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Abstract

Monitor lizards (Varanidae) inhabit both the mainland and islands of all geological types and have
diversified into an exceptionally wide range of body sizes, thus providing an ideal model for examin-
ing the role of mainland versus island in driving species evolution. Here we use phylogenetic com-
parative methods to examine whether a link exists between body size-driven diversification and
body size-frequency distributions in varanid lizards and to test the hypothesis that island lizards differ
from mainland species in evolutionary processes, body size, and life-history traits (offspring number
and size). We predict that: 1) since body size drives rapid diversification in groups, a link exists be-
tween body size-driven diversification and body size-frequency distributions; 2) because of various
environments on island, island species will have higher speciation, extinction, and dispersal rates,
compared with mainland species; 3) as a response to stronger intraspecific competition, island spe-
cies will maximize individual ability associated with body size to outcompete closely-related species,
and island species will produce smaller clutches of larger eggs to increase offspring quality. Our
results confirm that the joint effect of differential macroevolutionary rates shapes the species rich-
ness pattern of varanid lizards. There is a link between body size-driven diversification and body size-
frequency distributions, and the speciation rate is maximized at medium body sizes. Island species
will have higher speciation, equal extinction, and higher dispersal rates compared with mainland
species. Smaller clutch size and larger hatchling in the island than in mainland species indicate that
offspring quality is more valuable than offspring quantity for island varanids.
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Islands are the hotspots of biodiversity for their high levels of en-
demism, even if the number of species is lower than that on the
mainland (Whittaker and Fernandez-Palacios 2007). As a result of
the strong oceanic influence, island climates are fairly anomalous

(Whittaker and Fernandez-Palacios 2007). Island-specific environ-
ment, combined with other factors (i.e., geographical isolation and
ecological release), may affect lineage diversification (Losos and
Ricklefs 2009). Yet as natural laboratories, it remains unclear
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whether island species have higher diversification rates. Compared
with their fellow mainland organisms, island species face fewer com-
petitors and predators (lower interspecific predation pressures) and
few preys (stronger intraspecific competition; MacArthur et al.
1972; Novosolov et al. 2016), thus having a suite of traits variation
(Adler and Levins 1994). These include morphology (e.g., a ten-
dency toward medium body size; Clegg and Owens 2002; Lomolino
et al. 2012; Sandvig et al. 2019), behavior (increased intraspecific
aggression; Robinson-Wolrath and Owens 2003 ), and life-history
strategy (a shift to K strategy; Slavenko et al. 2015; Schwarz and
Meiri 2017). Besides those biotic factors, some abiotic factors, such
as isolation and area, have an indirect effect on animal body sizes,
by influencing the identities and numbers of species that occur on
islands (Raia and Meiri 2006).

There are 2 opposing arguments on the morphological differ-
ence between island and mainland species. The “island rule”
describes a trend toward gigantism of small species and dwarfism
of large species on islands (van Valen 1973). This rule represents
the combined influences of ecological release (lacking competitors
and predators), immigrant selection (small species likely to be lim-
ited by dispersal distances), thermoregulation and endurance cli-
matic and environmental stress, and resource limitation (Lomolino
et al. 2012). But the pattern is not general, especially for reptiles:
snakes support the rule at the intraspecific level, whereas turtles
and lizards disagree (Boback and Guyer 2007; Meiri 2007; Itescu
etal. 2018).

The other argument “island syndrome” suggests that island spe-
cies have a tendency toward greater body size, as higher population
densities lead to reduced reproductive output (Adler and Levins
1994). Natural selection can alter female strategies with a change of
population density (Chitty 1960; Sinervo et al. 2000). At high dens-
ity, females favor laying fewer but high-quality offspring. At low
density, females tend to lay many but small offspring. Thus, for life-
history, island animals will shift toward “K strategy”, selecting for
offspring quality, rather than offspring number (MacArthur and
Wilson 1967; MacArthur et al. 1972; Adler and Levins 1994;
Slavenko et al. 2015). In reptiles, trait shifts following the predic-
tions of the “island syndrome” are common. Island lizards lay
smaller clutches of larger hatchlings than the closely-related similar-
size mainland species (Raia et al. 2010; Novosolov et al. 2013;
Schwarz and Meiri 2017). Meanwhile, lizards with different kinds
of reproduction (variable/invariant clutch sizes) respond differently
to “island syndrome”: lizards with variable clutch size decrease
clutch size and increase egg volume and hatchling size; the other liz-
ards decrease clutch size and increase brood frequency, but not
hatchling or egg size (Schwarz and Meiri 2017).

