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Objective. To investigate the protective effects of L-malate against myocardial ischemia/reperfusion (I/R) injury in rats. Methods.
Male Sprague-Dawley rats were randomly assigned to the following groups: sham (sham), an ischemia/reperfusion (I/R) model
group (model), an DMF pretreated group (DMF), and 5 L-malate pretreated groups (15, 60, 120, 240, or 480mg/kg, gavage) before
inducing myocardial ischemia. Plasma LDH, cTn-I, TNF-𝛼, hs-CRP, SOD, and GSH-PX were measured 3 h later I/R. Areas of
myocardial infarctionweremeasured; hemodynamic parameters during I/Rwere recorded.Hearts were harvested andWestern blot
was used to quantify Nrf2, Keap1, HO-1, and NQO-1 expression in the myocardium. Results. L-malate significantly reduced LDH
and cTn-I release, reduced myocardial infarct size, inhibited expression of inflammatory cytokines, and partially preserved heart
function, as well as increasing antioxidant activity aftermyocardial I/R injury.Western blot confirmed that L-malate reduced Kelch-
like ECH-associated protein 1 in ischemic myocardial tissue, upregulated expression of Nrf2 and Nrf2 nuclear translocation, and
increased expression of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1, which are major targets of Nrf2. Conclusions.
L-malate may protect against myocardial I/R injury in rats and this may be associated with activation of the Nrf2/Keap1 antioxidant
pathway.

1. Introduction

Ischemic heart disease contributes to high health care
costs and mortality worldwide [1]. Therapeutic strategies to
restore cardiac blood flow to the ischemic myocardium such
as thrombolysis, primary angioplasty, and cardiac surgery
under cardiopulmonary bypass (CPB) are commonly used.
During cardiac surgery under CPB, ischemic cardiac arrest
is initiated and perfusion is restored. However, data show
that the reperfusion itself is damaging and can exacerbate
necrosis, producing myocardial ischemia/reperfusion injury
(MIRI) that can influence surgical treatment and postoper-
ative long-term recovery [2–4]. The mechanism of MIRI is
unclear and better treatment strategies are needed.

Recently, drugs that offer cardioprotective effects have
been studied but few havemade it to clinical use, perhaps due
to animal model choices for studying drug effects as well as
myriad side effects and limited efficacy [5–7]. Fumaric acid, a
tricarboxylic acid cycle small molecule metabolite, may offer

myocardial protection via activation of the Nrf2 antioxidant
pathway [8]. Thus, we speculate that similar compounds
may also offer myocardial protection. A structural analogue
of fumaric acid, L-malate, is produced during biological
metabolism of organic acids and serves as an important
metabolic intermediate. In 1967, L-malic acid was recognized
as a safe, nontoxic, harmless, and edible organic acid by the
US Food and Drug Administration [9]. As a tricarboxylic
acid cycle intermediate, L-malate can be easily absorbed
into the mitochondrion through the cell membrane, and
here it promotes energy production. Research suggests that
some organic acids have various pharmacological effects and
biological activity, including anti-inflammatory, antiplatelet
aggregation, and antioxidant activity, and may reduce apop-
tosis [10–14]. Thus, our work with L-malate on MIRI is new
and preliminary. We report here that L-malate may protect
the heart from MIRI and we have postulated a possible
mechanism by which it offers myocardial protection.
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2. Materials and Methods

2.1. Animals. Male adult Sprague-Dawley rats (200–250 g)
were purchased fromChinese Academy of Sciences Holdings
Co., Ltd. (certificate number SCXK (HU) 2012-0002). Rats
were housed under standard conditions and supplied with
drinking water and food ad libitum. All animal experiments
were performed in accordance with the China Academy of
Chinese Medical Sciences Guide for Laboratory Animals
which conforms to the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes
of Health (NIH Publications number 85-23, revised 1996).

