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Human pre-implantation embryonic development involves extensive changes in chromatin

structure and transcriptional activity. Here, we report on LiCAT-seq, a technique that enables

simultaneous profiling of chromatin accessibility and gene expression with ultra-low input of

cells, and map the chromatin accessibility and transcriptome landscapes for human pre-

implantation embryos. We observed global difference in chromatin accessibility between

sperm and all stages of embryos, finding that the accessible regions in sperm tend to occur in

gene-poor genomic regions. Integrative analyses between the two datasets reveals strong

association between the establishment of accessible chromatin and embryonic genome

activation (EGA), and uncovers transcription factors and endogenous retrovirus (ERVs)

specific to EGA. In particular, a large proportion of the early activated genes and ERVs are

bound by DUX4 and become accessible as early as the 2- to 4-cell stages. Our results thus

offer mechanistic insights into the molecular events inherent to human pre-implantation

development.

https://doi.org/10.1038/s41467-018-08244-0 OPEN

1 BGI-Shenzhen, Shenzhen 518083, China. 2 China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China. 3 Institute of Reproductive and Stem Cell
Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China. 4 Key Laboratory of Stem Cells and Reproductive
Engineering, Ministry of Health, Changsha 410078, China. 5 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
6 Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha 410008, China. 7 National Engineering and Research Center of Human Stem Cell, Changsha
410078, China. 8 James D. Watson Institute of Genome Sciences, Hangzhou 310013, China. 9 Laboratory of Genomics and Molecular Biomedicine,
Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark. 10 Department of Regenerative Medicine, Tongji University School of
Medicine, Shanghai 200092, China. These authors contributed equally: Longqi Liu, Lizhi Leng, Chuanyu Liu, Changfu Lu, and Yue Yuan. Correspondence and
requests for materials should be addressed to Z.S. (email: shangzhouchun@genomics.cn) or to G.L. (email: linggf@hotmail.com)

NATURE COMMUNICATIONS |          (2019) 10:364 | https://doi.org/10.1038/s41467-018-08244-0 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1740-7961
http://orcid.org/0000-0002-1740-7961
http://orcid.org/0000-0002-1740-7961
http://orcid.org/0000-0002-1740-7961
http://orcid.org/0000-0002-1740-7961
mailto:shangzhouchun@genomics.cn
mailto:linggf@hotmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Early mammalian embryos undergo widespread epigenetic
reprogramming to allow the conversion of terminally
committed gametes to a totipotent state1. It is therefore of

crucial importance to map the chromatin state of regulatory
elements and the transcriptional outcomes using omics tools
during this process to understand the role of major cis-regulatory
elements (e.g., promoters and enhancers) or trans-factors (e.g.,
transcription factors (TFs) and epigenetic modifiers) that drive
embryonic development. By using mouse models, previous stu-
dies have demonstrated multiple landscapes including the tran-
scriptome2,3, methylome4,5, chromatin accessibility6,7, histone
modifications8–10, and 3-D genome contacts11,12; which can
precisely characterize the key molecular events during mamma-
lian embryo development. However, because of the limitations on
low-input technologies and the difficulties in obtaining human
embryonic materials, the dynamics of higher-order chromatin
structure (e.g., chromatin accessibility (CA) and histone mod-
ifications) in early human embryogenesis remain poorly
understood.

In this study, we develop LiCAT-seq (low-input chromatin
accessibility (CA) and transcriptome sequencing), a technique
that enables the simultaneous assay of CA and gene expression
(GE) with low-input samples (Fig. 1a). We apply this technique to
profiling chromatin structure and GE dynamics during human
pre-implantation embryos and demonstrate the key regulatory
dynamics for genes activated during embryonic genome activa-
tion (EGA). In particular, we find that a large proportion of the
early activated genes and endogenous retrovirus (ERV) elements
possess DUX4-binding sites and become accessible as early as the
2- to 4-cell stages. In one such example, we observe widespread
DUX4 binding on MLT2A1, which flanks HERVL, a subfamily of
ERV that become accessible during major EGA. Our work thus
suggests the important roles of early TFs in the remodeling of the
closed chromatin during human pre-implantation embryo
development.

Results
Profiling of CA and GE with low-input samples . LiCAT-seq
physically separates cytoplasm and nuclei, enabling parallel
library construction for CA and GE profiles from both cellular
components. The cytoplasm containing mRNA was subjected to a
modified Smart-seq213 protocol (Fig. 1a and Methods); whereas
for ATAC-seq libraries of the nuclei, we made some modifica-
tions to the conventional ATAC-seq protocol14 to reduce the loss
of low-abundant genomic DNA. The major improvements
included: (1) complete lysis of nuclei after a Tn5 tagmentation
step; and (2) purification of genomic DNA after pre-amplification
using primers targeting Tn5 adaptors. To validate LiCAT-seq, we
first applied this integrated approach to both human embryonic
stem cells (hESCs) and hESC-derived hepatocyte-like cells (see
Methods). We found that our LiCAT-seq profiles generated from
as few as 10 cells could recapitulate results generated from bulk
(50,000) cells. For example, LiCAT-seq-generated CA data
showing a high enrichment of reads around transcription start
site (TSS) regions—and the correlations between profiles gener-
ated from 10 cells and bulk cells were high (Supplementary Fig-
ure 1a, b). Interestingly, when promoters were categorized based
upon high, intermediate and low-CpG content (high-CpG-den-
sity promoters (HCPs), intermediate-CpG-density promoters
(ICPs), and low-CpG-density promoters (LCPs)), we observed a
stronger enrichment of CA reads at promoters with a higher GC
ratio, which is similar to the enrichment of histone H3 lysine 4
trimethylation (H3K4me3)15, suggesting a potential synergistic
function of CA and H3K4me3 (Supplementary Figure 1c). The
enrichment of CA reads in high-GC regions is not likely owing to