Monitor lizards of the family Varanidae (containing 80 species
that all belong to 1 genus, Varanus; Uetz and Hosek 2019) provide
an ideal model for examining the role of mainland versus island in
driving species evolution. This group inhabits mainland east to
Africa and south to Australia continent, and also inhabits islands of
all geological types (oceanic, land-bridge, and continental fragment
islands) in New Guinea, Philippines, Indonesia, and Solomon
Islands (Pianka et al. 2004; Koch et al. 2013). Varanid lizards have
diversified into an exceptionally wide range of body sizes the small-
est short-tailed monitor Varanus sparnus (116 mm snout-vent length
[SVL]; Doughty et al. 2014) to the largest Komodo dragon V. komo-
doensis (1,540 mm SVL; Ciofi et al. 2007).

Here we hypothesize that island lizards differ from mainland
species in evolutionary processes, morphological trait (body size),
and life-history traits (clutch size and hatchling mass) using

phylogenetic comparative methods. We predict that: 1) since body
size drives rapid diversification in groups, a link exists between body
size-driven diversification and body size-frequency distributions 2)
because of various environments on island, island species will have
higher speciation, extinction, and dispersal rates, compared with
mainland species; and 3) as a response to stronger intraspecific com-
petition, island species will maximize individual ability associated
with body size to outcompete closely-related species, and island spe-
cies will produce smaller clutches of larger eggs to increase offspring
quality.

Materials and Methods

Data collection

We collected the following morphology and life-history data of
monitor lizards from published literature: largest SVL of males (60
species) and females (50 species), largest clutch size (44 species), and
largest hatchling mass (35 species; Supplementary Table S1). For
geographic state speciation and extinction (GeoSSE) analysis, we
classified species as island (21 species), mainland (14 species), or
both (25 species; Figure 1A), using distribution data from Lin and
Wiens (2017) and distribution map of IUCN (https://www.iucnred
list.org/). For Brownian motion (BM), Ornstein-Uhlenbeck (OU),
ordinary least squares (OLS), and phylogenetic generalized least
square (PGLS) analyses, we classified species as mainland species
(>80% of their distribution area is on the mainland) and island spe-
cies (<20% of their distribution area is on the mainland, that is,
excluding V. dumerilii and V. salvator).

We obtained a time-calibrated phylogeny from Lin and Wiens
(2017), including 60 varanid species (75% of the 80 currently
described species; Uetz and Hosek 2019). For each consequent ana-
lysis, we prune the phylogeny according to extant trait data, using
packages “ape” (Paradis et al. 2004) and “geiger” (Harmon et al.
2008).

Body size-driven diversification

To determine if body size influences rates of species diversification,
we used the quantitative state speciation and extinction (QuaSSE)
model implemented in package “diversitree” (FitzJohn 2010, 2012)
to examine continuous speciation rate. We used the lowest delta
Akaike information criterion (AAIC) score to choose the best-fit
model among models (see Supplementary Table S2) with following
changes in speciation rate: constant (no relationship), linear
(increases or decreases linearly), sigmoidal (with a sigmoidal curve)
and hump (i.e., maximum rate occurs in median body size value),
and 3 drift models.

We tested whether the pattern of body size evolution in island
lizards differed from mainland species by fitting 2 BM models and 3
OU models using package “OUwie” (Beaulieu et al. 2012). Three
key parameters describing morphological evolution in these models:
the rate of adaptation to the optimal state (x), evolutionary rate (¢2),
and optimum value (6). Single-rate BM (BM1) is the simplest BM
model, with a single ¢®. Multi-rate BM (BMS) is a complex BM
model, with different o> between the island and mainland. OU1 is
the simplest OU model with a single 0. The OUM model has differ-
ent 6, but with a single ¢” for island and mainland species. Finally,
the OUMV model is an OU model with different ¢* and 6 for island
and mainland species. We sampled potential histories for distribu-
tion in proportion to their posterior probability (Huelsenbeck et al.
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Figure 1. Phylogeny (A) is shown with colors indicating quantitative values for body size (SVL), colored fonts indicate regions [Lin and Wiens (2017) with some
modifications]. Histogram of body size-frequency distributions (B), and the preferred models (C) of body size-driven diversification. Rates of speciation (D) and
dispersal (E) for island and mainland varanids. Probability density plots are based on 1,000 MCMC samples of the best-fit model under GeoSSE.

2003) by creating 1,000 stochastic character maps with the make.-
simmap function in package “phytools” (Revell 2012).

