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Population-level scaling in ecological systems arises from individ-
ual growth and death with competitive constraints. We build on a
minimal dynamical model of metabolic growth where the tension
between individual growth and mortality determines population
size distribution. We then separately include resource competition
based on shared capture area. By varying rates of growth, death,
and competitive attrition, we connect regular and random spatial
patterns across sessile organisms from forests to ants, termites,
and fairy circles. Then, we consider transient temporal dynamics
in the context of asymmetric competition, such as canopy shad-
ing or large colony dominance, whose effects primarily weaken
the smaller of two competitors. When such competition couples
slow timescales of growth to fast competitive death, it generates
population shocks and demographic oscillations similar to those
observed in forest data. Our minimal quantitative theory unifies
spatiotemporal patterns across sessile organisms through local
competition mediated by the laws of metabolic growth, which in
turn, are the result of long-term evolutionary dynamics.

ecology | population dynamics | spatial patterning | metabolic scaling |
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Ecological niches display a wide variety of spatial and tem-
poral patterns ranging from random to regular and from

transient to long lived. In Fig. 1, we show a small sample from
such diversity, including fairy circles in semiarid environments
(1), regular and random tiling of termite mounds (2, 3), and
more randomly spaced ant nests and trees (4, 5). This variation
is not limited to between taxa but also varies between different
plots in the same region. These systems also operate on differ-
ent timescales, where fairy circles have estimated lifetimes of
around half of a century compared with days or weeks for nascent
ant nests and centuries for trees in unperturbed forests. In the
extreme, transient growth is maximized for agricultural crops,
which are then razed at maturity before demographic stability (6,
7). Overall, fast and slow dynamics of sessile organisms are char-
acterized by a range of spatial distributions, from the random to
the regular, that reflect underlying forces of growth, death, and
competition.

The mechanisms underlying such pattern formation have been
a source of robust debate, especially in the context of vegetation
(8, 9). Following Turing’s seminal work on scale-dependent feed-
back, namely local activation and long-range inhibition, similar
principles of pattern formation with local density dependence
have been considered (10–13), touching on the more general
question of how multiple scales of time and space emerge (14–
16). More recent work has connected these principles with
mechanisms of biological interaction and environmental feed-
back (17–19). For spatial patterning, approaches to mechanism
range from using perturbations like cascades of tree death to
explore self-organized criticality in forests (20–22) to apply-
ing Turing-like activation-inhibition concepts to scale-dependent
plant processes (15, 16), which could be modulated by environ-
mental conditions (23), to considering how ecosystem engineers
modify the local environment to generate bare and densely veg-
etated patches (18, 24). Demographic theories, in contrast, focus
on variables that aggregate across species and space such as age

and size (25–27) and build on allometric dependence of growth,
mortality, and resource acquisition (28–36). In an alternative set
of approaches, mechanism-free maximum entropy principles can
capture demographic patterns by fixing a few population “state
variables” to predict measured properties (37). Across these
examples, forests are particularly well-studied empirically across
diverse species, sizes, and environments (38, 39) and grounded
on predicted theoretical regularities in space and demogra-
phy such as in the context of metabolic scaling (40–43) and
mechanical or hydraulic limits (44–47).

Here, we build on previous work on forest growth and struc-
ture to consider sessile organisms more broadly in the context of
both spatial structure and demographic dynamics. We propose a
minimal dynamical model that integrates timescales of individual
growth and mortality with competitive attrition on a background
of fluctuating resources. With the model, we study the emergence
and erasure of spatiotemporal order in ecological systems. We
show how competition alone is insufficient to generate strong
spatial regularity and that growth and death must flatline for the
largest organisms to stabilize spatial order. Since most ecological
systems are out of equilibrium, we extend our model to consider
transient phenomena and predict population shock waves from
competitive interactions when there is metabolic growth. This
minimal framework serves to unify at a conceptual level the role
of various timescales for pattern formation in distinct ecological
settings.