technical bias (e.g., bias from Tn5 and DNA polymerase), because
we observed a significantly higher enrichment of LiCAT-seq
signal on known DNase I-hyposensitive sites than other sites with
a similar level of GC content (Supplementary Figure 1c). In
addition, LiCAT-seq-generated GE data showed strong repro-
ducibility and robustness in the capture of mRNA transcripts
(Supplementary Figure 1d, e). Moreover, comparison of both
omics in these two cell types validated the ability of LiCAT-seq in
the detection of major events during ESC differentiation, such as
decreased expression of the pluripotency genes OCT4 and
NANOG (Supplementary Figure 1f, h), as well as the reduced
accessibility to OCT4- and NANOG-binding sites16 (Supple-
mentary Figure 1g, h). We also applied LiCAT-seq to two stages
of mouse embryos (4-cell and morula stages) (Methods, Supple-
mentary Figure 1, 2), and observed both high reproducibility and
successful identification of early events, including the activation
of OCT46,7 (Supplementary Figure 2). Collectively, our results
indicate that LiCAT-seq enables precise measurement of CA and
GE dynamics—even with limited input materials.

CA and GE dynamics during early embryonic development. To
understand how the chromatin regulatory landscape is estab-
lished during human pre-implantation development, we applied
the LiCAT-seq approach to human embryos from the zygote to
the blastocyst stages (with separated inner cell mass [ICM] and
trophectoderm [TE]); metaphase II (MII) oocytes and sperm were
included as well (Supplementary Figure 3a). Between 9 and 17
embryonic cells were collected and two biological replicates were
included at each developmental stage (Supplementary Table 1
and Supplementary Data 1). We then obtained CA and GE
profiles for all of the stages—except for GE data sets from sperm,
which were excluded because they showed a very low rate of
mapping to the genome. The data in the independent biological
replicates were highly comparable (Supplementary Figure 3b, c);
and as expected, we observed a strong read enrichment around
TSSs and within HCP regions in CA profiles (Supplementary
Figure 3d, e), as well as a large number of genes at all of the stages
in GE profiles (Supplementary Figure 3f).

We observed a progressive increase in accessible regions from
2-cell to later embryonic stages (Fig. 1b), which is in agreement
with previous investigations of mouse embryo development6,7.
Notably, although the oocyte chromatin is largely inaccessible
(with only 54 peaks detected in both replicates), the number of
accessible regions in sperm is relatively high (with 10,385 peaks
detected in both replicates). Interestingly, we observed a transient
opening of chromatin at the zygote stage (Fig. 1b and
Supplementary Figure 4a), which is likely to be reasonable given
the accessible features of sperm chromatin (Fig. 1b and
Supplementary Figure 4b). To validate this, we compared the
accessible regions between sperm and zygote. Surprisingly, the
CA reads along the sperm genome were poorly enriched in
regions that were open in the zygote (Supplementary Figure 4c),
and these were extensively distributed on gene-poor regions,
exhibiting a pattern opposite to all other stages including the
zygote (Fig. 1d). To further quantify this, we binned the genome
into 2Mb windows and plotted CA read density versus the
number of genes within each window. As expected, in the oocyte
and at embryonic stages, the number of reads for a given window
was positively correlated with the number of genes in that
window, whereas in sperm we observed a strong negative
correlation (Fig. 1e). These results are supported by an earlier
study showing preferential nucleosome retention at gene deserts
in sperm relative to other cell types17. This unique feature of
sperm chromatin in gene-poor regions might be important for
the access of maternal TFs, enabling complete reprogramming of
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the paternal genome, where the gene-rich regions are largely
protected by protamine. Interestingly, a survey of TF motifs on
the accessible regions of the zygote genome identified several

motifs with significant enrichment (Supplementary Figure 4d).
Most of the TFs with top p values also exhibited high expression
levels at this stage, including SP1, KLF5, and NFYA
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Fig. 1 The accessible chromatin landscapes of human pre-implantation embryos. a Schematic representation of LiCAT-seq for simultaneous profiling of
chromatin accessibility and transcriptome with ultra-low-input of cells. b Number of accessible regions detected at the indicated stages of embryo
development. c Genomic distribution of chromatin accessibility peaks detected at the indicated stages. d Genome browser view of a representative region
showing the chromatin accessibility and gene expression signals at each developmental stage. e Scatterplot of gene density (x axis) versus normalized read
density (y axis) at each developmental stage. f Principal component plots of normalized chromatin accessibility and gene expression signals
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(Supplementary Figure 4e), suggesting strong transcriptional
activity. Collectively, our results suggest that the presence of
maternal TFs—rather than paternal genome accessibility—might
provide a possible explanation for the transient opening of the
zygote genome.

Principal component analysis (PCA) of CA and GE data
showed similar degrees of discrimination for different develop-
mental stages of embryos. For example, both datasets showed
minor changes before the 2-cell stage, but striking changes in
subsequent stages (Fig. 1f), suggesting synergistic regulation of
chromatin structure and GE during pre-implantation embryo
development.

