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enhancers induced by
transcription factor complex
formations as a new strategy for
treating drug-resistant cancers
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Tokyo, Japan, 2Division of Systems Medicine and Gene Therapy, Saitama Medical University,
Saitama, Japan
The limited options for treating patients with drug-resistant cancers have

emphasized the need to identify alternative treatment targets. Tumor cells

have large super-enhancers (SEs) in the vicinity of important oncogenes for

activation. The physical process of liquid-liquid phase separation (LLPS)

contributes to the assembly of several membrane-less organelles in

mammalian cells. Intrinsically disordered regions (IDRs) of proteins induce

LLPS formation by developing condensates. It was discovered that key

transcription factors (TFs) undergo LLPS in SEs. In addition, TFs play critical

roles in the epigenetic and genetic regulation of cancer progression. Recently,

we revealed the essential role of disease-specific TF collaboration changes in

advanced prostate cancer (PC). OCT4 confers epigenetic changes by

promoting complex formation with TFs, such as Forkhead box protein A1

(FOXA1), androgen receptor (AR) and Nuclear respiratory factor 1 (NRF1),

inducing PC progression. It was demonstrated that TF collaboration through

LLPS underlying transcriptional activation contributes to cancer aggressiveness

and drug resistance. Moreover, the disruption of TF-mediated LLPS inhibited

treatment-resistant PC tumor growth. Therefore, we propose that repression

of TF collaborations involved in the LLPS of SEs could be a promising strategy

for advanced cancer therapy. In this article, we summarize recent evidence

highlighting the formation of LLPS on enhancers as a potent therapeutic target

in advanced cancers.
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OCT4, nuclear analog, epigenome, collaborative transcription factor
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Introduction

Gene transcription is mediated by interactions among the

general transcription machinery in promoter regions and gene-

specific factors bound to distal regulatory enhancer regions. The

formation of a functional pre-initiation complex in promoters

involves the ordered stepwise assembly of RNA polymerase (pol)

II and general transcription machinery that includes TFIIA,

TFIIB, TFIID, TFIIE, TFIIF, TFIIH (1). Transcription factor

(TF)-dependent transcription from DNA templates requires

additional cofactors for epigenetic regulation and the

multisubunit mediator complex. This serves as a bridge between

regulatory factors at enhancers and the general transcription

machinery at promoters to facilitate loop formation via

chromatin remodeling (2). However, a model of how genes are

expressed in cells and how RNA pol II produces RNA in the

genome is still under development. While there is a model in

which RNA pol II moves on the genome to produce RNA, there is

also a model called a “transcriptional factory” in which DNA

interacts or is taken up at the location where RNA pol II is locally

accumulated to produce RNA (3, 4). Functional analysis of

subclasses of enhancers, which are essential for activating cell-

type-specific genes called super-enhancers (SEs), has shown that

the aggregation or phase separation of transcriptional regulators

may be important for gene regulation (5).

The physiological process of liquid-liquid phase separation

(LLPS) supports the assembly of membrane-less organelles in

cells. LLPS spontaneously drives the separation of a mixed

solution into two or more phases of different concentrations: a

dilute phase and a dense phase (6). The physical features of

biomolecular condensates are essential to distinct cellular

functions such as biocondensates form biochemical reactions,

signaling nodes and the nuclear architecture. Intrinsically

disordered regions (IDRs) of proteins induce LLPS formation

by influencing the interaction with different components of the

complex (7). The key property of proteins that undergo LLPS is

multivalency in interacting with partners (8). IDRs produces

such multivalent and weak interactions between proteins and

nucleic acids. Such interactions are important to ensure the

accurate regulation of biological activities. These interactions

also play a pivotal role in concentrating components at discrete

cellular sites.

During the development and progression of cancer, cancer

cells acquire treatment-resistant and aggressive phenotypes

through a variety of mechanisms (9). In the last decade,

advances in next-generation sequencing and molecular biology

techniques have made it possible to analyze large numbers of

samples simultaneously (10). TFs have been shown to play an

important role in cancer progression (10–12). For example, the

emergence of distinct transcription factor complexes other than
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the androgen receptor (AR) has been reported in prostate cancer

(PC) progression (11–14). They act as drivers of treatment

resistance and have become a potential therapeutic target for

PC (15). Moreover, it has become clear that TFs such as AR

construct chromatin structures as large transcriptional activators

(16). Phenomena due to the physical properties of proteins, such

as LLPS and SE formation, have been demonstrated to be

involved in the transcriptional regulation (5). It was

demonstrated that the activation domains of some TFs are

supposed to be IDRs and bind to the mediator complex in

multiple conformations, leading to fuzzy protein-protein

interactions, which is important for transcriptional activation

(5). Although the importance of these new concepts in cancer

has been demonstrated, more detailed mechanisms remain to be

elucidated. In this paper, we review the recent evidence that has

led to the increased attention on phase separation and the

functional analysis of SEs. In particular, we focused on the

characteristics of nuclear receptors, including the AR and its

associated TFs, that promote treatment resistance in PC.
Enhancers and super-enhancers

Identification of super-enhnacers

The expression of genes specific to various cell types is

regulated by enhancers distant from these genes. Using

Chromatin Immunoprecipitation Sequencing (ChIP-seq), such

as transcription factors and histone modifications in various

types of cells, thousands of enhancer regions have been identified

(2). The function of enhancers that regulate the gene expression

program has been extensively studied in murine embryonic stem

cells (ESCs). The co-occupancy of murine ESC genomic regions

by important transcription factors Sox2, Oct4, and Nanog is

correlated with enhancer activity (17, 18). Furthermore, it was

clarified that some enhancers identified using ChIP-seq datasets

form unusual enhancers in the vicinity of essential genes that

cause diseases and regulate the pluripotency of cells (19). These

enhancers are called SEs, and a unique SE is activated when cells

differentiate into nerves, muscles, and other cells (20). About

200-600 SEs have been identified in each cell type; this

distribution is widely used to determine the identity of the

cells associated with the development of certain diseases. SEs

consist of clusters of enhancers densely occupied with master

transcription factors and mediator coactivators, as well as other

transcription factors and epigenetic regulators at high

concentrations (19, 20) (Figure 1A). It has become clear that

SE deficiency affects the activity of other enhancer regions,

resulting in a decrease in SE activity (21). When analyzing the

three-dimensional structure of the genome, multiple enhancer
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regions within one SE have been found to physically interact

(22–25). By introducing the concept of SEs, the coordination

between transcription factors and multiple enhancer regions

was highlighted.