Comparing diversification and dispersal between
regions

We tested the differences in evolutionary processes (speciation, ex-
tinction, and dispersal rates) between island and mainland species
using the GeoSSE model (Goldberg et al. 2011), implemented in
package “diversitree” (FitzJohn 2012). The GeoSSE model is an ex-
tension of the binary state speciation and extinction model
(Maddison et al. 2007), including 3 speciation parameters, 2 extinc-
tion parameters, and dispersal parameters. The speciation parame-
ters Sisland and Snmainland EPresent a species occurring on island or
mainland; and sp., represents a species occurring on both islands
and the mainland. The extinction parameters included in the model
are Xigjand and Xpainland- 1Wo dispersal parameters included the
model are digang and dyainland, respectively, representing range ex-
pansion of island and mainland lineages. We tested a set of 13 dis-
tinct models (see Supplementary Table S3), all these 7 parameters
can be allowed to vary freely or equally between island and main-
land. We tested a model in which all parameters were free to vary,
setting 1 or more parameters to be equal between 2 regions for a ser-
ies of constrained submodels on this basis. We used the lowest AAIC
score to choose the best-fit model. To account for model uncer-
tainty, we sampled the posterior probability distribution of those
parameters using Markov Chain Monte Carlo (MCMC), with a
broad exponential prior (mean of 0.5), run for 1,000 generations.

Comparing traits evolution between regions

To test if reproductive traits differed between island and mainland
species, we used both OLS and PGLS regressions, with clutch size
and hatchling mass as the response variables, and female body size
and region (island versus mainland) as the explanatory variables.
The ecological settings of large islands resemble the mainland, be-
cause of numerous predators and competitors (Badano et al. 2005).

Hence we also run similar analyses for species inhabiting small
islands (excluding islands >50,000km? Novosolov and Meiri
2013) and the mainland. We performed all analyses using packages
“caper” (Orme et al. 2018) and “rms” (Harrell 2015).

Results

Body size-driven diversification in varanids

Body size-frequency distributions have a hump-shaped pattern
(Figure 1B). QuaSSE analysis indicates that the hump model
(w=0.40) is preferred among the 7 models (constant, linear,
sigmoidal, hump, and 3 drift models) of body size-driven diversifica-
tion (Figure 1C, Supplementary Table S2). The hump-shaped trait-
driven speciation model indicates that speciation rates are highest
(Amax =0.137) close to medium values (logsyr around 2.568), and
lowest (Amin=0.007) at extreme value, consistent with body size-
frequency distributions (Figure 1B).

The mean body size of island species is 2.70 (log-transformation,
Standard deviation [SD]=0.17), and that of mainland species is
2.56 (SD=0.30). The best-supported and simplest model (BM1
model, w=0.40) among the 5 models (BM1, BMS, OU1, OUM,
and OUMV) indicates that neither the evolutionary rates nor the op-
timum values in body size differ between mainland and island vara-
nids (Table 1).

Comparing diversification and dispersal between
regions

GeoSSE analysis indicates that the best-supported model is the
model setting equal extinction rate for islands and the mainland
(XIsland = XMainland; Supplementary Table S3). In this model, the spe-
ciation rate is higher for island species (sigjang, range from 0.06 to
0.21 lineages Myrfl) than for mainland species (Symainlands range
from 4.54 x 1075 to 0.09 lineages Myr~'), and the speciation rate is
low for species occurring on both islands and mainland (spews;
Figure 1D, Supplementary Table S3). Dispersal from island to
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Table 1. Model fit and estimated parameters of supported BM and
OU models

Model AAIC w a2 0
Island Mainland  Island Mainland
BM BM1 0 0.40 2.50x 1073 2.743
BMS  0.85 0.26 3.43x107° 1.90x 1073 2.655 2.745
OU OUl  2.00 0.15 2.52x1073 2.742
OUM  3.12 0.08 247 x 1073 2,617  2.760
OUMV 2.85 0.10 3.43x1073 1.90x 107> 2.655 2.745

The parameters are: 6%, the rate of stochastic trait evolution; 6, the evolution-
ary trait optimum. BM and OU models are: BM1, the simplest BM model
with a single ¢ for the whole clade; BMS, a complex BM model, with differ-
ent ¢> for mainland and island species; OU1, the simplest OU model, with a
single 6; OUM, a complex OU model with a single 6> but different §; OUMYV,

2

a complex OU model with different ¢~ and 0. Parameter estimates are

reported as mean across 1,000 stochastic maps generated using SIMMAP.

mainland (dyglang) is almost 10 times more frequent than dispersal
from mainland to island (dnfaintang; Figure 1E, Supplementary Table
S3).