Accessible chromatin is associated with EGA. EGA is one of the
most important events that takes place during human pre-
implantation development; embryos progress from a state of
transcriptional quiescence to a state where potentially thousands
of genes are transcribed. To comprehensively study this process,
we focused our analysis on EGA and investigated the impact of
the establishment of accessible chromatin on transcriptional
activity during this process. We first applied the Mfuzz clustering
method18 to CA profiles from 2-cell to morula-stage embryos,

yielding six clusters of regulatory regions that showed distinct
dynamic patterns (Supplementary Figure 5a). Genomic regions in
most of the clusters (C1–5) showed increasing accessibility and
were enriched at sites distal ( > 5 kb) to the TSSs of genes, whereas
regions that showed increased accessibility at both the 4- and 8-
cell stages were primarily enriched at promoter-proximal regions
( < 1 kb) (Supplementary Figure 5b), suggesting distinct roles for
proximal and distal elements during EGA. To gain insights into
the impact of the widespread rewiring of CA on the activation of
genes, we investigated the putative transcriptional targets
(including proximally and distally regulated genes) of each clus-
ter. Notably, we observed a prevalent decrease in the expression
of genes associated with each CA cluster (Supplementary Fig-
ure 5c), which is not surprising considering the widespread
degradation of maternally inherited transcripts1.

To explore the transcriptional dynamics in EGA that occur
without the influence of maternal transcripts, we focused
principally on genes that were up-regulated during EGA (denoted
hereafter as “EGA genes”, Supplementary Data 2). When we
clustered EGA genes into six classes by the Mfuzz method18 and
investigated the accessibility levels of both promoter-proximal
and -distal regulatory regions, we observed synchronous
dynamics of CA and GE (Fig. 2a, b), suggesting an important
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role for chromatin structure remodeling in the activation of EGA
genes. Interestingly, the distal regions showed a slower response
than promoter-proximal regions at the 4-cell stage, whereas at
later stages we observed a similar level of accessibility at both
regions (Fig. 2b). This suggests that promoters that opened at the
4-cell stage may cause distal regions to open at later stages. To
investigate this potential relationship, we uncovered four distinct
groups of genes defined by the regulatory patterns. The first
group consisted of genes activated at later stages (8-cell or
morula), where these genes became accessible early and remained
open to the morula stage (C1 and C2), suggesting potential roles
at later stages. Many known pluripotency or developmental genes,
such as SOX2 and TEAD4, are included in this group (Fig. 2b–d).
The second group consisted of genes that were activated
transiently at the 4- or 8-cell stage and exhibited reduced
expression at the morula stage (C3 and C4). These genes gained
accessibility quickly and reverted after the 8-cell stage, implying
roles that are restricted to the early stages. Supporting this is the
inclusion of genes (such as ZSCAN4, KDM4E, and KLF17) that
have been reported to be transcriptionally activated during
human or mouse pre-implantation development (Fig. 2b–d)19.
The third group contained genes that were downregulated early,
but reactivated at the morula stage (C5). Surprisingly, this group
of genes exhibited continuous up regulation with respect to
accessibility, likely owing to a regulatory mechanism that enables
the replacement of maternal transcripts by transcription of the
same genes from the embryonic genome (Fig. 2a–d). The final
group was comprised of genes that exhibited a transient increase
in expression, followed by a rapid decrease as the embryo
approached the morula stage (C6). These genes showed a loss of
accessibility during the entire EGA process (Fig. 2a–d). The short
activation of these genes may be owing to post-transcriptional
regulation; however, because of the closed state of the local
chromatin, the expression could not be continued during later
stages. Collectively, our analyses revealed a strong relationship
between the establishment of accessible chromatin and EGA gene
activation.

It is worth noting that a previous study on DNA methylome
dynamics of human pre-implantation embryos showed dramatic
de novo DNA methylation during the 4- to 8-cell stage
transition20. While investigating the CA and GE dynamics of
DNA methyltransferases (DNMT1, DNMT3A, DNMT3B, and
DNMT3L) and demethylases (TET1, TET2, and TET3), we
observed quite similar dynamics on these two omics layers
(Supplementary Figure 5f). Intriguingly, the de novo DNA
methyltransferase DNMT3L showed a dramatic increase in both
CA and GE, whereas the other enzymes from the same family
showed an opposite tendency. This suggests a potential role of
DNMT3L in the regulation of de novo DNA methylation during
EGA. Notably, we observed that within the DNA demethylases,
the expression patterns were rather different. For example, TET3
exhibited reduced expression throughout the entire process, a
pattern supported by an earlier study that showed a specific role
for TET3 DNA dioxygenase in epigenetic reprogramming by
oocytes21. In contrast, TET1 and TET2 were upregulated during
EGA, suggesting that the transition from DNA methylation to 5-
hydroxymethylcytosine might occur during this process.

TF binding dynamics during embryonic development. Reg-
ulatory regions (such as promoters or enhancers) are comprised
of clusters of TF motifs that allow the binding of master reg-
ulators that drive gene transcription22. To comprehensively
identify the key TFs at each stage, we focused on the regions that
became accessible at different stages (Supplementary Figure 6a,
b), and computed the enrichment of TFs using HOMER23. We

found a series of TFs that showed specific enrichment at different
stages (Fig. 3a). Interestingly, we observed high enrichment of the
pluripotency factors OCT4 or OCT4-SOX2-TCF-NANOG at both
the morula stage and in ICM cells, which is in accordance with
the observation that OCT4 is required for the maintenance of
pluripotency24. We also found specific enrichment of the JUN/
FOS motif in TE cells, but not in ICM cells, supporting a role for
JUN/FOS TFs (e.g., JUNB and FOSL2) in the regulation of
trophoblast-specific gene expression25. We also found that GSC
and CRX appeared to play a specific role at the 8-cell stage and
these genes have previously been shown to be markers of lineage
specification26,27, suggesting that the differentiation program may
be initiated at this stage. Notably, some of the TFs known to be
important in mouse development—including Nr5a2 and Rarg—
are not enriched in the same stages in human development
(Supplementary Data 3), suggesting a species-specific regulatory
mechanism.