SEs were defined by reinterpreting the results of ChIP-seq

experiments. Several SE prediction tools are currently available.

However, when looking at the results of previous studies, some of

them were not well-documented or required many ChIP-seq

datasets. Hence, the best option seems to be the Ranking of

Super-Enhancer (ROSE) (19, 26). Here, to identify SEs, all

enhancers in a cell type were ranked according to the total

background-subtracted ChIP-seq signals of histone modifications,

master regulators, and Mediator 1 (Med1), and the total

background-subtracted ChIP-seq occupancy was plotted

(Figure 1A). These plots reveal a clear point in the distribution of

enhancers, where the occupancy signal began to increase rapidly. If

enhancers have occupancy signals above this threshold, they are

supposed to be super-enhancers; enhancers with occupancy signals

below that point are considered typical enhancers. Enriched regions

of histone H3 lysine (K)-27 acetylation (H3K27ac) were also

identified using ChIP-seq data. These domains are ranked

according to H3K27ac ChIP-seq signals, and the tangent of the

curve was used to define two enhancer populations. However, the
Frontiers in Oncology 03
enhancer feature H3K27ac alone cannot directly substitute for the

master transcription factors and Mediators (20, 27).
The role of SEs

Interestingly, SEs could provide valuable resources for

further studies on cellular control of signals. A catalog of SEs

in 86 human cells and tissue types has been generated (20). This

analysis identified genes encoding cell-type-specific TFs and

candidate master TFs for many cell types that should be useful

for understanding cell-type-specific transcription programming.

Disease-specific DNA sequence variation is also associated with

SE regions (20). Tumor cells acquire SEs at key oncogenes and

genes that are hallmarks of cancer development. These studies

suggest that SEs guide specific genes essential for many diseases

and could be biomarkers for tumor-specific pathologies that

could be valuable for diagnosis and therapeutic options.

Moreover, the disease-associated expression of microRNAs

(miRNAs) is also controlled by SEs (28). Interestingly,

miRNA-processors such as Drosha and DGCR8 were also

found to occupy SE regions, suggesting that SEs could be

platforms for effective RNA processing.
B

A

FIGURE 1

Super-enhancer and enhancer RNA (eRNA). (A) Identification of super-enhancers (16). The higher density of transcriptional regulators through
cooperative binding to genomic regions contribute to both activated histone acetylation and higher transcriptional output at super-enhancers.
K27: lysine 27. (B) Impacts of enhancer RNAs (eRNAs) at super-enhancers. Highly transcribed eRNAs facilitate formation of loop between
promoters and enhancers.
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Enhancer RNAs

In addition, SEs are transcribed to enhancer RNAs (eRNAs),

which have been proposed to increase enhancer activity (29).

eRNAs are unstable non-coding RNAs whose expression levels

correlate with enhancer activity (Figure 1B). Because enhancers

are tissue- and disease state-specific, eRNAs derived from the

same enhancers may differ across tissues (30). eRNAs play an

active role in the transcription of nearby genes, potentially

facilitating enhancer-promoter interactions via loop formation;

abnormal eRNA expression is associated with human disease

(31–34). Each eRNA may have an independent functional role

and some eRNAs may act in trans, far from enhancers (35, 36).
Formation of liquid-liquid phase
separation in biological systems

LLPS has been attracting attention in medical research

(6). LLPS is a natural phenomenon observed as oil droplets in

water and de-mixing of two liquids when mixing water and oil

or shaking a salad dressing. Specifically, LLPS is a physical

phenomenon wherein droplets are formed by separating the

phases due to the difference in charges between the

interacting molecules (Figure 2A). Cells have organelles
Frontiers in Oncology 04
made from membranes consisting of phospholipids.

Meanwhile, some compartments are concentrated without a

membrane, in the form of granules (37). This enrichment was

caused by LLPS, the center of which is RNA-binding protein

(RBP) (38). In addition, RNA serves as a seed for defining the

locations of phase-separated compartments (39, 40). RBPs

function in multiple steps of mRNA splicing from pre-

mRNA, such as polyadenylation, nuclear transport, stability

maintenance, and localization (39). While RBPs exist in the

nucleus as a complex with immature precursor mRNA (pre-

mRNA), it also controls the epigenome by binding to long

non-coding RNAs (41, 42).
The role of intrinsically disordered region
for LLPS

Importantly, a disordered region of RBPs, IDR, or the low-

complexity (LC) domain, facilitates the assembly of LLPS via

multivalent interactions among nucleotides or amino acids (8,

43). Because IDRs lack a stable tertiary structure and access a

wider conformational space, the formation of three-dimensional

networks of protein molecules is possible. These regions have

low amino acid sequence complexity and enriched in disorder-

promoting amino acid residues (Arg, Pro, Gln, Gly, Glu, Ser, Ala,
BA

FIGURE 2

Phase-separation by transcription factors and epigenetic factors. (A) Schematic representation of the molecular system that can form the liquid-
liquid phase-separation (LLPS). (B) LLPS formation by multimolecular complex of transcriptional regulators at super-enhancers for activating
gene expression. IDR, intrinsically disordered region.
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and Lys) without a fixed structure and aromatic residues, such as

Phe, Trp and Tyr (44).