2.2. Reagents and Chemicals. An LDH assay kit was pur-
chased from Shanghai Ailex Technology Co., Ltd. (batch
number R403ACA). A superoxide dismutase (SOD) assay
kit (batch number 20150126) and glutathione peroxidase
(GSH-PX) assay kit (batch number 20150124) were obtained
from Nanjing Jiancheng Bioengineering Institute. Rat tumor
necrosis factor-𝛼 (TNF-𝛼) (Catalog number bs-0078R), rat
high-sensitivity-C-reactive protein (hs-CRP) (Catalog num-
ber bs-0078R), and cTn-I Quantikine ELISA kit (Cata-
log number 20150126) were obtained from Shanghai J&L
Biological Technology Co., Ltd. Nitroblue tetrazolium (N-
BT) (Catalog number 3069B117) was from AMRESCO Inc.
(Solon, OH). Antibodies for actin (number sc-1616r), anti-
Nrf2 (number sc-722), anti-HO-1 (sc-1797), and anti-NQO-1
(sc-25591) were from Santa Cruz Biotechnology Inc. (Santa
Cruz, CA), and anti-Keap1 (number bs6783) was from Bio
world Technology Inc. (St Louis Park, MN). L-malate (batch
number J1427119) and dimethyl fumarate (batch number
K1405001) were purchased from Shanghai Jingchun Bio-
chemical Technology Co., Ltd. All chemicals used were of
analytical grade.

2.3. Drug Pretreatment and Myocardial Ischemia/Reperfusion
Protocols. L-malate studies on MIRI were performed inde-
pendently with identical experimental designs. Animals were
randomly assigned to 8 groups (𝑁 = 10): sham (sham),
ischemia/reperfusion (I/R) model group (model), DMF pre-
treated group (DMF), and the 5 L-malate pretreated groups
(15, 60, 120, 240, or 480mg/kg, gavage), respectively, upon
initiation of myocardial ischemia. Sham animals received
surgery only (sham-operated), and other groups were sub-
jected to myocardial ischemia and reperfusion 30min later.
In addition, the sham and I/R model control groups were
gavaged an equal volume of L-malate vehicle. Vehicle/drugs
were administered twice daily for 5 consecutive days prior to
the experiment.

2.4. Myocardial I/R Injury. MIRI was carried out via LAD
ligation for 30min followed by 3 h reperfusion at 1 h after the
last drug treatment as previously described. Rats were anes-
thetized with 3.5% chloral hydrate (350mg/kg, ip, Sinopharm
Chemical Reagent Co., Ltd., China).The trachea was exposed
and cannulated to establish artificial respiration provided
by a rodent ventilator (ALCV8S, China) with oxygen at a
breath ratio of 1 : 2; a frequency of 75 breaths/min, and a
tidal volume of 8.0mL.MI was produced by exteriorizing the

heart through a left thoracic incision and placing a 4-0 silk
suture and placing plastic tubing at the distal one-third of
the left anterior descending coronary artery. After 30min of
ischemia, the plastic tubing was cut and the myocardiumwas
reperfused.

2.5. Hemodynamic Assessment. We separated the right com-
mon carotid artery and connected the RM6240 biological
signal processing system tomonitor heart function, including
left ventricular systolic pressure (LVSP), left ventricular end-
diastolic pressure (LVEDP), and first derivative (±𝑑𝑝/𝑑𝑡max)
of left ventricular pressure in each group. To eliminate
confounding factors of loading conditions of the heart
which may influence cardiovascular parameters, additional
rats were used to test whether L-malate alone modified
LVSP, LVEDP, and ±𝑑𝑝/𝑑𝑡max in normal hearts under sham-
operated conditions.

2.6. Measurement of Myocardial Infarct Size. Myocardial
infarct size was evaluated using N-BT staining as previously
described [5]. Briefly, at the end of 3 h reperfusion, rats were
anesthetized with 3.5% chloral hydrate and sacrificed. Hearts
were quickly excised and sliced into 6 sections from the
position under the ligation line (1.5 to 2mm). Slices were
weighed and immediately incubated in N-BT staining solu-
tion dissolved in phosphate buffer (pH 7.4) at 37∘C for 10min.
The noninfarcted myocardia were uniformly blue, and the
infarction area was not stained or appeared pale yellow. The
infarcted weights and left ventricular weights were measured
using an electronic balance (FA1104, Shanghai, China). The
infarction percentages of the ventricle were calculated.