Recent findings have revealed that double homeobox 4 (DUX4)
plays a key role in regulating the EGA process in placental
mammals19,28,29. However, owing to the lack of epigenomic
datasets of human pre-implantation embryos, the mechanism by
which DUX4 regulates its target genes remains poorly understood.
Consistent with previous findings using RNA-seq, our GE data
showed transient activation of DUX4 from the zygote to 4-cell
stages (Supplementary Figure 6c). We also observed that a high
enrichment of DUX4, which together with NFY and SP1, has also
been reported to be an early regulator in mouse embryos7 at the 4-
cell stage, followed by a rapid loss of enrichment at later stages
(Fig. 3a). To understand the relationship between DUX4 binding
and the dynamics of accessible chromatin, we integrated published
DUX4 chromatin immunoprecipitation followed by sequencing
(ChIP-seq) data19 with the regions that became accessible at each
stage. We observed that although DUX4 ChIP-seq signals were
enriched at the 2- and 4-cell stages, they were substantially reduced
at the 8-cell or later stages (Fig. 3b). To study the accessibility of
the direct DUX4-binding sites, we calculated the intersection
between DUX4-binding sites (as detected by ChIP-seq) detected in
embryonic stem cells (ESCs) and regions that became accessible at
the 2- and 4-cell stages. We found a strong overlap of accessible
regions, with 697 out of 2782 DUX4-binding sites open at the early
stages (Supplementary Figure 6d). Concomitantly, we found a large
overlap between DUX4-binding sites and the C1 cluster of
accessible regions (Fig. 2a and Fig. 3c), supporting an important
role for DUX4 in the initiation of EGA during early embryo
development.

Next, we examined the expression of DUX4 target genes, which
were defined as genes that are located 10 kb up- or downstream of
DUX4-binding sites. We noted that although DUX4-binding sites
exhibited transient opening of chromatin between the 2- and 8-
cell stages, the expression levels of many DUX4 target genes
changed asynchronously. These expression changes showed three
different patterns and we grouped the genes accordingly (Fig. 3d
and Supplementary Figure 6e). The first group of genes
transiently increased at the 4- and 8-cell stages. Notably, genes
within this group included key regulators that are activated
during overexpression of DUX4 in iPSC or mESCs19,28,29 such as
ZSCAN4, LEUTX, KDM4E, and KLF17 (Fig. 3d, e and
Supplementary Figure 6f). The second group of genes showed
progressive downregulation during embryonic development,
suggesting that they may have originally been maternal
transcripts (Fig. 3d and Supplementary Figure 6f). In contrast,
genes in the third group showed progressively increasing
expression levels, which suggests that DUX4 may initiate the
binding of other TFs that play crucial roles in the late stages of
embryonic development (Fig. 3d and Supplementary Figure 6f).
Overall, by integrating CA and GE data, our analyses suggest that
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DUX4 triggers EGA gene activation by inducing extensive
chromatin remodeling at early stages.

CA and expression dynamics of retrotransposons. Retro-
transposons are remnants of ancient viral infections that account
for over 40% of the human genome30, and include long terminal
repeats containing elements (termed “LTR retrotransposons” or
“endogenous retroviruses (ERVs)”) and LTR-lacking elements
(such as LINEs, SINEs, and SVA elements)30. Although it has
been shown that LTR elements can function as regulatory ele-
ments and possibly influence the transcription of host genes31, a
systematic survey of the CA landscape of all of the retro-
transposons during human pre-implantation development is still
lacking. To explore this systematically, we analyzed dynamics of
all of the known families of retrotransposon elements using
normalized CA and GE reads at each stage (Supplementary
Data 4), and we found that almost all of the top specific retro-
transposons belong to the ERV/LTR family. Interestingly, the
earliest opening of ERV elements appeared at the 4-cell stage (e.g.,

LTR12C and MLT2A1). These ERVs maintained accessibility at
the 8-cell stage, but then showed a loss of accessibility at the
morula stage (Fig. 4a, b and Supplementary Figure 7a, b). In
addition, we also found that LTR families, including LTR5_Hs
and LTR7B, became accessible at the 8-cell stage but exhibited a
loss of accessibility after the morula stage (Fig. 4a, b and Sup-
plementary Figures. 7a, b and 8a, b). This is consistent with the
transcriptional levels of LTR5_Hs and LTR7B and the corre-
sponding HERVK and HERVH elements, which have been
reported to be essential to the induction of viral restriction
pathways and establishment of naive pluripotency32,33, respec-
tively. Furthermore, we observed high enrichment levels of ERV
elements (such as LTR21A and LTR3) in TE cells, suggesting that
ERVs play a role in the regulation of TE differentiation (Fig. 4a, b
and Supplementary Figure 7a, b). Collectively, our analyses
revealed a strong contribution of chromatin reconfiguration in
the activation of ERVs during embryogenesis. Notably, although
most of the ERVs were significantly enriched at specific stages (4-
cell to TE of the blastocyst stage), some of the ERVs still showed
asynchronous dynamics on accessibility and expression; for
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example, many of them (such as LTR10F and LTR22C) showed
their highest level of expression in the oocyte and exhibited
reduced expression at later stages (Fig. 4b), reflecting transcripts
of maternal origin. Although these elements underwent transient
opening at the 8-cell or morula stage, they were not tran-
scriptionally reactivated (Fig. 4a), suggesting that other factors
(such as DNA methylation) participate in the repression of ERV
elements.