The interactions such as cation–pi, pi–pi, electrostatic, and

transient cross–pi-contacts are important for the formation of

LLPS (8). Recent evidence suggests that the aromatic residues in

IDRs are particularly critical for increasing the effect by

polarizable pi electron. For example, the cation-pi interactions

between Phe and Arg motifs have been proven to be significant

for promoting LLPS (45). The Tyr residues in other RBPs such as

fused in sarcoma (FUS) can also promote the process of phase

separation in vitro and in cells (45, 46). IDRs can promote LLPS

through weak interactions such as pi-pi interactions mediated by

aromatic residues in TAR DNA binding protein 43 (TDP-43) or

reversible amyloid-like interactions between TDP-43 and FUS

proteins (47). The electrostatic interactions between opposing

charge residues of IDRs contribute to the promotion of LLPS. In

DNA damage response (DDR) sites, negatively charged poly

(ADP-ribose) (PAR) can rapidly recruit positively charged

proteins containing IDRs and cause LLPS upon DNA damage

(48). In addition, the short stretches of amino acids in IDRs can

form localized structures and promote self-interaction. Fibrils

formed by short segments of prion-like domains (PrLDs) of

RBPs that undergo LLPS have kinked cross–b-sheets termed

low-complexity aromatic–rich kinked segments (LARKS) (49).

The IDRs located in the C-terminus of the TDP-43 protein

contain a structural domain that forms a local a-helix, which
enables TDP-43 self-connections and drives LLPS (50). Thus,

aggregates are formed by a force that causes a weak bond. It is

also known that the formation of granules via LLPS is linked to

protein aggregation in neurodegenerative diseases such as

amyotrophic lateral sclerosis (ALS) (47). Furthermore, in

recent years, it has become clear that it works as a physical

force that causes various intracellular phenomena, such as

autophagy, cell adhesion, and ubiquitination (51).
Physiological properties of LLPS

Several factors have been shown to modulate physiochemical

features of condensates such as the viscoelasticity and

condensate structure (7, 8, 52).
Thermodynamics

The thermodynamics is important physical parameters

including a concentration or temperature change can induce

phase transitions. For example, stress granule (SG)-formation

clustered with FUS and TDP-43 is induced by physiological

stress conditions such as heat and oxidative stress (37). As LLPS

depens on the concentration of macromolecules, the threshold

concentrations are essential factors of LLPS (38). When the

concentration of macromolecules in the solution is increased to
Frontiers in Oncology 05
the limit of solubility, the threshold concentration, the

interactions between the macromolecules will become strong

and this solution will have propensity to LLPS (52). The

threshold concentration is determined by several biophysical

parameters including the salt concentration, temperature, and

other ions (8). The addition of crowding agent, PEG3000 or

glycerol, can also effectively promotes LLPS.

Simple changes to protein sequence can also alter self-

assembly of proteins. Lysine and arginine, two positively

charged amino acids that can have strikingly different LLPS

properties. Arginine can form cation-pi interactions that

mediate protein-protein association (53). Poly-Arginine

condensates more readily than poly-lysine on a negatively

charged nucleic acid scaffold, and is more viscous and

aggregation-prone (54).
RNA

RNAs additionally act as scaffolds for promoting phase

transition. RNA regulates the organization of phase separated

condensates (8). RNA recruit protein to compete with RNA base

paring to promote phase-separation (55). RNAs can not only

drive LLPS via electrostatic interactions, but repetitive

intermolecular base pairing can also produce multivalency and

then contribute the formation of LLPS (56).

Considering the role that arginine residues paly in LLPS, the

presence of an arginine-rich polypeptide (RRP) induces LLPS

of PrLDs of FUS. Whereas RNA can promote LLPS of RRPs

but not of PrLDs, suggesting the importance of arginine in

forming protein-RNA condensates (57). RNA molecules can

differentially partition into condensates as a function of RNA

structure, which may help explain why some condensates show

spatially patterned RNA localization. RNA sequences affected

droplet viscosity, as poly-rA formed more viscous droplets than

-rU or -rC (55).

In addition, long non-coding RNAs (lncRNAs) are localized

on chromatin and form a cluster of RNA in a particular nuclear

region for transcriptional regulation (7, 8). Many findings have

demonstrated that NEAT1 lncRNAs can functions as a scaffold

RNA and selectively interacts with NONO/SFPQ proteins,

which dynamically oligomerize proteins for LLPS to facilitate

the assembly of paraspeckle (52).
Posttranslational modifications

Protein concentration, posttranslational modifications

(PTMs) of environmental elements provide a major

mechanism for the regulation (7, 52). Emerging evidence

suggests that PTMs, such as phosphorylation, acetylation,

methylation, and SUMOylation, have important roles in

regulating LLPS. PTMs affect the physiological characteristics
frontiersin.org
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of regulated amino acids in scaffold protein by diminishing or

enhancing the multivalent interactions (8). Thus, PTMs induce a

wide range of effects on the structural properties of IDR proteins

and drive state changes such as intrinsically disordered states,

folded states, dispersed monomeric and phase-separated states

(58). For example, Arg methylation mediated by protein

arginine methyltransferase (PRMT1) increases the rate of SG

formation caused by oxidative stress (59). SUMOylation of

PMLs contributes significantly to the formation of the PML

nuclear body, whereas de-SUMOylation can lead to a

constituent protein being released and nuclear bodies being

separated during mitosis (52). Moreover, three distinct IDRs

in G3BP1 regulates its properties for enhancing LLPS. This

process is fine-tuned by phosphorylation (S149) within the

IDRs (60). Thus, PTMs could be a conformational switch that

fine-tuned RNA binding and the subsequent LLPS in cells.
Other factors

Molecular chaperons are critical for controlling the quality

and protein homeostasis by avoiding aberrant folding and

aggregation. A wide variety of molecular chaperones has been

proven to undergo LLPS such as heat shock protein 40 (HSP40)