As the starting point, we consider how metabolism determines
individual growth and death. Metabolic scaling theory describes
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Fig. 1. Regular to random spatial distributions and transient to slow tem-
poral evolution in sessile organisms. (Upper) Trees in Alaskan rainforest
(circles indicate basal stem diameter of > 2.5 cm increased by a factor of
five) (5), view of the Panamian rainforest canopy, semiregularly packed ter-
mite mounds reprinted from ref. 3 (empty circles are inactive mounds), and
hexagonally packed fairy circles reprinted from ref. 1. (Lower) Newly built
ant nests (4), termite mounds with size shown by circles (2), and peren-
nial agricultural crops. Dynamics range from transience dominated, in the
case of crops razed at the end of the season or newly built ant nests that
die within days as indicated by open circles, to long-lasting structures such
as fairy circles, which can live individually for decades or forests at demo-
graphic equilibrium lasting millennia. Scale is unavailable for fairy circles,
but they range from 2 to 12 m in diameter, meaning that the shown plot
covers some hundreds of meters on a side (1). Panamanian rainforest image
credit: Christian Ziegler (photographer). Termite mounds image reprinted
from ref. 3, which is licensed under CC BY 4.0. Fairy circles image reprinted
from ref. 1, which is licensed under CC BY 4.0. Solenopsis invicta nests
image reprinted by permission of ref. 4: Springer Nature, Oecologia, copy-
right 1995. M. michaelseni mounds image reprinted by permission of ref.
2: Springer Nature, Insectes Sociaux, copyright 2010. Crops image credit:
Pxhere.

the origins of scaling laws in organism growth across a large
range of body sizes derived from energetic constraints (40, 48,
49). Given constraints on average resource consumption per unit
area, individual growth follows power law, allometric scaling
relations connecting accumulation of biomass m , or the organ-
ism’s physical dimensions such as the stem radius r with age.
In the context of forests where individuals are fixed in loca-
tion, metabolic scaling can be connected with population-level
statistics such as spatial density, biomass production, and stand
energetics determined by the balance of individual growth and
mortality (34, 43). Such predictions have been verified for indi-
vidual organisms (41, 50) and have highlighted ecosystem-level
regularities such as total population density and predator–prey
relations (51, 52). The presence of universal patterns suggests
that unifying principles act across systems (53, 54) such as from
energetic constraints (34, 43, 55, 56). Such observations form
the basis of using power law, allometric relationships to describe
the rates of processes, but this is not essential. Any number of
assumptions or mathematical relationships could replace these
in our overall framework.

One surprising prediction of metabolic scaling theory is that
it is not necessary to explicitly include local competitive inter-
actions to explain steady-state population distributions (33, 34),
even if local competition is one of the major factors that drives
long-term evolutionary dynamics to optimize fundamental ener-
getic constraints (57). However, competition coupled with other
timescales can introduce complex dynamics (58, 59) such as in
response to exogenous perturbations (60, 61), which goes beyond
steady-state assumptions. Other than mechanistic additions to
metabolic scaling theory (44), competition, perturbation, and
other dynamics present potential explanations for significant and

sometimes substantial deviations from predictions (39, 42). Here,
we present a minimal model to account for these missing factors.

We start with allometric scaling theory of forest growth in sec-
tion 1 and connect deviations from metabolic scaling theory to
organism density, resource variability, and competitive interac-
tions in section 2. We explore the implications of competition
through space in section 3 and time in section 4, concluding
with section 5. Although we explicitly develop our framework
using the language of forests, referring, for instance, to individ-
uals as trees and dimensions as stem radii, our formulation is
straightforwardly generalizable to other sessile organisms (62).
As an example, we extend our model beyond allometric assump-
tions to consider the emergence of spatial order (SI Appendix,
section D).