2.7. Serum Biochemistry. After 3 h of reperfusion, blood sam-
ples were collected from the right ventricle and centrifuged
at 3,000×g for 10min to isolate sera. Then, LDH, SOD,
and GSH-PX were measured with kits according to the
manufacturer’s instructions. ELISAwas used to quantify cTn-
I, TNF-𝛼, and hs-CRP.

2.8. Western Blot. Nrf2, Keap1, HO-1, and NQO-1 expression
were measured usingWestern blot using myocardial samples
extracted after 3 h of reperfusion. Nuclear and cytoplasmic
protein were isolated (Pierce, Rockford, IL) according to the
manufacturer’s instructions. Then, whole heart protein was
extracted from total homogenous of heart tissue. In brief,
heart tissue was first ground in liquid nitrogen and lysed
in ice-cold T-PER buffer containing 1% protease inhibitor
cocktail (Pierce). Then homogenates were incubated on ice
for 30min before centrifugation at 12,000×g for 10min at
4∘C. Supernatant was transferred, aliquot, and stored at –
20∘C. After protein was measured using a modified Bradford
assay (Bio-Rad Laboratories, Hercules, STATE), proteins
were separated on SDS-PAGE and transferred to nitrocellu-
lose membranes and probed with primary antibodies against
Nrf2 (1 : 1,000), HO-1 (1 : 500), NQO1 (1 : 1,000), and Keap1
(1 : 1,000), overnight at 4∘C followed by incubation with
corresponding secondary antibodies at room temperature for
1 h. Blots were visualizedwith ECL-Plus reagent ECLWestern
Blotting Substrate (Pierce, Rockford, IL).
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Table 1: Hemodynamic assessment under sham-operated conditions.

Groups LVSP (mmHg) LVEDP (mmHg) +𝑑𝑝/𝑑𝑡max
(mmHg/s)

−𝑑𝑝/𝑑𝑡max
(mmHg/s)

Sham 112.25 ± 5.06 10.88 ± 1.13 4532.13 ± 177.30 −3395.13 ± 254.31
Model 113.50 ± 6.74 10.75 ± 1.04 4592.63 ± 195.67 −3431.63 ± 258.17
DMF 116.00 ± 6.78 11.00 ± 1.31 4512.75 ± 159.85 −3573.50 ± 226.15
LM (15mg/kg) 116.50 ± 6.14 10.88 ± 1.46 4575.88 ± 190.90 −3464.88 ± 242.18
LM (60mg/kg) 118 ± 5.29 11.00 ± 1.00 4648.67 ± 209.13 −3446.33 ± 209.13
LM (120mg/kg) 114.13 ± 7.74 11.00 ± 1.85 4605.38 ± 220.12 −3569.50 ± 274.68
LM (240mg/kg) 115.30 ± 4.25 11.40 ± 1.27 4659.25 ± 200.57 −3606.21 ± 211.73
LM (480mg/kg) 116.38 ± 9.78 11.00 ± 1.31 4550.75 ± 199.46 −3526.13 ± 234.33
Data are presented as the means ± SD. No significant differences were detected among groups. LVSP: left ventricular systolic pressure; LVEDP: left ventricular
end-diastolic pressure; +𝑑𝑝/𝑑𝑡max: indices of left ventricular contraction; −𝑑𝑝/𝑑𝑡max: indices of left ventricular relaxation.

2.9. Statistical Analysis. All data are presented asmeans± SD.
Statistical analysis was performed using SPSS 16.0 and data
were analyzed with ANOVA analysis followed by Student-
Newman-Keuls test for multiple comparisons. In all cases,
𝑃 < 0.05 was considered to be a statistically significant
difference.