(61). Thermodynamic nonequilibrium processes, such as the

hydrolysis of adenosine triphosphate (ATP) can provide free

energy to fuel phase separation by facilitating droplet states

during LLPS (52). Whereas, ATP is a universal and specific

biphasic modulator of LLPS in IDRs, altering physicochemical

properties, conformation dynamics, assembly, and aggregation. A

high concentration of ATP inhibits the tendency of IDRs in

condensate components, solubilizing abnormal, pathological

aggregates often associated with neurodegenerative disorders (37).
Phase separation of transcription
factors on SEs

This section outlines the results of recent research on the

functional analysis of SEs, focusing on LLPS in gene expression.

Recent studies have indicated a direct relationship between gene

regulation and LLPS (5, 62, 63). Single-molecule light

microscopy determined the spatiotemporal organization of

RNA Pol II in the nucleus, revealing that approximately 10–

100 RNA pol II molecules form short-lived clusters in the

nucleus for several seconds, indicating the presence of

transcription factories in living cells (64). This observation

provides important evidence for the existence of pre-

assembled stable transcription structures. Super-resolution

imaging of RNA pol II with a mediator in mouse ES cells

demonstrated that hundreds of RNA pol II and mediator

molecules formed stable clusters of approximately 10-20 per

cell for more than one minute and transient small clusters for
Frontiers in Oncology 06
approximately 10 seconds (65). Mediators and Pol II are

colocalized in stable clusters, which associate with chromatin

and have properties as phase-separated condensates in a

transcription-dependent manner. In addition, fluorescently

tagged mediators and BRD4 (bromodomain-containing 4), a

transcriptional and epigenetic regulator, have been found to be

locally accumulated in the vicinity of some SEs and have IDRs,

which induce LLPS (66). The RNA pol II and FET (FUS/EWS/

TAF15) family proteins containing IDRs also undergo LLPS in

vitr (67, 68). These live-cell imaging studies indicate that

transcriptional factories are dynamic structures formed on

genes during transcription. Based on these considerations, the

hypothesis that TFs, multiple interactions between enhancer

regions, and LLPS may be involved in the function of SEs has

been investigated (5, 69).

These studies provided a model in which TF clusters formed

around the SE activate transcription by transiently interacting

with promoters of nearby genes. In these condensates, the

important characteristics of aggregates associated with LLPS

include: 1) early recovery after the disappearance of clusters

due to photobleaching, 2) cluster-to-cluster fusion, and 3) the

presence of hydrophobic interactions (66–68). It was clarified

that LLPS by transcription factors is strongly induced in the SE

region and that complexes comprising TFs, conjugate factors,

and mediators connecting enhancers and transcription start sites

are formed. The relationship between SE and LLPS was

demonstrated by the observation that 1,6-hexanediol (1,6-HD)

suppressed SE activity. The aliphatic alcohol 1,6-HD

disassembles phase-separated ribonucleoprotein granules and

membrane-less structures by disrupting their weak

hydrophobic interactions (66, 70, 71). It has been reported

that IDR is enriched in many TF proteins and that master TFs

form phase-separated condensates with the mediator coactivator

at SEs (5, 72). In addition, a repeating sequence undergoes

phosphorylation on the C-terminal repeat domain (CTD) of

RNA pol II, causing the transcription of DNA to mRNA.

Although this sequence is a signal to initiate splicing by RNA-

binding proteins, LLPS also functions here (72). Therefore, the

transcription mechanism itself could occur without a fixed

structure, owing to the weak binding afforded by

LLPS (Figure 2B).

The cooperative interaction between molecules for

aggregation is determined by the number and concentration of

interacting factors and the nature of the interaction site, since the

presence of IDRs provides an avenue for more interactions. It is

assumed that a high concentration of factors works for SE

formation while a low concentration works for a typical

enhancer. Thus, the SE forms a larger molecular complex than

a typical enhancer. Moreover, BRD4 inhibitors targeting

acetylated histones and activating transcription suppress SEs

more strongly than typical enhancers (26). A rapid change in

molecular complex formation was observed in SEs, depending

on the number of interaction sites. The synergy between the
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concentration of the interacting factors and the number of

interaction sites determines the sensitivity of SEs to BRD4

inhibition (26).

In the conventional model of gene regulation patterns, an

enhancer and promoter physically interact with each other in a

one-to-one correspondence to activate a gene. By introducing the

concept of LLPS, the relationship between the enhancer and the

promoter can be one-to-one or one-to-many, respectively (69). It

has been observed that one enhancer can induce multiple genes

simultaneously (73). In addition, transcription bursts can be

explained by LLPS (74). The temporal formation pattern of the

molecular complex is similar to that of the transcription burst,

depending on the strength of the enhancer (74). In mammals, the

gene expression pattern induced by inflammatory stimuli, such as

tumor necrosis factor alpha (TNF-a), is similar to that in a

bursting model (75, 76). In the future, it will be determined

whether these gene regulation patterns are regulated by LLPS.
The role of LLPS-mediated TF
activation in cancer progression