1. A Size-Class Model for Population Growth
The fractal structure of a forest exists both at the level of
the physical branching of individual trees and at the level of
self-similar packing of differently sized individuals. This fractal
structure reflects energetic constraints that have shaped the long-
term evolutionary dynamics of forest life (33, 50, 63). Connecting
energy expenditure with the physical limits of how vasculature
distributes energy leads to an allometric scaling theory of growth.
For the rate of basal stem radius growth, ṙ , we have (40, 48)

ṙ(r)≈ 3

8
c1−b
m ārb . [1]

For sufficiently long times, r ∼ t1/(1−b) for time t . Eq. 1
expresses the general principle of biomass production in terms of
a constant determined from biological energetics ā , how radius
scales with tree mass m , r = cmm3/8, and a growth exponent b =
1/3. Other sessile organisms fill available space determined by
analogous mechanisms of growth, death, and competition, sug-
gesting that metabolic principles reflecting vascular or other con-
straints (with differing allometric exponents) bridge well-studied
forests and sessile organisms more generally (8).

Building on the metabolic picture of growing individuals, we
consider size classes labeled by radial dimension rk with index
k of population number nk (t), which is a function of time t .
Using forests as our example, these size classes group together
trees of various species, roles, and microenvironments, and so
we describe properties averaged over such variety. The smallest
size class k = 0 is filled with saplings of stem radius r0 that have
grown from seedlings with rate g0 (42). As new saplings appear
in the system, older ones grow into the next class k = 1, reflected
in the rate of change of stem radius ṙk , where the discrete classes
encompass stems of radius within the interval [rk , rk + ∆r). Fur-
thermore, trees die with a size-dependent inherent mortality rate
µk , which we consider independent of competition-based mor-
tality. Accounting for these individual properties of metabolic
growth and death, we obtain a dynamical equation for change
in population number per unit time for saplings:

∂tn0(t) = g0−n0(t)[ṙ0/∆r +µ0]. [2]

For larger trees, the change in the population is determined by
the rate at which smaller plants in size class k − 1 grow into the
size class k ,

∂tnk =nk−1ṙk−1/∆r −nk [ṙk/∆r +µk ], [3]

describing a sequence of ever larger tree sizes that are populated
by an incoming flux of younger and smaller trees and depopu-
lated as trees grow to a larger size or die. Thus, Eqs. 2 and 3,

2 of 9 | PNAS
https://doi.org/10.1073/pnas.2020424118

Lee et al.
Growth, death, and resource competition in sessile organisms

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020424118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020424118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020424118


EC
O

LO
G

Y
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

without specifying the particular functional forms for growth ṙk
and mortality µk , describe the simplest possible form for inde-
pendent tree growth without reference to either environment or
local competitors.

Although population is typically binned into discrete size
classes in both observation and theory, tree growth is in reality
a function of continuous radius r . Relating the index k to radius
r such that rk ≡ r0 + k ∆r , we obtain

∂tn(r , t) =−∂r [n(r , t)ṙ(r)]−n(r , t)µ(r) [4]

with sapling boundary condition

∂tn(r0, t) = g0−n(r0, t)[ṙ(r0)/∆r +µ(r0)], [5]

also known as demographic equilibrium theory when referring
to the steady state (32) (SI Appendix, section A). These equa-
tions determine the continuum formulation of the size-class
model, including only growth and natural mortality as a starting
hypothesis.

Taking predictions from allometric scaling theory that relate
mass growth function dm/dt with tree radius in Eq. 1, we obtain
a functional form for mortality (34, 39, 64). With Eq. 1 and
n(r)∝ r−α and at stationarity ∂tn(r , t) = 0,

µ(r) = Ārb−1,

Ā=
3

8
āc1−b

m [α− b].
[6]

Thus, stationarity directly fixes the form of metabolic mortality
in the simple size-class model from Eqs. 4 and 5 in a way that
determines the population number exponent:

α= b +
8Ā

3āc1−b
m

. [7]

The population number exponent in Eq. 7 indicates the role of
metabolic growth in the first term and the relative timescales
of growth and death in the second. When growth dominates,
we would recover α≈ b = 1/3, and population number is deter-
mined solely by the growth curve, whereas when mortality
overtakes individuals quickly, α→∞, no trees survive beyond
birth. When metabolic growth is determined by a power law, the
simple size-class model fixes the forms of scaling in mortality
and population as a combination of both the exponent driving
growth but also the relative timescales at which mortality and
growth act (32).