3. Results

3.1. L-Malate Improves Functional Recovery after I/R Injury.
No significant difference in LVEDP, LVSP, and±𝑑𝑝/𝑑𝑡max was
observed in all animals beforeMIRI (Table 1). Hemodynamic
changes recorded in anesthetized animals are presented in
Figure 1. After myocardial I/R injury, LVSP and ±𝑑𝑝/𝑑𝑡max
decreased, and LVEDPwas significantly increased in controls
compared to shams. These effects were partly reversed after
treatment with DMF and L-malate (≥60mg/kg) and these
effects were L-malate concentration-dependent.

3.2. L-Malate Reduces LDH and cTn-I Release after I/R Injury.
Compared with shams, LDH and cTn-I in models were
significantly increased, and these were significantly different
(𝑃 < 0.01) (Figure 2). Compared with models, DMF reduced
cTn-I and LDH (𝑃 < 0.05 or 𝑃 < 0.01); L-malate (120mg and
greater) reduced cTn-I and LDH as well (𝑃 < 0.01).

3.3. L-Malate ReducesMyocardialDamage after I/R Injury. To
investigate the potential protective effects of L-malate against
MIRI, we measured the myocardial infract volume. Figure 3
shows that no MI occurred in the sham group, but MIRI
was significant (𝑃 < 0.01) in the other groups and DMF
significantly reduces the ventricular infarction compared to
model (𝑃 < 0.01). L-malate reduces infarct volume in a dose-
dependent manner at concentrations greater than 15mg/kg,
which was not different than the vehicle group (𝑃 > 0.05).
The highest dose (240mg/kg) of L-malate was the most
effective and more protection was not observed at higher
concentrations.

3.4. Effects of L-Malate and Inflammatory Cytokine Expres-
sion. To investigate potential anti-inflammatory activity of
L-malate afterMIRI, cytokines associatedwith inflammation,

such as hs-CRP and TNF-𝛼, were measured. Compared with
sham, hs-CRP and TNF-𝛼 significantly were increased (𝑃 <
0.01) in model controls. In groups treated with L-malate (240
and 480mg/kg) hs-CRP and TNF-𝛼 decreased compared to
model controls, but, at higher concentrations of L-malate,
TNF-𝛼 increased (Figure 4).

3.5. Effects of L-Malate on Antioxidant Activity after MIRI.
Antioxidants such as SOD and GSH-PX were increased in
model controls compared to shams 3 h afterMIRI, suggesting
oxidative damage conferred by MIRI (Figure 5). Treatment
with L-malate significantly preserved SOD and GSH-PX
activity 3 h afterMIRI and this was dose-dependent (𝑃 < 0.05
or 𝑃 < 0.01).

3.6. Effects of L-Malate on Expression of Keap1, Nrf2, HO-1,
NQO-1, and Nrf2 Nuclear Translocation afterMIRI. To better
understand the mechanism of L-malate on cardioprotection,
expressions of Keap1, Nrf2, HO-1, NQO-1, and Nrf2 in
nuclear expression in ischemic myocardial tissues were mea-
sured using Western blot (Figure 6). Compared with model
controls, Nrf2, HO-1, and NQO-1 expression were increased
after the higher concentrations of L-malate (240mg/kg: 1.42-
fold, 1.80-fold, and 2.41-fold, 𝑃 < 0.01; 480mg/kg: 2.03-
fold, 1.64-fold, and 3.18-fold, 𝑃 < 0.01). Keap1 expression
decreased after L-malate treatment at 240mg/kg (0.35-fold,
𝑃 < 0.01) and 480mg/kg (0.27-fold, 𝑃 < 0.01). Nrf2 in
nuclear protein was significantly elevated after L-malate at
240mg/kg (2.12-fold, 𝑃 < 0.01) and 480mg/kg (2.27-fold,
𝑃 < 0.01), indicating increased Nrf2 nuclear translocation.

