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ABSTRACT

Arsenic is an environmental pollutant and its contamination in the drinking water is considered as a serious 
worldwide environmental health threat. The chronic arsenic exposure is a cause of immense health distress as 
it accounts for the increased risk of various disorders such as cardiovascular abnormalities, diabetes mellitus, 
neurotoxicity, and nephrotoxicity. In addition, the exposure to arsenic has been suggested to affect the liver function 
and to induce hepatotoxicity. Moreover, few studies demonstrated the induction of carcinogenicity especially 
cancer of the skin, bladder, and lungs after the chronic exposure to arsenic. The present review addresses diverse 
mechanisms involved in the pathogenesis of arsenic-induced toxicity and end-organ damage.
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INTRODUCTION

Arsenic is a naturally occurring element that ubiquitously 
exists in both organic and inorganic form in the environment. 
Arsenic contamination is an issue of concern worldwide 
and it is a considerable risk factor in various countries 
including Bangladesh, Taiwan, India, Mexico, China, 
Chile, Argentina, and USA. Human exposure to arsenic is 
either through oral route involving contaminated food and 
water or through inhalation that majorly covers exposure 
to agricultural pesticides and mining activities. According 
to World Health Organization (WHO) fact sheet in 1999, 
arsenic contamination is considered as major public health 
issue requiring correction measures on emergency basis.[1] 
The WHO guidelines describe safety limit of arsenic at 10 
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μg/l and a maximum permissible limit of 50 μg/l of drinking 
water.[2] Over 200 million people are at risk worldwide, 
out of which more than half are residing in Bengal Delta 
Plain including West Bengal and Bangladesh.[3] The arsenic 
content in this area has been found to be 800 μg/l of 
drinking water.[4] The chronic poisoning caused by high 
levels of arsenic in well waters has led to public health 
emergency in Bangladesh.[5,6] In Taiwan, chronic arsenic 
exposure through well waters has led to peripheral vascular 
disease called as black foot disease.[7] Arsenic exists in the 
environment as pentavalent (As5+, arsenate) and trivalent 
(As3+, arsenite) forms, and arsenite has been considered 
to be more toxic when compared with arsenate.[8] On 
absorption, arsenic is stored in liver, kidney, heart, and 
lungs. The lower amount of arsenic is observed in muscles 
and neuronal tissues.[9] The accumulation of arsenic in 
these tissues is associated with many disorders including 
cancer, diabetes, hepatotoxicity, neurotoxicity, and cardiac 
dysfunction. Arsenic metabolism is important for its toxicity 
and it exerts its toxicity by inhibiting around 200 enzymes 
involved in cellular energy pathways and DNA synthesis and 
repair, etc.[10] It is metabolized by reduction and methylation 
reactions, catalyzed by glutathione-S-transferase omega-1 
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(GSTO1) and arsenic (III) methyltransferase (AS3MT) 
involving methylation of arsenic via one-carbon metabolism 
by S-adenosyl methionine (SAM) as methyl donor and 
requiring reduced glutathione (GSH) as electron donor 
in reductase reaction. GSTO1 reduces methylarsonate 
[MA(V)] and arsenate [As(V)] to methylarsonite 
[MA(III)] and arsenite [As(III)], respectively, and 
these toxic trivalent arsenicals formed during reduction 
are detoxified by AS3MT to methylarsonate [MA(V)] 
and dimethylarsinate [DMA(V)], which are less toxic 
pentavalent arsenicals.[11] Acute arsenic poisoning is 
associated with nausea, vomiting, abdominal pain, and 
severe diarrhea.[10] Chronic ingestion of arsenite through 
contaminated water results in accumulation of arsenite and 
MA(III) in vital organs and tissues leading to the incidence 
of atherosclerosis, hypertension, ischemic heart diseases, 
diabetes, hepatotoxicity, nephrotoxicity, and cancer of the 
skin, bladder, and lungs.[12-17] The present review critically 
discussed the mechanisms involved in the pathogenesis of 
arsenic-induced toxicity and end organ damage.