FET fusion

Alterations in transcriptional condensates in cancer cells

have been reported in recent publications (Table 1). These

reports highlight the pathological significance of LLPS caused

by TFs in the development of cancer. Chimeric fusion TFs

produced via chromosomal translocation affect the dynamics

of LLPS formation and transcriptional activity. Interestingly,

FET protein-related translocation and IDRs of the FET RNA-

binding protein family are fused to the DNA-binding domains of

various TFs, yielding chimeric TFs such as EWS-FLI, EWS-ERG,

and FUS-ERG in Ewing sarcoma (87). EWS-FLI TFs recruit the

BRG1/BRM-associated factor (BAF) chromatin remodeling

complex to the tumor-specific enhancers in a manner

dependent on the EWS IDRs and form condensates at GGAA

repeat-containing microsatellites (82, 83).
Frontiers in Oncology 07
b-catenin

Enriched recruitment of signaling factors to enhancers may

reflect preferred access to open chromatin and could be

associated with activated epigenetic status (13). This binding is

mediated by structural changes in the DNA caused by other TFs

at these enhancers or by cooperative action through protein-

protein interactions with master TFs. However, the mechanism

by which a single signaling factor interacts with cell-type-specific

enhancers has not been fully elucidated. Signaling factors such as

Wnt, TGF-b, and JAK/STAT enter and concentrate in mediator

condensates at SEs using their IDRs (86). b-catenin interacts

with both condensate components and TFs to selectively activate

SE-associated genes. Both condensate and TF interactions

contribute to b-catenin localization. These findings suggest

that context-dependent transcriptional responses can be

achieved using phase-separated condensates and IDRs across

cells (86).
ERa

Moreover, another example of transcriptional machinery

reported as a biomolecular condensation on active enhancers

is the action of estrogen receptor a (ERa) in response to 17b-
estradiol (E2) treatment in breast cancer cells. ERa forms a

protein complex, referred to as the “MegaTrans” complex,

wherein proteins are recruited at the activated enhancers. This

complex is characterized by transcription factors that collaborate

with ERa, such as GATA3, FOXA1, and epigenetic enzymes

(13). Many components of this complex harbor IDRs.

Furthermore, ERa also transcribed high levels of eRNAs in the

acutely activated enhancers. These proteins and RNAs exhibit

the assembly of RNA-dependent ribonucleoprotein (eRNP)

condensates by the physical properties of LLPS at acutely

induced enhancers but not at enhancers exposed to chronic

stimulation (80). This complex formation and enhancer action

were sensitive to chemical disruption using 1,6-HD (66, 71). In
TABLE 1 Summary of transcription factors and epigenetic factors activated by LLPS.

Protein Cell type Cellular mechanisms Reference

YAP, TAZ, TEAD Lung adenocarcinoma
model, melanoma

Induced by IFNg
for anti-PD-1 resistance

77

Breast cancer Activation of YAP signaling 78, 79

ERa Breast cancer Enhancer activation 80

AR Prostate cancer Collaboration
with FOXA1 and OCT4

81

FET fusion Ewing sarcoma Recruit BAF complex 82, 83

NUP98 fusion Pediatric AML Chromatin looping 84, 85

b-catenin murine embryonic
stem cells (ESCs)

Complex with Mediators 86
fro
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addition, a rapid fluorescence recovery of ERa was observed

after photobleaching. These results indicate that ERa forms

functional condensates to activate enhancers. Moreover, LLPS

underlies long-distance interactions and the cooperative

activation of acutely induced enhancers (80).
NUP98 fusion

Recent studies have discovered that nucleoporin-98 and -96

precursor (NUP98)-associated TF chimeras, which are

recurrently detected in pediatric acute myeloid leukemia

(AML), form nuclear condensates and induce aberrant

chromatin looping and leukemogenic gene expression

programs (84, 85). In these tumors, the phenylalanine- and

glycine-rich IDRs of NUP98, which intrinsically form part of the

nuclear pore complex, are fused to various TFs or epigenetic

regulators, such as HOXA9, KDM5A, NSD1, DDX10, and

PSIP1. These chimeric fusion TFs form nuclear foci in an

IDR-dependent manner and interact with var ious

transcriptional regulators. Additionally, the IDRs potentiate

the activation of target genes, possibly through increased

chromatin binding and retention (84, 85).
YAP/TAZ/TEAD

The Hippo pathway and the downstream effector Yes-

associated protein (YAP) control cell growth, cell fate, and

tumor progression. Hippo pathway is important for biological

activities such as immune regulation, epithelial homeostasis, and

tissue regeneration. YAP and the transcriptional coactivator

with PDZ-binding motif (TAZ) are frequently upregulated in

cancers that form condensates and promote oncogene

expression. Condensates of TAZ were observed at discrete

nuclear puncta in breast cancer tissues (78, 79). Hydrophobic

interactions are induced by coiled-coil domains of YAP/TAZ for

the formation of LLPS (77, 78). Moreover, YAP forms a complex

with its transcription factor partner, TEA domain (TEAD)

family members, associating with promoters or enhancers to

regulate epigenetic conditions and its target genes. Another

important role of the YAP pathway is acquiring resistance to

cancer immunotherapy (77). Immunotherapy using

programmed death 1 (PD-1)/programmed death-ligand 1

(PD-L1) inhibitors has shown promising clinical outcomes in

treating many cancer types. However, resistance to

immunotherapy is often observed in patients with solid

tumors. Blockade of PD-1/PD-L1 activates T cells to induce

interferon-g (IFNg) production for anti-tumor activity.

However, IFNg mediates adaptive resistance through PD-L1-

dependent and -independent mechanisms. LLPS and nuclear

translocation of YAP by IFNg drives a transcriptional program
independent of the canonical STAT1-IRF1 pathway (77). In
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activated enhancers, YAP condensates function as a target gene

hub by forming a transcriptional complex with the transcription

factor TEAD4, histone acetyltransferase EP300, and Med1. YAP

inhibition reduces tumor growth by enhancing the immune

response and sensitizing tumor cells to anti-PD-1 therapy.
Activation and emergence of
distinctive transcription factor
networks for prostate
cancer progression

Changes in transcriptional control mechanisms are

associated with the progression of cancer and cancer stem

cells, leading to treatment-resistance, recurrence and

metastasis (88). This section focus on the transcriptional

networks involved in the progression of prostate cancer (PC).
AR in prostate cancer

PC is the most frequent cancer in men worldwide (89).