LTR elements have been shown to be activated by transcription
factors. For example, LTR5_Hs is bound by OCT4, a master
pluripotency regulator, during the late stages of pre-implantation
embryo development32. Although a series of TFs were identified
as early regulators, the exact TFs that activate ERVs during EGA
remain poorly understood. We next asked whether the combined
CA and GE datasets could be helpful in precise identification of
the key TFs. We focused on the LTR12C and MLT2A1 ERV
families, which showed stage-specific expression levels and
synergistic dynamics in both the epigenome and transcriptome
at the 4- and 8-cell stages (Fig. 4c, d and Supplementary
Figure 8c, d). When we computed the enrichment of TF motifs
using HOMER23, we found that the early regulators, such as
NFYB and ZSCAN4, showed high enrichment on LTR12C
(Fig. 4e and Supplementary Figure 8e), suggesting a potentially
intriguing role for TFs in the activation of early ERVs.
Surprisingly, we observed a significant enrichment of OTX4
and DUX family TFs on MLT2A1, but not on LTR12C (Fig. 4e
and Supplementary Figure 8e). To further investigate this
observation, we calculated the intersection of binding sites for
OTX4 and DUX4 in human ESCs and the accessible MLT2A1
elements at the 4-cell stage. We found that 30.2% of the MLT2A1
elements that were accessible at the 4-cell stage were bound by
DUX4 (Fig. 4f), whereas only 9.5% of these elements were bound
by OTX2 (Supplementary Figure 8f). This suggests that DUX4
has a more dominant role than OTX4 in the activation of
MLT2A1. This is particularly interesting because MLT2A1 is part
of HERVL, and both have been reported to be upregulated upon
DUX4 overexpression in ESCs19. We also consistently observed
activation of HERVL transcription at the 4-cell stage (Fig. 4g).
Collectively, our combined analyses of CA and GE datasets
strongly suggest that DUX4 activates HERVL by binding to the
MLT2A1 element, and that this is a dominant event in ERV
activation during EGA (Fig. 4h).

Discussion
Herein, we performed a genome-wide survey of accessible chro-
matin and GE in human pre-implantation embryos that revealed
strong associations between accessible chromatin and the acti-
vation of EGA genes. These findings extend our knowledge of
chromatin architecture and the sequential order of gene activa-
tion during early human embryogenesis. One challenge to this
field has been to identify regulators that participate in the
initiation of pre-implantation development. In the present study,
by integrating the two omics data sets, we provided evidence
showing that DUX4 induces remodeling of chromatin structure at
both EGA genes and MLT2A1 elements during human pre-
implantation development. However, we also suggest that DUX4
is not the earliest regulator, because the GE data show that it is
likely not a maternally inherited transcript (Supplementary Fig-
ure 6c). Further investigations with additional complementary
approaches are warranted to identify the factors that activate
DUX4 expression. Another interesting finding at earlier stages
was the transient opening of chromatin at the zygote stage. We
have proposed the possibility that the presence of maternal TFs,
rather than paternal genome accessibility, is likely the major
driver of this transient change. Chromatin opening at the zygote

stage might than, be important for the access of key TFs, enabling
widespread remodeling of chromatin structure during later
developmental stages. The extensive remodeling of chromatin
during embryonic development indicates that it could be very
sensitive to disruption, which is associated with developmental
abnormalities. Thus, our method may enable us to infer disrup-
tion of chromatin remodeling, providing the foundation for a
promising pre-implantation genetic diagnostic test in the near
future.

During the preparation and review of our manuscript, other
groups also reported CA profiling of early human embryos34–36.
Some observations, however, were not identical across our and
their studies. For example, we and Wu et al.35 found high
enrichment of DUX4 at very early stages (2- to 4-cell stages), and
of OCT4 at later stages (morula and ICM). In contrast, the study
by Gao et al.36 reported significant OCT4 enrichment in both the
8-cell and morula stages, and they did not show binding of DUX4
at an early stage. Disparate conclusions may be due to the use of
different enzymes in the profiling of CA. For example, the
hypersensitive form of Tn5 transposase might be able to capture
the accessible regions more efficiently than DNase I endonu-
clease, especially when the input of embryonic material is extre-
mely low and the chromatin within early stage embryos is largely
inaccessible. Thus, our data may be helpful in providing insights
into epigenetic events shortly after fertilization. In addition, the
simultaneous profiling of both CA and the transcriptome in our
study allowed us to integrate the two omics datasets; and we thus
anticipate that this approach will in the future be extremely
valuable regarding mechanistic studies of human pre-
implantation development.

Methods
Informed consents. This study was approved and guided by the Ethics Committee
of the Reproductive & Genetic Hospital of CITIC-XIANGYA (Research license LL-
SC-2016–015). All of the gametes and embryos were collected voluntarily after
obtaining written informed consent from donor couples, who were undergoing
in vitro fertilization (IVF) treatments at the Reproductive & Genetic Hospital of
CITIC-XIANGYA, using standard clinical protocols as described previously37.
Infertility in these donor couples was purely owing to tubal factors, and the women
were under 35 years of age. Couples who donated eggs were informed that the
donation posed a potential risk to their fertility success for that cycle. No financial
benefit was involved in the donation process.