ARSENIC-INDUCED 
CARDIOVASCULAR DYSFUNCTION

Long-term exposure to inorganic arsenic may cause various 
cardiovascular disorders such as atherosclerosis, hypertension, 
ischemic heart diseases, and ventricular arrhythmias.[12-14,18] 
Arsenite stimulates nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase present in the plasma 
membrane of vascular endothelial cells and vascular smooth 
muscle cells (VSMC) to increase the generation of reactive 
oxygen species (ROS) such as superoxides and hydrogen 
peroxide.[19,20] ROS generated during arsenite exposure 
couples with nitric oxide (NO) to form peroxynitrite, a strong 
oxidant implicated in the upregulation of inflammatory 
mediator such as cyclooxygenase-2.[21] ROS generated during 
arsenite exposure increases the expression of atherosclerosis 
related genes such as heme oxygenase-1 (HO-1), monocyte 
chemo-attractant protein (MCP-1), and interleukin-6 (IL-6) 
and thus its exposure promotes the attachment, penetration, 
and migration of monocytes in VSMC.[22] Arsenic alters focal 
adhesion proteins in VSMCs leading to their proliferation 
and migration.[23] Further, arsenic increases the synthesis of 
inflammatory mediators such as leukotriene E4 (LTE4) and 
prostacyclin, tumor necrosis factor-alpha and nuclear factor 
kappa B in vascular endothelial cells to induce the pathogenic 
process of atherosclerosis.[24,25] Moreover, arsenic causes 
neurogenic inflammation of the blood vessel by increasing 
the release of substance P and endothelial neurokinin-1.[26] 
Furthermore, arsenic activates protein kinase C alpha, which 
causes phosphorylation of beta-catenin and thus reverses the 
association between vascular endothelial cadherin and beta-
catenin, along with the formation of actin stress fibers resulting 
in increased intercellular gap formation and permeability of 
the endothelium.[27] Arsenite has been reported to decrease 

the activity of endothelial nitric oxide synthase (eNOS) and 
Akt/protein kinase B, which subsequently decreases the 
bioavailability of NO that may lead to vascular endothelial 
dysfunction and associated cardiovascular complications.[28,29] 
Arsenite mediates vasoconstriction of the blood vessels by 
phosphorylating myosin light chain kinase (MLCK) and 
increases calcium sensitization leading to hypertension.[30] 
Chronic exposure to arsenic induces oxidative stress and alters 
the release of vasoactive mediators in blood vessel leading 
to elevation of blood pressure.[31] Arsenic trioxide develops 
ventricular arrhythmia by inducing prolonged Q-T interval 
and action potential duration.[18,32] Taken together, it may 
be suggested that arsenic induces cardiovascular dysfunction 
by inducing high oxidative stress, reducing the activation of 
eNOS and enhancing the phosphorylation of MLCK, which 
may be targeted for preventing arsenic exposure-associated 
cardiovascular complications [Figure 1]. Recently, a couple 
of studies from our laboratory demonstrated that treatment 
with either bis-(maltolato) oxovanadium, an inhibitor of 
protein tyrosine phosphatase, or rosiglitazone, an agonist of 
peroxisome proliferator activated receptor-gamma (PPAR-γ) 
markedly ameliorated sodium arsenite-induced vascular 
endothelial dysfunction in rats by enhancing the integrity 
of vascular endothelium, improving endothelium-dependent 
relaxation and reducing oxidative stress.[33,34]

ARSENIC-INDUCED DIABETES 
MELLITUS

The prolonged exposure to arsenic causes decreased 
expression of PPAR-γ, which may reduce the sensitivity 

Figure 1: Pathological mechanisms involved in arsenic-induced 
cardiovascular dysfunction
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of insulin that is responsible for the induction of type II 
diabetes by arsenic.[35] Arsenite replaces a phosphate group 
from adenosine triphosphate (ATP) forming ADP-arsenate, 
which slows down the metabolism of glucose, interrupts the 
production of energy, and interferes with the ATP-dependent 
insulin secretion.[36] Moreover, arsenite has high affinity 
for sulfhydryl groups and hence form covalent bonds with 
the disulfide group of insulin, insulin receptors, glucose 
transporter, and enzymes involved in glucose metabolism.[36] 
An interesting biphasic response in glucose metabolism 
due to arsenic exposure was found through glucocorticoid 
receptor-mediated transcription with hyperglycemic effect 
at low concentration (<120 ppb) and hypoglycemia 
at high concentration (>120 ppb).[37] In addition, the 
chronic exposure to arsenic may cause hypoglycemia due 
to significant decrease in glucose-6-phosphatase activity in 
both liver and kidney.[38] Sodium arsenite has been suggested 
to downregulate the expression of insulin mRNA.[39] The 
long-term exposure to inorganic arsenic increases oxidative 
stress leading to overexpression of various stress mediators 
such as NF-κB, c-Jun-N-terminal kinase/stress-activated 
protein kinase (JNK/SAPK) and hexosamine that cause 
insulin resistance and dysfunction of beta cells of islets of 
Langerhans.[40] The trivalent arsenicals such as inorganic 
arsenic [iAs (III)], dimethylarsinous acid [DMA (III)], 
and monomethylarsonous acid [MMA (III)] suppress the 
phosphorylation of Akt/protein kinase B by inhibiting the 
activity of 3-phosphoinositide-dependent kinase-I (PDK-1) 
that causes significant inhibition of insulin-dependent 
glucose uptake and hence results in hyperglycemia.[40,41] 
Together, these studies suggest that decreased expression of 
PPAR-γ, interference in ATP-dependent insulin secretion, 
altered glucocorticoid receptor mediated transcription, and 
inhibition of PDK-1 are involved in the induction of arsenic-
associated diabetes, which can serve as potential targets to 
modulate arsenic-induced diabetes [Figure 2].