Although androgen deprivation therapy, anti-androgen receptor

(AR) therapy, and taxane-based chemotherapy are effective for

advanced types of cancers, many patients with PC develop a

more lethal form of PC called castration-resistant PC (CRPC)

(90). It is well known that increased activation of androgen

receptor (AR) signaling is the primary mechanism in the

transition to CRPC (90, 91). Cofactors and collaborating TFs

are necessary for AR-regulated gene expression. While

coregulators directly bind to the activation function (AF) 1 or

2 domains of the AR, collaborating TFs bind to genomic

elements near the AR binding sites. Importantly, some TFs,

such as FOXA1, function as pioneer factors that facilitate AR

recruitment to target regions through chromatin remodeling

(13, 14). Therefore, dysregulation of collaborating TFs can

dramatically change the pattern of AR-binding sites between

treatment-naïve PC and CRPC (12, 92, 93). AR-binding genes

unique to CRPC were not AR-regulated in treatment-naïve PC

cells (92–97). Moreover, the ligand-independent splice variant of

AR, AR-V7, also facilitates AR activation in PC under castration

conditions. These variants are produced by spliceosomal

dysregulation in CRPC (98, 99). Thus, targeting epigenetic or

chromatin-modeling factors for AR activation may be

therapeutically effective against CRPC.
The role of TFs in lineage plasticity for
NEPC development

Notably, long-term AR-targeted treatment causes changes in

the properties of cancer cells and dedifferentiates them into more
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aggressive PC with neuroendocrine characteristics (NEPC) (100)

that express neural markers (synaptophedin, chromogranin A,

NSE, etc.). NEPC is characterized by low AR expression and can

develop from AR-positive tumors. Although there is a theory

that AR-negative cells originally existed and proliferated via

selection (101), it is assumed that the cells themselves change

from being AR-dependent to undifferentiated, AR-independent

cells. This process, called lineage plasticity, is induced by the

increased expression of other TFs, such as N-MYC (102), SOX2

(15), ONECUT2 (OC2) (103, 104), BRN2 (105), and polycomb

repressive complex 2 (PRC2) complex EZH2 (102). Other

studies have reported that p53 and Rb1 mutations were found

in 39% of CRPC of the adenoma subtype. In contrast, these

mutations play a role in the progression to NEPC in 74% of

NEPC cases. Therefore, it seems that the loss of function of p53

and Rb1 triggers this lineage plasticity (106). Furthermore,

attention is being paid to changes of transcription signals due

to the increased expression of TFs accompanying the

progression of NEPC. Collectively, the high lethality of

aggressive PC indicates an urgent need to identify the

molecular mechanisms of these TF networks.
Enhanced phase separation through
the collaboration of TFs in
prostate cancer

Collaboration of OCT4 with AR/FOXA1 in
prostate cancer

We explored TFs whose expression is upregulated in CRPC

compared with hormone-therapy-sensitive PC using the RNA-

sequence method (107) and identified OCT4. OCT4 has been

reported to be a TF with increased expression in drug-resistant PC

tumors (108). OCT4 has two intrinsically disordered activation

domains (ADs) responsible for gene activation (5, 109). Stretches

of amino acids in the ADs form IDRs which contribute to phase

separation. In AR-positive CRPC, OCT4 binding sites overlapped

with the binding peaks of AR and FOXA1. Condensates of OCT4

were observed in the nuclei of the PC cells, also suggesting LLPS.

Interestingly, motif analysis of OCT4 binding peaks suggests

indirect binding of OCT4 through FOXA1 (13, 14) rather than

OCT motif-mediated binding. We found that the association of

these three factors was necessary for complex formation and

transcriptional activation and that the CRPC SE was

concentrated at enhancer sites (81). Furthermore, the target

genes of AR and OCT4 are enriched with genes related to

undifferentiated ability and may be involved in acquiring

undifferentiated ability via cooperation with AR (Figure 3).

Purified and fluorescently tagged AR, FOXA1, and OCT4

proteins were used for an in vitro droplet formation assay. Larger

condensed droplets were formed by mixing OCT4 and FOXA1/
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AR proteins compared to AR alone or FOXA1 alone, indicating

the OCT-mediated enhancement of the droplet formation ability

of the AR complex. Taken together, these results demonstrate

that the collaboration of TFs enhances LLPS and droplet

formation for transcriptional activation (81).
The identification of NRF1 as a OCT4
binding partner in AR negative
prostate cancer

Of note, another binding partner, nuclear respiratory factor 1

(NRF1), was identified after determining OCT4 binding sites in

AR-negative CRPC model cells. NRF1 is a transcription factor

involved in the expression of mitochondrial components (110–112)

and has an important role in nerves. The interaction betweenOCT4

and NRF1 was mainly observed in the promoter region.

Importantly, enhanced LLPS by complex formation is important

for the transcriptional regulation. Interestingly, the target genes

regulated by the cooperative action of OCT4 and NRF1 were

enriched among genes associated with the DNA damage and

repair pathways, suggesting that OCT4 and NRF1 induce drug

resistance by modulating the DNA damage response. Thus, the TF

network composed of OCT4 is stage-specific, and it is proposed that

OCT4 promotes malignant transformation by enhancing LLPS and

altering the TF complex (81).