hESC culture and differentiation. hESCs were cultured as previous described38. In
brief, hESCs were cultured on a feeder layer of mitotically inactivated mouse
embryonic fibroblasts. The basic culture medium for maintenance of hESCs con-
sisted of Dulbecco’s modified Eagle’s medium/F-12 (Gibco) supplemented with
15% knockout serum replacement (KSR, Invitrogen), 2 mM non-essential amino
acids (NEAA, Invitrogen), 2 mM L-glutamine (Invitrogen), 0.1 mM β-
mercaptoethanol (Invitrogen), and 4 ng/ml of basic fibroblast growth factor
(Invitrogen). The medium was changed daily and hESCs were mechanically pas-
saged every 6–7 days, and then differentiated toward hepatocyte-like cells as
described previously39. In brief, hESCs were passaged onto Matrigel and cultured
in mTeSR (STEMCELL Technologies) until a confluence of 50–70% was attained.
Then, we cultured cells in RPMI-1640 (Gibco) supplemented with 25 ng/ml Wnt
3a (R&D Systems) and 100 ng/ml activin A (R&D Systems) for 3 days. To induce
hepatic endoderm, cells were grown in KO/DMEM medium (Gibco) supplemented
with 2% fetal bovine serum (Gibco) and 25 nM/ml KGF (R&D Systems) for 2 days,
and then further cultured in SR/DMSO (KO/DMEM containing 20% KSR, 1%
NEAA, 1% dimethylsulfoxide (Sigma), 1 mM L-glutamine, and 0.1 mM
β-mercaptoethanol) for 4 days. The final maturation step involved culturing the
cells in KO/DMEM medium that was supplemented with 10% FBS, 10 ng/ml
Oncostatin M (OSM, R&D Systems), 10 ng/ml hepatocyte growth factor (R&D
Systems), and 0.5 μM dexamethasone (R&D Systems) for 7 additional days. We
then enzymatically digested the differentiated hepatocyte-like cells and undiffer-
entiated hESCs to create a single-cell suspension. Ten or 50,000 cells were used for
LiCAT-seq or ATAC-seq library preparation, respectively.

Preparation of mouse pre-implantation embryos. All of the animal studies were
performed in accordance with the guidelines promulgated by the Institutional
Animal Care and Use Committee of Central South University. C57BL/6 N female
mice (6–8 weeks old) were superovulated by injection with 10 IU of pregnant mare
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serum gonadotropin (PMSG, San-Sheng Pharmaceutical Co., Ltd.), followed by an
injection with 10 IU of human chorionic gonadotropin (hCG, San-Sheng Phar-
maceutical Co., Ltd.) 48 h later. We then mated the superovulated female mice with
C57BL/6 N male mice. We subsequently collected 4-cell and morula-stage embryos
from the oviducts of female mice 54–56 h or 76–78 h after hCG administration,
respectively.

Collection and culture of human oocytes and embryos. Oocytes were donated
by couples who had > 20 oocytes derived from the same IVF cycle. The cumulus
cells surrounding the oocytes were removed by hyaluronidase (Vitrolife) treatment,
and only mature MII oocytes were used in this study. We produced zygotes, and 2-
and 4-cell-stage embryos by conventional intracytoplasmic sperm injection of
donated oocytes by donated sperm from the same couple. Embryos were trans-
ferred to the wells of pre-equilibrated EmbryoSlides (Vitrolife) and cultured in G-1
Plus media (Vitrolife). Slides containing embryos were placed into the Embryo-
scope chamber immediately and cultured at 37.5 °C in 6% CO2, 5% O2, and 89% N2

at high humidity. Day-3 cleavage-stage embryos were donated by couples who
already had 2 healthy babies through IVF and wished to donate the surplus frozen
embryos. Embryos were warmed according to the manufacturer’s protocols
(Kitazato Biopharma), and warmed embryos were transferred to the wells of a pre-
equilibrated EmbryoSlide and cultured in G-2 Plus medium (Vitrolife). Slides
containing embryos were placed into the Embryoscope chamber immediately and
cultured at 37.5 °C in 6% CO2, 5%O2, and 89%N2. We collected 8-cell, morula,
and blastocyst-stage embryos at 2 h, 24 h, or 72 h after warming, respectively. All of
the embryos used in the present study possessed good morphology and followed
appropriate developmental timing. Embryonic assessment was performed as
described previously3.

Sperm preparation. We obtained human spermatozoal samples from the sperm
bank of the Reproductive and Genetic Hospital of CITIC-Xiangya. After thawing,
sperm were prepared by density gradient centrifugation using SpermGrad
(Vitrolife), and those with vigorous activity were selected for preparation of our
LiCAT-seq library.

Isolation and separation of individual embryo cells. Selected oocytes or embryos
were transferred to acidic Tyrode’s solution (pH 2.5, Sigma) to remove the zona
pellucida. Zona-free embryos were then incubated for 10 min (for the 2-, 4-, and
8-cell stage embryos) or 20 min (for morulae) in Accutase medium (Gibco) before
dissociation into single embryo cells by careful pipetting. We then manually
separated blastocysts into ICM and TE using laser microdissection. ICM and TE
compartments were subsequently placed into Accutase medium for 30 min and
washed thoroughly in phosphate-buffered saline (PBS) with 0.5% (m/v) bovine
serum albumin (BSA) (Sigma). We isolated single embryo cells by gentle, repeated
pipetting; washed them 3–5 times in PBS with 0.5% BSA; and placed the cells into a
PCR tube for LiCAT-seq library preparation.