From this minimal model of tree growth under the scaling
assumptions of individual tree allometry, we obtain a wide range
of possible steady states encompassing both predictions con-
sistent with metabolic scaling theory as well as virtually any
other population number scaling. This reflects the fact that
space filling in forests, when α= 2, does not depend sepa-
rately on typical growth and mortality rates but is determined
by the ratio of the scaling coefficients, which may be fixed by
energetic constraints. Since these features only determine the
exponent, deviations from space filling at steady state (such as
for size distributions observed in large trees [figure 1 in ref.
34]) could arise from processes such as competitive interactions,
which are not included in a model only accounting for metabolic
scaling.

2. Competition for Fluctuating Resources
Resource collection in sessile organisms is fundamentally con-
nected to local area (62). Examples include 1) local foraging by
ants and termites (18); 2) diffusive depletion zones that regulate
biofilm and microbial mat growth and spatial patterning (65–67);
and 3) nutrients, water, and sunlight collection in trees through

overlapping root or canopy volumes (49, 68), where competi-
tion is largely determined by area overlap between neighbors
(19). Overlapping canopies in particular reduce light available
to shorter trees but not to taller ones (36), an example of
asymmetric competitive interaction that we discuss later. As a
general formulation of the consequences of symmetric compet-
itive interactions (4), we consider how resource availability is
modulated by overlap and environmental fluctuations relative to
basal metabolic need.

All organisms have some basal resource budget Q0 above
which growth is feasible. For local resource capture, we expect
the budget to scale with physical dimension to some exponent
η1 and constant parameter β1, or Q0(r) =β1r

η1 , inspired by
observations for trees (49).∗ If the total amount of resource
per unit area is a time-fluctuating quantity ρ(t), then the
amount of resource that tree i could potentially obtain from
a resource area, ai≡ a(ri)∝ r2αr , is ρ(t)ai. Beyond periodic
diurnal patterns, long-time averaged resource distribution fluc-
tuates randomly about the mean ρ̄, captured by division with
a random variable ξ representing scarcity, ρ(t) = ρ̄/ξ(t). Not-
ing that in some cases—such as durations of low precipitation
(69) (SI Appendix, Fig. S2)—resource fluctuations can be mod-
eled accurately with power law tails, we consider a scale-free
distribution of fluctuations h(ξ) = ξ1−ν0 ξ−ν , where ξ0 ensures
that ξ̄= 1.† The exponent ν primarily summarizes whether
extreme events dominate the distribution 1<ν < 2 or fluctua-
tions are tightly limited ν > 2. Although time-averaged resource
availability may determine maximum tree size (49), it is the
fluctuations below basal metabolic requirements that induce
mortality.

Putting these together, incoming resource rate depends on the
amount of sharing that tree i with resource area ai does with
neighbor j given the overlap in area, ∆iaj:

∆Q(t) = ερ(t)ai

1− f
∑
〈ij〉

∆iaj

−Q0(ri). [8]

Eq. 8 indicates a resource extraction efficiency ε, a sum over
the neighbors 〈ij〉 indexed j of tree i, and a constant frac-
tion f ∈ [0, 1] of resources siphoned off given overlap with each
competing neighbor. When f = 1/2, competitors equally split
available resources, a zero-sum game; however, for f > 1/2,
competition reduces resource availability overall as if individ-
uals pay a cost for competing, and for f < 1/2, resources are
reusable or the relationship is symbiotic. When ∆Q < 0, such
as with large overlap or high scarcity, mortality from resource
stress occurs with rate s such that trees are sensitive to resource
deprivation when s� 1 and relatively robust to such fluctua-
tions when s� 1. Thus, Eq. 2 captures the balance of basal
metabolic needs with resource competition that strengthens with
overlapping area.

Averaging over many spatial arrangements over a long period
of time, we consider the mean-field effect from such competition
(SI Appendix, section C has details):

∆Q̄(t) = ερ(t)ai [1− f ]−Q0(ri). [9]

Thus, resource competition with neighbors saps fraction f from
total incoming resource flux at any given time ερ(t)ai. The
approximation in Eq. 9 is an accurate description when con-
sidering many trees over a large area that just fill the available
space and interact weakly, but it assumes that interactions are
stronger than in two dimensions. Then, competitive attrition rate

*In the context of water uptake, η1 ≈ 1.8 (49).