The island syndrome in varanids

PGLS analysis shows a strong influence of female body size on re-
productive traits (clutch size: *=0.366, F3, 40=7.681, P<0.001;
hatchling mass: 7 =0.844, F5, 31=156.08, P <0.001), with no sig-
nificant interaction between region and female body size. We
adopted the results of the PGLS model, for the AAIC value in the
PGLS model was lower than that in the OLS model (Table 2). The
PGLS model indicates that: 1) clutch size is smaller on islands than
on the mainland; and 2) there is no significant difference in hatch-
ling mass between island and mainland varanids, but island varanids
show a trend of increased hatchling mass (Table 2; Figure 2A,B).
When excluding species inhabiting large islands (>50,000 km?), the
PGLS model provides a better fit than the OLS model, which indi-
cates that: 1) clutch size is smaller on islands than on the mainland;
and 2) hatchling mass is larger on island than on the mainland
(Supplementary Table S4, Figure 2C,D).

Discussion

Body size distributions and speciation

Body size plays a major role in geographic range size (Gaston and
Blackburn 1996; Inostroza-Michael et al. 2018), and evolutionary
history, including speciation, extinction, and dispersal rates (Cardillo
et al. 2005; Fontanillas et al. 2007; Wollenberg et al. 2011). Body size
among closely-related species may influence body size-frequency dis-
tributions through changing evolutionary history. In this study body
size-frequency distributions have a hump-shaped pattern (Figure 1B),
which was consistent with the speciation pattern (Figure 1C). Using
the QuaSSE algorithm, a hump-shaped model for speciation was
chosen, with the fastest rate slightly above the intermediate size.
There are 3 scenarios about the evolutionary tendency in body sizes.
First, Cope’s rule claims that body size increases over evolutionary
time because the largest body size has the greatest fitness (Cope 1887;
Brown and Maurer 1989; Avaria-Llautureo et al. 2012). Previous
studies on Oryzomyini rodents (Avaria-Llautureo et al. 2012), mam-
mals in general (Raia et al. 2012) and 2 common groups of snakes in
North America (Crotalinae and Thamnophiini; Burbrink and Myers
2014) supported Cope’s rule. Second, miniaturization hypothesis: a

lineage unusually prefers the evolution of small adult size (Yeh 2002).
Animals with small body sizes have smaller and more strongly frag-
mented ranges because of limited dispersal capabilities and low
physiological tolerances, facilitating reproductive isolation, and speci-
ation (Wollenberg et al. 2011). The studies on therocephalians and
Lampropeltini
Ancestral therocephalian was a large macro-predator, and later
evolved toward small body size (Brocklehurst 2019). Diversification
in Lampropeltini snakes decreased with increasing body size
(Burbrink and Myers 2014). Third, the highest speciation rate is at
the modal body size, such as primates (FitzJohn 2010) and Serpentes
(Feldman et al. 2016). Our results support this last scenario. In a cer-
tain amount of time for speciation, high speciation rate lead to high
species richness, which could be attributable to great reproductive po-
tential (e.g., Brown et al. 1993; cf. Jones and Purvis 1997), ecological
dominance in terms of population density (Damuth 1993), small geo-
graphic range sizes (and thus high spatial turnover, e.g., Brown and
Nicoletto 1991; Agosta and Bernardo 2013), and great variety of eco-

snakes supported miniaturization hypothesis.

logical niches available to medium-sized species (e.g., Hutchinson and
MacArthur 1959). Overall, there exists a link between trait-driven di-
versification and body size-frequency distributions, and the highest
speciation rate is at the modal body size.

In a multivariate context, BM is the best model not just when
evolution proceeds according to BM, but also when evolution is so
complex that a single, simplistic model works best (Adams and
Collyer 2018). BM1 model indicates that either the evolutionary
rates or the optimum values in body size do not differ between main-
land and island varanids (Table 1), which do not support the “island
syndrome.” The “island rule” cannot be agreed or opposed by our
results, because we do not have enough island-mainland pairs of
closely-related species to test.