Bulk ATAC-seq. We prepared bulk ATAC-seq libraries using a modified protocol
based on a previous study14. In brief, 50,000 cells were collected, washed with cold
1× PBS and centrifuged and resuspended using 50 μl of ice-cold lysis buffer
(10 mM Tris-HCl, pH 7.5; 10 mM NaCl, 3 mM MgCl2 and 0.1% (v/v) IGEPAL
CA-630 [Sigma]). The lysate was then centrifuged and resuspended in 50 μl of
transposase reaction mix (10 μl 5× TAG buffer (50 mM TAPS-NaOH, pH 8.5;
25 mM MgCl2, 50% [v/v] DMF), 1.5 μl of in-house Tn5 transposase and nuclease-
free water (NF-water)), and the mix was incubated for 30 min at 37 °C. The sub-
sequent steps of the protocol were performed as described previously14.

LiCAT-seq. We isolated blastomeres or cells using a mouth pipette and transferred
them into a 200-μl PCR tube, and lysed cells in 6.5 μl of mild lysis buffer (10 mM
NaCl, 10 mM Tris-HCl, pH 7.5; 0.5% IGEPAL CA-630, 0.25 μl of 40 U/μl RNase-
inhibitor [NEB] and NF-water) for 30 min at 4 °C. The lysate was vortexed for 1
min and then centrifuged at 2000 g for 5 min in a refrigerated centrifuge to force
nuclei to the bottom of the tube. 4 μl of lysis product supernatant (containing the
RNA) was carefully transferred into another tube supplemented with 0.5 μl of
ERCC spike-in mixture (1:250,000 dilution in NF-water, Ambion), 1 μl of 10 mM
dNTP mix and 1 μl of 10 μM modified oligo-dT primer (5′-AAGCAGTGGTATC
AACGCAGAGTACT30VN-3′, where V was either A, C, or G, and N was any base);
and we then incubated at 72 °C for 3 min. Note that the physical separation pro-
cedure was critical for the successful capture of chromatin and RNA content.

Immediately after the separation step, 8.5 μl of a reverse-transcription master
mix (0.75 μl of 200 U/μl SuperScript II reverse transcriptase (Invitrogen), 0.375 μl
of 40 U/μl RNase-inhibitor, 1× Superscript II First-Strand buffer, 0.75 μl of 0.1 M
dithiothreitol, 3 μl of 5 M betaine (Sigma), 0.45 μl of 0.2 M MgCl2, 0.15 μl of 100
μM Template-Switching Oligo (5′-AAGCAGTGGTATCAACGCAGAGTACATr
GrG+G-3′, where “r” indicates a ribonucleic acid base and “+ ” indicates a locked
nucleic acid base, Exiqon) and NF-water were added to the tube. The mixture was
then thermocycled as follows: 42 °C for 90 min, 10 cycles of 50 °C for 2 min, 42 °C
for 2 min, and finally 70 °C for 15 min. Afterward, the PCR master mix (15 μl
KAPA HiFi HotStart ReadyMix with 0.3 μl of 10 μM PCR primer [5′-AAGCA
GTGGTATCAACGCAGAGT-3′]) was added to the 15 μl of reverse-transcription

reaction mixture and thermocycled as follows: 98 °C for 3 min, 18 cycles of 98 °C
for 20 s, 67 °C for 20 s, 72 °C for 6 min, and finally 72 °C for 5 min. Amplified
cDNA was purified using a 1:1 volumetric ratio of AMPure XP beads (Beckman
Coulter) and then eluted into 20 μl of NF-water.

During the RNA library preparation process, the precipitated nuclei were
resuspended in a 4 μl transposase reaction mix (1.4 μl 5× TAG buffer, 0.7 μl Tn5
transposase [in-house] and NF-water). The transposition reaction was carried out
for 30 min at 37 °C. Then, we added 3.5 μl mix of stop buffer (2.1 μl of 0.1 M
ethylenediaminetetraacetic acid, pH 8.0, 0.42 μl of 0.1 M Tris-HCl, pH 8.0 and NF-
water) and the reaction was maintained at 50 °C for 30 min. The nuclei were lysed
by adding strong lysis buffer (6 μl of RLT Plus buffer [QIAGEN]) to the mixture
after the stop step, with the lysis process performed by shaking on a thermomixer
for 15 min at 37 °C. We then purified the DNA using a 1:1.8 volumetric ratio of
AMPure XP beads, and finally eluted the DNA with 10 μl of NF-water. We used a
20 μl PCR amplification master mix (9 μl of transposed DNA, 10 μl of NEBNext
High-Fidelity 2× PCR Master Mix, 0.5 μl of 20 μM transposase adapter 1 (5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′), and 0.5 μl of 20 μM
adapter 2 (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′]) to
amplify the DNA and then proceeded to perform 8 cycles of PCR using the
following conditions: 72 °C for 5 min; 98 °C for 1 min; and thermocycling at 98 °C
for 15 s, 63 °C for 30 s, and 72 °C for 1 min. The pre-amplified transposed DNA
was harvested using a 1:1 volumetric ratio of AMPure XP beads and finally eluted
in a total of 25 μl of NF-water.

For CA libraries, we amplified the DNA for another 8–10 cycles (the numbers
of cycle were designated by qPCR analysis for different cell types according to a
previous study14) using the following PCR reaction mixture: 23 μl of pre-amplified
transposed DNA, 25 μl of NEBNext High-Fidelity 2× PCR Master Mix, 1 μl of
20 μM universal primer, and 1 μl of 20 μM barcoded primer. For sequencing, size-
selected with AMPure XP beads for fragments between 150 and 350 bp in length
according to the manufacturer’s instruction, and finally eluted with 20 μl of TE
buffer. For RNA libraries, 2 ng of cDNA were used for the tagmentation reaction
carried out with a 10 μl mixture containing 0.3 μl of Tn5 transposase, 1× TAG
buffer, and NF-water. The tagmentation reaction was incubated at 55 °C for 10 min
and we released Tn5 with 2.5 μl of 0.1% sodium dodecyl sulphate. The transposed
cDNA was then used for PCR amplification and library preparation according to
the Smart-seq2 method described previously13.