4. Discussion

When myocardial ischemia occurs, cardiac blood supply
and attendant oxygen and nutrients are diminished [15].
Reestablishment of blood flow after prolonged ischemia can
help to alleviate the initial injury but also it can aggravate
myocardial damage and eventually cause structural and
functional changes [16]. However, rational drug intervention
prior to ischemia and reperfusion may reduce the degree of
myocardial injury and promote recovery [17].
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Figure 1: L-malate (LM) improves functional recovery after I/R injury. Data are means ± SD. ##𝑃 < 0.01 versus sham, ∗∗𝑃 < 0.01, ∗𝑃 < 0.05
versus model. LVSP: left ventricular systolic pressure; LVEDP: left ventricular end-diastolic pressure; +𝑑𝑝/𝑑𝑡max: indices of left ventricular
contraction; −𝑑𝑝/𝑑𝑡max: indices of left ventricular relaxation.

In the present study, the protective effect of L-malate
on MIRI and its potential mechanism were revealed in rats.
Data indicate that MIRI leads to necrosis and apoptosis
in cardiomyocytes, which ultimately leads to myocardial
infarction and cardiac loss of function. L-malate significantly
reduced infract volume induced by MIRI and prevented
depletion of cTn-I protein and LDH in ischemic heart tissues
when administrated after MIRI. In addition, treatment with
L-malate significantly preserved left ventricular function, as
reflected by a significant increase in +𝑑𝑝/𝑑𝑡max, −𝑑𝑝/𝑑𝑡max,
and LVSP and a decrease in LVEDP in the MIRI rat heart.
These data clearly show that L-malate has a protective effect
onMIRI, and this protective effect was dose-dependent up to
a point.

MIRI is known to be caused by inflammation, oxidative
stress injury, and apoptosis [2], and studies suggest that early
inflammatory reactions and oxidative stress are two main
pathological contributors to myocardial reperfusion injury
[18, 19]. After inflammation is initiated, hs-CRP increases and
inflammatory mediators exacerbate myocardial damage not
only during acute ischemic injury, but also during the ensuing
reperfusion phase [20–22]. TNF-𝛼, IL-1, IL-6, and IL-8 after
myocardial ischemia began to produce and release TNF-𝛼
[23, 24], which exacerbates myocardial injury via activation
of neutrophils and endothelial cells [25]. Here, we observed
that L-malate significantly decreased hs-CRP and TNF-𝛼,
compared to vehicle-treated animals (𝑃 < 0.05 or 𝑃 < 0.01).
Therefore, the protective effects of L-malate against MIRI
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Figure 2: L-malate (LM) reducesmyocardial damage afterMIRI. (a) LDH and (b) cTn-I were assayed 3 h after reperfusion. Data are presented
as means ± SD from 8 experiments. ##𝑃 < 0.01 versus sham, ∗∗𝑃 < 0.01, ∗𝑃 < 0.05 versus model.
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Figure 3: L-malate (LM) decreases infarct volume after MIRI. Representative N-BT staining of infarct size. Noninfarcted myocardial stained
dark blue, and the ischemic area was white or grayish-yellow. Myocardial infarct volume was assayed 3 h after reperfusion. Data are presented
as means ± SD from 8 experiments. ##𝑃 < 0.01 versus sham, ∗∗𝑃 < 0.01, ∗𝑃 < 0.05 versus model.

may be due to suppression of the inflammatory response
via inhibiting proinflammatory mediators. Oxidative stress
injury through the generation of free radicals and reactive
species can directly damage myocardial cells, resulting in

cellular structural damage and cell death [26, 27]. Antioxi-
dants are critical for response to endogenous or exogenous
oxidative stress, andmolecules such as GSH-PX and SOD can
be synergistically protective [28, 29]. Therefore, increasing
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Figure 4: L-malate (LM) attenuates expression of inflammatory cytokines afterMIRI. (a) hs-CRP and (b) TNF-𝛼were assayed 3 h afterMIRI.
Data are presented as means ± SD from 4 experiments. ##𝑃 < 0.01 versus sham, ∗∗𝑃 < 0.01, ∗𝑃 < 0.05 versus model.
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Figure 5: L-malate (LM) increases antioxidant enzyme activity afterMIRI. (a) SOD and (b) GSH-PXweremeasured by ELISA 3 h afterMIRI.
Data are presented as means ± SD from 4 experiments. ##𝑃 < 0.01 versus sham group, ∗∗𝑃 < 0.01 versus model.

antioxidant activity may be helpful. L-malate significantly
improved SOD and GSH-Px activity (𝑃 < 0.05 or 𝑃 < 0.01)
after MIRI suggesting that L-malate can reduce oxidative
stress damage after MIRI.