ARSENITE-INDUCED 
NEUROTOXICITY

Brain is a soft target for arsenic toxicity as it freely crosses 
blood-brain barrier.[42,43] Arsenic exposure is associated with 
wide range of neurological complications in humans such as 
impaired memory, poor concentration, Parkinson’s disease, 
Guillain-Barre like neuropathy, verbal comprehension, 
encephalopathy, and peripheral neuropathy.[44-49] The 
mechanism postulated for arsenic-induced neurotoxicity 
majorly involve oxidative stress with increased reactive 
oxygen species, lipid peroxides along with decrease in 
superoxide dismutase, and reduced glutathione levels.[50] 
Arsenic exposure has been reported to alter metabolism of 
various neurotransmitters such as monoamines, acetylcholine, 
gamma amino butyric acid, and glutamate.[51] In a recent study, 
a significant reduction in monoamines such as adrenaline, 
nor-adrenaline, dopamine, and serotonin has been observed 

in corpus striatum, frontal cortex, and hippocampus areas 
of brain on chronic arsenic exposure.[42] Arsenite-mediated 
neurotoxicity involves induction of apoptosis in the cerebral 
neurons by activating p38 mitogen-activated protein kinase 
(p38MAPK) and JNK3 pathways.[52] Moreover, arsenic 
exposure induces neurotoxicity by causing destabilization and 
disruption of cytoskeletal framework, eventually leading to 
axonal degeneration.[53] The deficiency of thiamine (vitamin 
B1) is well known to induce neuronal complications. It is 
worthwhile to note that arsenic causes thiamine deficiency 
and inhibits pyruvate decarboxylase, which elevates blood 
pyruvate and hence causes encephalopathy.[47] Arsenic-
induced oxidative stress in the brain causes oxidative DNA 
damage and subsequent brain cell death and induces the 
degeneration of dopaminergic neurons resulting in Parkinson 
like symptoms.[45,46] Acute arsenic toxicity decreases acetyl 
cholinesterase activity and hence causes cholinergic crisis like 
situation with altered mental status and weakness, which can 
be associated with peripheral neuropathy, neuropsychiatric 
abnormalities, and extrapyramidal disorders.[54] Moreover, 
arsenic affects the peripheral nervous system by disrupting 
the neuroskeletal integrity and thus markedly diminishes 
the nerve conduction velocity in the peripheral nerves 
to cause peripheral neuropathy.[49] The exposure to 
arsenic and its metabolites monomethylarsonic acid and 
monomethylarsonous acid suppresses the NMDA receptors 
in hippocampus, which play a pivotal role in synaptic 
plasticity, learning, and memory, leading to neurobehavioral 
disorders and cognitive dysfunction.[55,56] The chronic 
arsenic exposure is associated with morphological changes 
in axons and nerve fibers of the striatum which disturbs 
central structural organization.[57] Hence, oxidative stress, 
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induction of thiamine deficiency, and inhibitions of pyruvate 
decarboxylase, acetyl cholinesterase, reduction in biogenic 
monoamines seem to play a pivotal role in arsenic-induced 
neurotoxicity [Figure 3]. The animal models of arsenic 
toxicity are associated with inconsistent neurotoxicity because 
of varying doses, duration, and different salts of arsenic used 
in various studies. However, these have been able to provide 
deep insight into pathophysiological mechanisms involved 
in arsenic induced neurotoxicity.

ARSENIC-INDUCED 
NEPHROTOXICITY AND 
HEPATOTOXICITY

Arsenic concentrates in the kidney during its urinary 
elimination that affects the function of proximal convoluted 
tubules.[58,59] Arsenic-induced oxidative stress increases 
the expression of HO-1 and MAPK, which by regulating 
various transcription factors such as activator protein-1 
(AP-1), activating transcription factor-2 (ATF-2), and Elk-1 
lead to renal toxicity.[59,60] Acute renal dysfunction due to 
arsenic exposure is characterized by acute tubular necrosis 
and cast formation with increase in blood urea nitrogen 
and creatinine levels.[61] This arsenic-induced renal toxicity 
can be attenuated by Curcuma aromatica and Corchorus 
olitorius.[62,63] The kidney and liver are the primary targets for 
arsenic-induced toxicity, where the highest level of arsenic 
is detected in the liver than kidney.[64] Arsenite increases 
the generation of ROS, which enhances lipid peroxidation 
and cellular damage in both hepatic and renal tissue.[65] 
Chronic arsenic-mediated oxidative stress activates JNK and 
p38 MAPK and induces apoptosis in the hepatocytes.[66-68] 
Further, arsenic-induced oxidative stress induces hepatic 