Library preparation and sequencing. All of the libraries were further prepared
based on a BGISEQ-500 sequencing platform40. In brief, the DNA concentration
was determined by Qubit (Invitrogen), and 2 pmol of pooled samples were used to
make single-strand DNA circles (ssDNA circles). We then generated DNA
nanoballs (DNBs) with the ssDNA circles by rolling circle replication to increase
the fluorescent signals at the sequencing process as previously described40. The
DNBs were loaded onto the patterned nanoarrays and sequenced on the BGISEQ-
500 sequencing platform with single-end 50-bp read lengths.

Transcriptome data processing. Raw reads were first aligned to the human rRNA
sequence, including 28 S (NR_003287.2), 18 S (NR_003286.2), 5 S (NR_023379.1),
and 5.8 S (NR_003285.2), using SOAP2;41 and the mapped reads were filtered
using custom scripts. The retained reads were mapped to the hg19 genome using
Hisat242 with the following parameters: --sensitive --no-discordant --no-mixed -I1
-X1000, and reads with mapping quality < 30, or duplicate reads were discarded
using samtools43. Reads within genes (GENCODE, v19) were counted using the
GenomicAlignments package44 with the following parameters: mode= “Union”,
inter.feature= TRUE and singleEnd= TRUE. The raw read counts were then
normalized by “rlogTransformation” function of DESeq245.

CA data processing. The CA data were trimmed by custom scripts and aligned
using Bowtie46 (parameter: -X2000 -m1). Reads with mapping quality < 30, and
reads mapped to the mitochondria genome or the hg19 consensus excludable
region (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeMapability/) were filtered. We removed duplicate reads using Mark-
Duplicates function of Picard (http://broadinstitute.github.io/picard/). For peak
calling, we used the model-based analysis of ChIP-seq (MACS2)47 to identify the
read enrichment regions (peaks) of the CA with the following parameters: -g hs -B
-q 0.01 --nomodel --nolambda --extsize 250. Only peaks detected in both replicates
were used for downstream analysis, and peaks located on sex chromosomes were
excluded. Peaks for all of the stages were then merged together to a unique peak
list, and the number of raw reads mapped to each peak was quantified using
bedtools48. We then further normalized the raw read counts with the “rlog-
Transformation” function of DESeq245. We also used deepTools249 to compute
and visualize the TSS enrichment for each CA profile; and for signal tracks, the p
values for MACS2-called narrow peaks were used to filter out the noise reads.

Calculation of promoter GC content. We calculated a promoter GC ratio
for regions ± 500 bp from the TSS. The promoters were then separated into
HCPs, ICPs, and LCPs based upon the GC content cutoffs as follows: HCP:GC
ratio≧ 0.75; ICP:GC ratio < 0.75, and≧ 0.25; LCP: GC ratio < 0.25.
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Fuzzy clustering analysis. We used the mean value of the DEseq2-normalized CA
level for the biological replicates as an input for Fuzzy analysis18. Prior to clus-
tering, we removed peaks with normalized values < 0 at all stages. Then, time-
course c-means Fuzzy clustering was performed with 6 centers and a cluster
membership threshold of 0.3. A gene was assigned to a peak if the peak was located
10 kb up- or downstream of the gene. EGA genes were defined as genes that
expressed (DEseq2-normalized value > 0) in at least one of the 2-cell to morula
stages, and showed fold-changes greater than twice that of oocytes.

Motif-enrichment analysis. For Fig. 3a, we performed motif-enrichment analysis
for gained CA peak regions using HOMER223 for known TF motifs with the
option: -size 200. TFs with both high motif-enrichment (−log p value > 100) and
GE level (DESeq2-normalized expression value > 0) in at least 1 stage are shown.
For further validation analyses of DUX4 enrichment, the published DUX4 ChIP-
seq data in hESCs were downloaded (GSE94322);28 and bedtools (intersect) was
used to count the intersection of DUX4-binding sites and accessible regions at each
stage.

Accessibility analysis of retrotransposon elements. We downloaded coordi-
nates and annotations of retrotransposon elements from the UCSC Genome
Browser (open-4-0-7 version of RepeatMasker50). The number of raw reads
mapped to each element was then counted using bedtools48. We normalized the
read counts by the length of the retrotransposon element (after merging in kilo-
bases) and by the sum of the reads mapping to all retrotransposon elements (in
millions). Normalized read counts were then log-transformed after adding a
pseudo-count of 1. We used a Shannon-entropy-based method to identify stage-
specific retrotransposons as previously described51. We treated retrotransposons
with top entropy scores as stage-specific retrotransposons. For motif-enrichment
analyses of the candidate retrotransposon elements, HOMER223 was used for de
novo TF motif prediction with the option: size 200.

Code availability. The R scripts used in this study are available at https://github.
com/single-cell-BGI/Human_Embryo_LiCAT.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All of the raw data have been deposited to CNGB Nucleotide Sequence Archive
(accession code: CNP0000193; https://db.cngb.org/cnsa/project/CNP0000193/
public/). All of the raw data have also been deposited to NCBI Sequence Read
Archive (accession code: SRP163205; https://www.ncbi.nlm.nih.gov/sra/?term=
SRP163205). The source data for generating the figures are provided as Supple-
mentary Data files 1–4. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request. A reporting summary for
this Article is available as a Supplementary Information file.
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