As a transcription factor, Nrf2-mediated regulation of
antioxidant and anti-inflammatory mediators is important
for defense against oxidative stress [30]. Nrf2 is localized to
the cytoplasm as an inactive complex bound to a repressor
molecule, Keap1, which facilitates its ubiquitination, such
that cytoplasmic Nrf2 is degraded by the ubiquitin pathway
and cannot move to the nucleus [31]. Under oxidative
or electrophilic stress, Nrf2 dissociates from the Keap1-
Nrf2 complex, and when Nrf2 is not ubiquitinated, it can

accumulate cytoplasmically and translocate to the nucleus.
There, it can promote antioxidant genes such as NQO-1 and
HO-1 and initiate their transcription [32, 33]. Our results
indicate that L-malate significantly upregulated expression of
total Nrf2, nuclear Nrf2, HO-1, and NQO-1, suggesting that
L-malate could promote Nrf2 nuclear transfer, increase HO-
1 and NQO-1, and reduce I/R injury. Keap1 is the protein
primarily responsible for the regulation of Nrf2 by forming a
homodimer responsible for sequestering Nrf2 in the cytosol
and rendering it inactive [34]. The activity of Nrf2 is pri-
marily regulated via its interaction with Keap1, which directs
the transcription factor for proteasomal degradation. Keap1
expression was significantly downregulated by L-malate



Evidence-Based Complementary and Alternative Medicine 7

tNrf2

Keap1

LM480LM240Model

tNrf2 Keap1
0.0

0.5

1.0

1.5

2.0

2.5

Fo
ld

 ch
an

ge
 o

f m
od

el

∗∗

∗∗

∗∗ ∗∗
𝛽-actin

Model
LM240

LM480

(a)

NQO-1

HO-1

Model LM480LM240

HO-1 NQO1
0

1

2

3

4
Fo

ld
 ch

an
ge

 o
f m

od
el

∗∗
∗∗

∗∗

∗∗

𝛽-actin

Model
LM240

LM480

(b)

nNrf2

Histone

Model LM480LM240

Model LM240 LM480
0

1

2

3

Fo
ld

 ch
an

ge
 o

f m
od

el

∗∗
∗∗

Model
LM240

LM480

(c)

Figure 6: L-malate (LM) increases expression of total Nrf2 and nuclear Nrf2 protein and HO-1, NQO-1 protein after MIRI and decreases
expression of Keap1 protein. Expression of total Nrf2, nuclear Nrf2, HO-1, NQO-1, andKeap1 wasmeasured, withWestern blot. Densitometric
analysis was performedwithQuantityOne software 24 h later. Data are presented asmeans± SD from3 experiments. ∗∗𝑃 < 0.01 versusmodel.
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(240 and 480mg/kg) relative to model controls, but Nrf2 can
be regulated independently of Keap1 at the level of protein
transcription [35, 36]; it can also be regulated at the level of
translation and by posttranslational modifications, including
phosphorylation of Nrf2 by interaction with epigenetic fac-
tors (micro-RNAs 144, 28 [37, 38]), various protein kinases
(PKC, GSK-3b [39, 40]), and other protein partners (p21,
caveolin-1 [41, 42]). These and other processes are poten-
tially important determinants of Nrf2 activity with Keap1-
independent pathway. So further research into L-malate as
a preconditioning protectant of cardiovascular function is
warranted.

In conclusion, L-malate can protect the heart against
MIRI via anti-inflammatory and antioxidant activity and
through Keap1/Nrf2-ARE pathway. Thus, L-malate may offer
therapeutic efficacy for limiting the severity and functional
deficits associated with MIRI.
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