NRF1 as well as OCT4 protein expression is markedly induced

in CRPC/NEPC tissues of patients resistant to chemotherapy (81,

108). NRF1 mRNA expression was significantly associated with

OCT4 in the NEPC-enriched CRPC cohort and metastatic CRPC

cohort, supporting coordinated regulation at the transcriptional

level in CRPC/NEPC (81). Taken together, these results indicated

that the TF complex of OCT4 is associated with disease progression

to lethal PC.
Targeting LLPS is a promising
therapeutic strategy for treatment-
resistant cancers

As discussed above, phase separation by TFs at SEs plays a

prominent role in diseased cellular states. Therefore, several

researchers including us have shown the feasibility of targeting

TF-mediated phase separation and subsequent epigenetic

regulation as a potent therapeutic strategy for treatment-

resistant cancer (52).
Ribavirin for cancer treatment

In a previous study, in silico screening of drugs against PC

was performed using Connectivity Map, a database containing
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the gene expression profiles of different cells treated with various

drugs (113). Ribavirin was identified as a candidate drug thought

to inhibit the growth of PC tumors with high OCT4 expression.

Ribavirin resembles purine RNA nucleotides and prevents the

proliferation of RNA viruses, such as the hepatitis C virus, via

lethal mutagenesis of RNA virus genomes (114). Several studies

in cancer cells suggest that ribavirin exerts anti-tumor activity by

inhibiting IMP dehydrogenase (IMPDH) and subsequently

blocking the de novo purine nucleotide synthetic pathway

(115, 116) or inhibiting gene expression at the translational

level by mimicking the mRNA cap (117). However, the precise

molecular mechanism of action of ribavirin in PC remains

largely unknown.
Targeting OCT4-mediated LLPS in
prostate cancer

Enhancer/transcriptional activity in OCT4-binding peaks,

represented by RNA pol II occupancy, was diminished by

ribavirin treatment. Inhibition of AR complex formation with
Frontiers in Oncology 10
OCT4 and FOXA1 was observed following ribavirin treatment.

Moreover, recruitment of the OCT4 and AR complex to AR-

binding sites was reduced by ribavirin treatment. These data

show that ribavirin inhibits the OCT4-AR axis by modulating

OCT4 recruitment. To further analyze the effect of ribavirin

treatment on phase separation, we tested whether ribavirin

affects droplet formation. The addition of ribavirin reduced

the size and number of droplets, suggesting that ribavirin acts

on the formed networks of weak protein-protein interactions.

Droplet formation is sensitive to high concentrations of salt and

ribavirin. More importantly, hormone therapy-resistant PC cells

were more sensitive to ribavirin than hormone therapy-naïve PC

cells. In xenograft models of AR-positive CRPC, we castrated

mice to inhibit androgen action and mimic hormone therapy.

Marked inhibition of castration-resistant tumor growth was

observed following ribavirin treatment. In a xenograft model

of AR-negative PC tumors resistant to cabazitaxel (Cbz),

ribavirin sensitized tumors to Cbz treatment. Thus, these

results showed growth inhibitory effects to alleviate the

aggressiveness of CRPC/NEPC tumors upon combination

therapy with ribavirin and chemotherapy (81).
B

A

FIGURE 3

Enhanced phase-separation by transcription factor collaborations for prostate cancer progression. (A) OCT4 promotes TF complex formation by
enhancing LLPS in PC specific SE regions. In AR positive PC cells, OCT4 interacts with AR, FOXA1 and activates SEs to induce important genes
for PC progression. (B) Disease specific TF collaboration for PC progression. In AR positive PC cells, OCT4/FOXA1/AR complex regulates genes
associated with tumor growth and pluripotency. Repression of AR is frequently observed in NEPC characterized by an aggressive clinical course.
In AR negative CRPC cells, OCT4 forms a complex with NRF1 to induce specific target genes associated with DNA damage response for
chemotherapy-resistance.
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NSD2 in multiple myeloma

Recent studies have also demonstrated the feasibility of

targeting phase separation in cancer treatment (Table 2). The

development of chemoresistance is the main reason for the failure

of clinical management in patients with multiple myeloma (MM).

Most patients eventually relapse and often develop multidrug

resistance to anti-MM drugs, including proteasome inhibitors

(PIs). Therefore, it is critical to elucidate the mechanisms

underlying acquired drug resistance in MM (119). Aberrant

epigenetic landscapes, such as DNA methylation and histone

modifications, contribute to MM progression, clonal

heterogeneity, and cellular plasticity (122, 123). Abnormal histone

methylation plays an important role in the pathogenesis of MM.

High levels of histone methyltransferases and demethylases have

been identified in MM patients with genetic mutations (123).

Overexpression of a histone methyltransferase called nuclear

receptor-binding SET domain protein 2 (NSD2), which mainly

mediates histone H3 lysine 36 dimethylation (H3K36me2),

activated gene transcription, DNA repair, and cellular survival.

NSD2 is an adverse prognostic factor for MM (119).
Targeting SRC-3-mediated LLPS for
multiple myeloma treatment

Steroid receptor coactivator-3 (SRC-3) is an epigenetic

regulator overexpressed in diverse human cancers. The

overexpression of SRC-3 is associated with tamoxifen

resistance and leads to poor clinical outcomes in breast cancer

(120). SRC-3 belongs to the SRC/p160 coactivator family,

comprising three members: SRC-1/NCOA1, SRC-2/TIF2/

NCOA2, and SRC-3/AIB1/NCOA3. SRC-3 has also been

shown to correlate with relapse and poor outcomes in patients

with MM. High SRC-3 expression enhances resistance to PI-

induced apoptosis. In addition, NSD2 coordinates the elevated

SRC-3 expression by enhancing its phase separation and

forming a complex with SRC-3 (119). This complex of

epigenetic regulators modifies H3K36me2 levels in the
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promoters of anti-apoptotic genes. Furthermore, the small

molecule SI-2, which functions as an SRC-3 inhibitor, blocks

the interaction of SRC-3 with NSD2 and represses its activity by

disrupting phase separation. Targeting SRC-3 using SI-2 (124)

sensitizes PI-resistant MM cells to PI treatment and overcomes

drug resistance. Thus, disrupting phase separation by

orchestrating the interaction of various epigenetic regulators

may be efficacious in overcoming drug resistance.
Targeting LLPS induced by HOXB8/
FOSL1/AP-1 complex in osteosarcoma