†When ν≤ 2, we must also fix an upper limit to the distribution to ensure a finite mean.
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matters when incoming resources are insufficient to cover basal
metabolic rate. With probability p(ξ > ξbasal) =

∫∞
ξbasal

h(ξ) dξ,
such insufficiency occurs, where ∆Q̄ = 0 defines a minimum sus-
tainable level of scarcity ξbasal. The resulting probability of fatal
fluctuations is

p(ξ > ξbasal) =Brκ,

B = r−κmax , κ= (ν− 1)(η1− 2αr ).
[10]

The probability is normalized by constant B set by recognizing
that there is only a single largest tree with radius rmax by defini-
tion, which then relates the phenomenological parameters ε and
f . Note that we expect κ> 0. When resource area grows slower
than metabolic need, as is the case for η1> 2αr , larger trees have
less margin for low resources because they sit close to the bound-
ary of basal metabolic need. Yet, if it were possible (although
unrealistic) for resource area to grow faster, η1< 2αr and κ< 0,
then growth is unconstrained, and larger trees have more buffer
to withstand environmental fluctuations.‡ Furthermore, the form
of exponent κ shows that growth in metabolic cost is mediated by
the fluctuations in resource availability described by exponent ν
such that when ν > 2, its distribution is narrow, and we expect
there to be sharp difference in the impact of competition for
large trees below and above a cutoff. For ν→ 1, all trees, small
or large, will pay substantial costs for competition.

Combining metabolic growth and mortality from Eqs. 4 and 5
and competition from Eq. 10, we obtain the generalized size-class
model

∂tn(r , t) =−∂r [n(r , t) ṙ(r)]−n(r , t)[µ(r) +Bs rκ]. [11]

By solving Eq. 11 for steady state, we find

n(r) = ñ0

(
r

r0

)
−α exp

(
− F

κ+ 1− b
rκ+1−b

)
, [12]

with normalization constant ñ0 and F ≡ 8Bscb−1
m /3ā . This shows

that an exponentially decaying tail truncates the simple scaling
form, imposing a cutoff on a scale of [F/(κ+ 1− b)]−1/(κ+1−b).
Eq. 11 is the general formulation incorporating both metabolic
scaling theory and the impact of area-mediated resource use
from pairwise competitive interactions, yielding the product
of a scaling law with a decaying tail that wiggles as resource
fluctuations are varied.

We show numerical simulations of an explicit two-dimensional
(2D) simulation of trees in a large plot in Fig. 2A in comparison
with the mean-field approximation from Eq. 12. The mean-field
approximation does not exactly capture the tail of the distribu-
tion, but it does surprisingly well. Furthermore, it captures the
qualitative intuition that for large trees, r� 1, metabolic con-
straints dominate, introducing an upper cutoff on the maximum
possible tree size in the system whose radius varies with the
growth coefficient. The suddenness of this cutoff is controlled
by the fluctuation exponent ν such that we find strong curvature
away from purely scale-free metabolic scaling in the stationary
distribution for smaller ν.

Importantly, the mean-field argument clearly links resource
area with resource fluctuations. This means that deviations from
metabolic scaling theory may result from different combinations
of resource-area growth and fluctuations in a way that make
effects hard to disentangle (31). Beyond the particular form of
competitive interactions we consider, this framework is naturally

‡In the marginal case η1 = 2αr , the coefficient of competition modifies the scaling
exponent α. This is a mathematical possibility but unrealistic.

A

B C D

Fig. 2. (A) Population number n(r) with varying strength of area com-
petition (α= 2, ν= 5/2, L = 200, averaged over time, and K = 15 random
forests). Mean-field approximation (solid lines) mirrors the shape of the 2D
forest simulation (circles) for varying basal metabolic coefficient β1. (B–D)
Simulated forest plots; automaton model details are in SI Appendix, section
F. Brown circles represent root competition area centered about gray dots.

extensible by, for example, modifying resource-sharing fraction f
to reflect cooperative or noncooperative interactions or an allo-
metric dependency. Such modifications do not change underlying
metabolic scaling but do change the probability of fatal fluctua-
tions, p(ξ > ξbasal). Thus, the derived scaling form summarizes a
variety of competitive effects in the exponent κ, suggesting how
physical scaling might lead to universal, or similar, demographic
scaling across different biological systems.