Island diversification and dispersal rates

Our GeoSSE analysis indicates that a model setting equal extinction
rate for island and mainland species is preferred, whereas speciation
and dispersal rates are higher for island species than mainland spe-
cies (Supplementary Table S3). Higher extinction rates are found in
insular and large-sized reptile species (Slavenko et al. 2016).
Varanid lizards arose in Laurasia and subsequently spread to Africa
and Australia, or arose in Gondwana and subsequently dispersed to
other regions (Pianka et al. 2004). Molecular evidence indicates that
varanid lizards disperse to Africa possibly via an Iranian route dur-
ing 41 million years ago (Mya), and to Australia in the Late Eocene-
Oligocene 32 Mya, consistent with an Asian origin (Vidal et al.
2012). Based on the phylogeny from Lin and Wiens (2017), the aver-
age node age is 4.211 (0.449-20.842) Mya for island species, and
8.153 (2.217-26.951) Mya for mainland species. The oldest varanid
V. griseus (a node age of 26.951 Mya) is a mainland species, and the
youngest V. melinus and V. cerambonensis (a node age of 0.449
Mya for both species) are island species (Lin and Wiens 2017).
Given that varanids have originated on the mainland, mainland
areas have more time to accumulate species.

The pattern of varanid species richness could be the result of the
joint action of speciation time, speciation rate, and dispersal rate. As
mentioned above, island species are younger than mainland species.
Shorter time for island species to speciate and more frequently disper-
sal from island to mainland leads to lower species richness on island,
whereas higher speciation rate for island species leads to higher spe-
cies richness. These 3 factors result in roughly the same number of
species between regions (39 on mainland and 46 on island,
Figure 1A). Higher island dispersal may be related to considered
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Figure 2. Relationship of clutch size and hatchling mass with female body size (SVL) on islands (blue circles) and the mainland (red triangles). Lines represent
PGLS regressions, and 1 line was shown in Plot B because the difference between island and mainland species was not significant. (A, B) Results between all
islands and mainland; (C, D) results between small islands (<50,000 km?) and mainland.

Table 2. Results for OLS and PGLS regressions of clutch size (logCS ~ logSVL + region) and hatchling mass (logHM ~ logSVL + region)

evaluating the effect of region on reproductive traits

Regression variables Model N InLik AAIC w A Slope (+SE) 7 F P-value
Clutch size versus body size OLS 44 3.88 6.23 0.04 - 0.98 (0.15) 0.54 23.73 <0.001
PGLS 44 5.99 0 0.96 0.67 0.92 (0.19) 0.37 11.8 <0.001
Hatchling mass versus body size OLS 35 16.58 7.25 0.03 - 1.68 (0.11) 0.89 135.1 <0.001
PGLS 35 19.21 0 0.97 0.61 1.56 (0.13) 0.84 86.83 <0.001

anomalous climate (strong oceanic influence) for similar latitude and
limited carrying capacity (Whittaker and Fernandez-Palacios 2007).
In summary, our results confirm that joint effect of differential macro-
evolutionary rates shapes species richness pattern of varanid lizards,
with higher speciation rate for island species, equal extinction rate,
and more frequent dispersal from islands to mainland.

Our finding of extremely high island to mainland colonization
rate is surprising. Unfortunately, the fossil record of varanids is un-
available at this time. Groups with a more complete record may
offer a more robust system to test for differences in island and main-
land dispersal using fossil data.

The island effect in life-history evolution
Our PGLS model analysis indicates that clutch size is smaller on
islands than on the mainland, and that there is no significant

difference in hatchling mass between island and mainland varanids,
but island varanids show a trend of producing larger hatchlings
(Figure 2). That trend for the hatchling size is significant when
excluding species inhabiting large islands (>50,000km?) from the
island species (Figure 2). Smaller clutch size and larger hatchling in
island than in mainland species indicate that island varanids prefer
offspring quality over quantity. Laying fewer but larger offspring is
considered to be a combined result of stronger intraspecific competi-
tion and lower interspecific competition (MacArthur and Wilson
1967; Adler and Levins 1994; Schwarz and Meiri 2017). Offspring
size is a crucial life-history trait because of its direct consequences
for both parental and offspring fitness (Sinervo et al. 1992; Sakai
and Harada 2004; Ji et al. 2007). Natural selection can favor
females producing fewer, high-quality offspring (K strategy) at high
density (Sinervo et al. 2000). Larger islands (mainland-like;
Whittaker and Fernandez-Palacios 2007) contain more competitors
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and predators, and more available niches, reducing the effects of in-
sularity. Our result suggests that island area impacts the effect of
“island syndrome,” particularly in a specific clade.

In summary, our results confirm the joint effect of differential
macroevolutionary rates on the formation of species richness pattern
in varanid lizards, a link between trait-driven diversification and
body size-frequency distributions, and the highest speciation rate in
species with medium body sizes. Speciation and dispersal rates are
higher in island species, whereas extinction rate does not differ be-
tween island and mainland species. Island varanids produce fewer
but larger offspring, suggesting that offspring quality is more valu-
able than offspring quantity for island species.
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