In chemotherapy-resistant osteosarcoma, homeobox B8

(HOXB8) and FOS Like 1, AP-1 transcription factor subunit

(FOSL1) produce dense and dynamic phase-separated droplets

in vitro and condensate in the cell nuclei, suggesting phase-

separated complex formation (118). Pharmacological inhibition

of phase separation in this disease was observed using GSK-J4,

an H3K27 demethylase inhibitor. Treatment with GSK-J4 was

found to suppress metastasis and recover sensitivity to

chemotherapy in osteosarcoma tumors. Thus, these reports

provide a phase-separation-based pharmacological strategy by

targeting the TF complex, which is a promising treatment

regimen for metastatic and chemoresistant malignancies.
SRC1 in lung cancer

As mentioned above, aberrant YAP/TAZ-mediated

transcriptional condensates may contribute to cancer-related

pathophysiology (77–79). In lung cancer, siRNA library which

contains siRNAs for 15 reported histone acetylation transferase

(HAT) was used to perform a screening assay (121). Then it was

found that YAP can further form YAP/TEAD/SRC-1 complexes

by interacting with SRC-1 and extensively improve YAP

transcriptional activity. Elevated expression of SRC-1 in non-

small cell lung cancer (NSCLC) was correlated with malignant

features and poor prognosis of patients.
TABLE 2 Summary of molecules for targeting phase-separation for treating treatment-resistant malignancy.

Protein complex Molecules/Screning Molecular function Tumor model Ref

HOXB8/FOSL1 GSK-J4
Screening by 303 chemicals

H3K27 demethylase inhibitor Osteosarcoma 118

SRC3/NSD2 SI-2
High throughput cell-based
luciferase assay screening

small molecules
interacting with SRC-3

Multiple myeloma 119, 120

OCT4/AR/FOXA1
OCT4/NRF1

Ribavirin
In silico screening by using Connectivity Map

nuclear analogue Prostate cancer 81, 113

YAP/TAZ/SRC1 Elvitegravir
YAP reporter cell-based screening

integrase inhibitor Lung cancer 121
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Targeting LLPS induced by YAP/SRC1
complex in lung cancer

Elvitegravir (EVG), one of integrase inhibitors, used to treat

HIV infection can suppress cancer metastasis by directly

targeting the m6A methyltransferase METTL3 (125). It was

newly identified from a YAP reporter cell-based screening by

using a library of FDA-approved drugs that EVG inhibits YAP

transcriptional activity. Mechanistically, EVG can effectively

inhibits the development of the SRC-1/YAP/TEAD complex

formation to restrict tumor growth in a YAP-dependent manner

by specifically targeting LLPS of SRC-1. Gene expression

profiling revealed that EVG suppressed the expression of YAP

target genes in lung cancer (121).
Targeting LLPS pharmacologically in
cancer treatment

1,6-HD significantly inhibited cell growth and induced cell

death in multiple pancreatic cancer cells (126). The application

of 1,6-HD to pancreatic cancer cells can significantly abrogate

the LLPS process. 1,6-HD significantly downregulated the

expression of a set of genes that were enriched in cytokine-

cytokine receptor interactions, WNT signaling pathway, ECM-

receptor interaction, MAPK signaling pathway and focal

adhesion. Importantly, 1,6-HD downregulate the expression of

the MYC oncogene (126). Moreover, researchers have also

demonstrated that the anticancer drug melatonin is capable of

inhibiting the N-terminal IDR of prion-mediated phase

separation in cancer, which results in the alleviation of

multidrug resistance (127).
Future perspective

We demonstrated the function and regulatory mechanism of

OCT4-induced TF complex formation through enhanced LLPS

on SEs in PC, suggesting that LLPS can be a promising therapeutic

target for treatment-resistant cancers. Mounting evidence

indicates that LLPS caused by TFs and epigenetic regulators

plays a critical role in gene regulation by activating SEs during

tumorigenesis. However, there are still other concerns regarding

LLPS induced by TF complexes. Although mediator and TF

condensates may have occurred before and at the start of gene

transcription, it is unclear whether this event depends solely on

the characteristics of the IDRs or the presence of multiple

enhancer regions in the SE. Moreover, it is still unknown how

protein-protein interactions are dependent on RNA or DNA
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molecules for LLPS formation. In cancer, the activation of SEs

due to genomic abnormalities (89) can activate oncogenes, but

how phase separation is involved in this event would be clarified

in future studies (85, 128, 129). Notably, there is the possibility of

therapeutic intervention targeting phase separation to suppress

cancer progression. Recent studies (Table 2), including ours, have

identified several molecules that inhibit phase separation and

protein complexes for cancer treatment. However, the precise

molecular mechanism underlying this disruption remains unclear.

Moreover, the effect of these molecules on the electric charge of

IDRs and protein complexes should be investigated.

In conclusion, we propose that repressing TF collaboration

involved in the LLPS of SEs could be a promising therapeutic

strategy for advanced cancers since it reprograms tumor cells to

attenuate cancer progression. Overall, we consider that the

model of how transcription occurs and RNA is produced in

the genome has entered a new era of change.
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