3. From Random to Regular Spatial Patterns
Different organisms, and even the same organism in another
environment, may show systematic variation in spacing (70).
Such variation reflects individual growth dynamics and the
strength of resource area-based competition due to the local
properties of competitor species or the environment (7, 12,
71). Returning to Fig. 1, we again point out randomness in
spatial surveys of an Alaskan rainforest along with Macroter-
mes michaelseni mounds and ant nests. In contrast, the
spacing between Macrotermes falciger mounds is more regu-
lar. Other than intertaxonomic variation, there is also evi-
dence of random and systematic variation between different
plots in nearby regions.§ Thus, natural spatial distributions
of sessile organisms may be attributable to the assorted
effects of individual allometries and local competition in our
model.

We survey such variety in Fig. 3 along a schematic region of
spatial patterns generated by our model. We vary the rates of
growth, death, and competition in Eq. 11. The planes jutting out
from the back corner in Fig. 3A all correspond to theories where
one of the terms is negligible. When competitive attrition is neg-
ligible, or s→ 0, population scaling is pinned to the plane where
there is a perfect scaling law determined by mortality and growth.
For example, the idealized West, Enquist, and Brown (WEB)
model for forest distributions contains only growth and death
and corresponds to the point where α= 2 (33, 34). The other
limits of no natural mortality or no growth lead to qualitatively

§Figure 4 in ref. 70 shows termites in several soil types, and SI Appendix, Fig. S8 shows
variation among plots in Alaskan rainforest.
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death, and competitive attrition (shadows are generated by a single-
point light source at the upper right). WEB theory of allometric forest
growth corresponds to fixing population number exponent α= 2 while
varying competitive attrition rate (cylinder). Regular hexagonal packing
only emerges in a tight limit where growth and death rates approach zero
and competitive death rate is high. (B–D) By varying timescales, we obtain
spatial patterns qualitatively similar to examples in Fig. 1.

different configurations that may mimic other spatial patterns
found across sessile organisms. In this sense, this realm of models
is a three-dimensional (3D) slice of a much higher-dimensional
set of models with different exponents, as opposed to rates, yet
it is sufficient to capture qualitative variety in ecological spatial
patterning.

In the limit of weak interaction, the spatial distribution of indi-
viduals is random. Then, the probability of not encountering any
neighbors within a distance rmin is given by the Poisson distribu-
tion with average σπr2min, with organism density σ. However, for
finite plots like the ones we consider in Fig. 3 and forest plot sur-
veys, it is essential to account for corrections from points sitting
near the boundaries. The typical number of points close to the
boundaries for a unit square is η= 2σ, and these only have half
of the typical number of neighbors. As a result, the probability
of the nearest neighbor being at distance greater than rmin is the
mixture

q(rmin) = (1− η) exp(−σπr2min) + η exp(−σπr2min/2). [13]

Competitive interactions manifest as deviations from the pre-
diction of Eq. 13. As a measure of difference between the
random distribution q(rmin) and observation p(rmin), we rely
on a principled quantitative measure, the Kullback–Leibler
divergence (72):

DKL[p||q ]=

∫ ∞
r0

p(rmin) log2

(
p(rmin)

q(rmin)

)
drmin. [14]

Calculation of Eq. 14 requires determining a bin size for inte-
gration, as is discussed further in SI Appendix, section E. Eq.
14 represents a holistic way of measuring the strength of com-
petitive interactions using nearest-neighbor distances in contrast
with mean measures like overdispersion that do not account for
the shape of the distribution (71).