apoptosis by upregulation of pro-apoptotic proteins.[69] A 
recent study has well documented that arsenite-induced 
apoptotic progression is aggravated by folate deficiency.[70] 
Arsenic exposure leads to the incidence of hepatotoxicity 
as manifested by increase in the levels of total bilirubin, 
alanine aminotransferase, aspartate aminotransferase, and 
malionaldehyde.[71] Hence, oxidative stress, apoptosis,and 
upregulation of transcription factors such as AP-1, ATF-2, 
and Elk-1 are the prospective target sites for arsenite-
induced nephrotoxicity and hepatotoxicity [Figure 4].

Arsenic-induced carcinogenicity
The trivalent form of arsenic exhibits greater genotoxic 
effects than the pentavalent counterparts as it could 
be easily taken up by the cells.[72] Although the exact 
molecular mechanism of arsenic carcinogenicity is not well 
understood, arsenic has been shown to possess tumor-
promoting properties by inducing intracellular signal 
transduction, activating transcription factors, and changing 
the expression of genes that are involved in cell growth, 
proliferation, and malignant transformation. Further, it 
is has been postulated that arsenic induces MAPK signal 
transduction, which activates transcription factors such as 
AP-1 and NF-kB to alter various gene expression profile 
that may account for the induction of arsenic-associated 
carcinogenicity.[73] Arsenic causes focal adhesion kinase 
activation, which mediates several downstream signaling 
pathways such as integrin, Src, Rho, Grb2, EGFR, 
ERK, and cadherins. These pathways are involved in cell 
adhesion, cell migration, cell survival, cell cycle control, 
carcinogenesis, and tumor cell necrosis.[74] DMA(V) and 
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Figure 3: Pathological mechanisms involved in arsenic-induced 
neurotoxicity

Figure 4: Pathological mechanisms involved in arsenic-induced 
hepatotoxicity and nephrotoxicity
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TMAO(V) generate oxidative stress and cause an elevation 
of 8-hydroxydeoxyguanosine, a marker of oxidative DNA 
damage, which stimulates cell proliferation and induces 
carcinogenicity.[75,76] Arsenic provokes proliferation of 
bladder epithelial cells and upregulates proto-onco-gene 
expression such as c-fos, c-jun, and EGR-1, which may 
collectively contribute to bladder cancer.[77] Smoking has 
been shown to potentiate the effect of arsenic on the risk of 
bladder and lung cancer because both can act synergistically 
to cause DNA damage.[78,79] Arsenic induces skin cancer 
by acting synergistically with sunlight and blocking DNA 
repair, stimulating angiogenesis, altering DNA methylation 
patterns, dysregulating cell cycle control, and blocking 
physiological apoptosis.[80] Oxidative stress seems to be the 
main culprit for arsenic-induced carcinogenicity, which can 
be prevented by antioxidants such as vitamin E, melatonin, 
and curcumin.[81,82] Taken together, various possible modes 
of carcinogenic action of arsenic proposed till date are 
increased oxidative stress, direct genotoxic effects, altered 
expression of growth factors, and altered DNA repairing 
mechanisms [Figure 5]. 

CONCLUSION

The chronic exposure to arsenic through contaminated 
water may account for various health intimidations. Arsenic 
increases oxidative stress, upregulates proinflammatory 
cytokines and inflammatory mediators, inactivates 
eNOS, and causes phosphorylation of MLCK to induce 
cardiovascular abnormalities. The decreased expression of 
PPAR-γ, interference in ATP-dependent insulin secretion, 
altered glucocorticoid receptor-mediated transcription, and 
inhibition of PDK-1 are the pathological events associated 

with arsenic-induced diabetes. Further, oxidative stress, 
inhibition of pyruvate decarboxylase, and acetyl cholinesterase 
seem to play a pivotal role in arsenic-induced neurotoxicity. 
Moreover, arsenic induces nephrotoxicity and hepatotoxicity 
by increasing oxidative stress and apoptosis. Furthermore, 
arsenic exposure may cause carcinogenicity as it increases 
oxidative DNA damage and chromosomal aberration 
and interferes with cellular signaling pathways. Targeting 
and modulating the aforementioned key pathological 
signaling mechanisms may provide novel pharmacological 
interventions to halt arsenic exposure-associated disorders.
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