research recommendations. The results demonstrated that BEAM-based models 
produced better evaluation results for the perception and comprehension levels of SA, with an accuracy rate of 0.955 reached. The 
EEG-based classifiers generated higher accuracy for the projection level of SA, being 0.929. 

The future plan would focus on acquiring more data samples to establish more robust algorithms for precise SA evaluation while 
considering more complex situations. For example, future work will consider the workload impact on SA status, such as insufficient 
information, information overload, and emergency confrontation. In the meantime, we would like to deploy a multi-modality form of 
the evaluation model to achieve a more accurate three-level SA assessment by including more physiological data types like electro
myography and eye-tracking records. 
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