Moving across the gray cylinder extending out from WEB
theory in Fig. 3A corresponds to strengthening competitive inter-
actions by increasing competitive attrition rate s . This region
describes a set of models with a fixed population scaling exponent
but with cutoffs in population scaling changing according to Eq.
12 and shown in Fig. 4A. Such effects can obscure scaling laws.
As we show in Fig. 4B, however, strong variation in population
number is not reflected in the statistics of nearest-neighbor sep-
aration until metabolic processes are severely suppressed. Fixing
growth rate to 3c

2/3
m ā/8 = 0.3 and varying the death rate, Ā,

we find that the nearest-neighbor distribution hardly changes.
However, after we fix Ā= 0 and drive growth rate to zero, we
begin to see the emergence of a different phase in Fig. 4C.

A

D

B

C

Fig. 4. Characterizing trajectories through realm of models. (A) Loca-
tion of cutoff to population number n(r) decreases as competitive costs
increase, rcutoff≡ [F/(κ+ 2/3)]−1/(κ+2/3), tracing the gray cylinder in Fig.
3. (B and C) Deviations from randomness indicate emergence of order
measured by Kullback-Leibler (KL) divergence of the nearest-neighbor dis-
tance distribution for simulation p(rmin) from random points q(rmin). B shows
randomness-dominated phase when growth rate is significant, 3c2/3

m ā/8 =

0.3, and mortality rate Ā is small, while competitive attrition rate s varies.
C shows signs of ordering when mortality rate is negligible Ā = 0, while
growth rate ā is driven to zero. Around s = 1, we find a “liquid” phase,
where organisms are densely packed but without long-range order. Dashed
black lines indicate KL divergence measured at the “solid” phase. Bin
size is set to ∆r = 1/20. (D) Normalized neighbor density at distance r,
〈f(r)/r〉, indicates solid, hexagonally packed phase. Function f(r) counts
all neighbors at distance r with f(0) = 1 and is plotted against distance
normalized by average spacing 1/

√
πσ given density σ. For comparison,

we show the neighbor density for Namibian termite mounds from ref.
18, which are more tightly packed than in our simulation. Small s corre-
sponds to the weak attrition limit, where the spatial distribution is nearly
random.
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In this limit and for moderate competitive attrition m , the sys-
tem condenses into a disordered packing or liquid-like phase (SI
Appendix, Fig. S4). Nevertheless, long-range order fails to appear
because nearest-neighbor statistics are dominated by disorder
introduced by turnover from randomly placed seedlings and con-
tinuously changing tree size. In other words, metabolic growth
and death act on sufficiently fast timescales that regular patterns
in spacing take too long to stabilize. In organisms with differ-
ent rules for metabolic scaling, we may expect to find stronger
tendencies for self-organization.

Such an example manifests in the semiregular packing of the
fairy circles shown in Fig. 1. Such spacing entails a relatively
narrow and peaked distribution of mound areas at some maxi-
mum size, a phenomenon incompatible with scale-free growth.
Instead, this distribution implies that mounds that approach the
maximum size are stable and that strong competitive interactions
inhibit the formation of new smaller mounds. We can approxi-
mate such dynamics by driving growth and natural mortality to
zero and vastly enhancing competitive mortality. This ensures
that mounds are fixed at a typical size, with rigid boundaries
delineated by strong competitive interactions and close to hexag-
onal spacing that minimizes survival of randomly placed colony
seeds.¶ As we draw in black dashed lines across Fig. 4 B and
C, the simultaneous limits of slow growth (ā→ 0), slow death
(Ā→ 0), and lethal competition (s→∞) return large values of
the KL divergence relative to random (SI Appendix, Fig. S5).
As a more direct check, we show that the density of neigh-
bors oscillates (Fig. 4D), analogous to fairy circle data from
ref. 18 for which several mechanisms have been proposed. This
is not the case for the disordered packing regime, where local
exclusion is important but does not lead to long-range order.
Thus, hexagonal packing is confined to a tight region of param-
eter space in our metabolic growth framework where growth
is bounded (SI Appendix, section D). This region corresponds
to a wide separation of timescales: Growth must be sufficiently
slow to avoid introducing spatial disorder on the timescales with
which relatively fast competitive death stabilizes regular spatial
patterning (8, 73).

4. Transient Dynamics and Population Shock Waves
Demographic stability among a population of sessile organisms
is not guaranteed since ecosystems are buffeted by a wide range
of endogenous and exogenous perturbations (20, 60, 74). For
example, local competition is negligible in a young plot until
individuals reach a size where they impinge upon neighbors, a
phenomenon known as self-thinning (75). This dynamic is espe-
cially prominent in agriculture, where spacing is regular, plants
are genetically identical, and competition onset is almost uniform
(6, 7). Natural stands also vary with plot age, but they are more
stochastic, and height differences can be prominent (34, 39).
Remarkably in previous measurements, we find oscillations in
population number with radius as depicted in Fig. 5 A, Inset taken
from ref. 39, suggesting the presence of long-lived transience
not captured by the steady state. Inspired by this observation,
we consider how competitive asymmetry, specifically forces that
increase mortality of smaller organisms, could excite population
waves.

Asymmetric competition takes various forms such as how
canopy shading reduces light incident on shorter plants lying
underneath or around the larger ones with little cost to the lat-
ter (35, 43, 76). Large termite colonies are much more likely to

¶In the “zero-temperature” limit where competitive mortality always selects out the
weaker of two competitors, it is clear that tight packing is stable to disorder because any
newcomer must overlap with more than one other individual, whereas every individual
forming the lattice only intersects with the newcomer. Hexagonal packing is the densest
of packings and thus, most stable to infiltration.

A

B

Fig. 5. Oscillations in population number n(r, t) from asymmetric compe-
tition such as canopy cover. (A) Population number distribution n(r, t) at
different times. Inset shows data from two tropical forests from ref. 32,
where markers correspond to data and lines correspond to their model.
Dashed black line shows predicted slope at steady state from Eq. 4. (B)
Population number oscillations for trees of different sizes. SI Appendix, Fig.
S6 shows examples of oscillations in 2D automaton simulation. We use the
Heaviside theta function for 1−Λ(r′− r) = Θ(r′− r−∆rcrit).

destroy incipient colonies adjacent to their borders than face a
threat (8). Susceptibility to exogenous disturbances like wind also
depends on size, although sometimes to the benefit of smaller
individuals (77, 78). As with symmetric competition, we formu-
late asymmetric competition in terms of its effects on population
growth ∂tn(r , t). A mean-field framework means that the rate of
decrease in population number is proportional to typical overlap
between trees of radius r with all sizes larger than it up to rmax:

n(r , t) acan(r)

∫ rmax

r

n(r ′, t) acan(r ′)[1−Λ(r ′− r)] dr ′. [15]

We assume that the competitive effect Λ(r ′− r) is some
sigmoid-like function that decays from Λ(0) = 1 to the limit
Λ(∞) = 0 (figure 4 in ref. 49) at which point the tallest trees
completely obscure all light incident on ground area spanned
by the canopy acan(r) = ccanr

2αcan , where αcan = 2 (33). A sig-
moidal form indicates some characteristic length scale for Λ
such that when the distance r ′− r reaches some critical value
∆rcrit, a substantial portion of light is obscured from above.
This is distinct from symmetric interactions that scale with
radius r and lack a typical length scale distinguishing com-
petitors from noncompetitors. Thus, we consider asymmetric
competition that is area delimited and favors larger organ-
isms. This assumption is analogous to canopy shading and
more generally captures the competitive advantage of larger
organisms (36, 79).
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As we show in Fig. 5B, canopy competition is negligible during
initial forest growth but matters strongly when tall trees reach
some critical density at which point the difference between the
height of the tallest trees and the shortest ones is ∆rcrit. At this
point, smaller trees are at a sudden competitive disadvantage.
Since the maximum tree cutoff is sharp in the population number
n(r , t), the appearance of sufficiently large trees for light com-
petition to matter is sudden and causes a correspondingly sharp
die-off in young trees or a population shock. Likewise, the pop-
ulation number of small trees in Fig. 5A displays a sudden dip at
short times. This dip in population number slowly propagates up
to larger trees with growth. Eventually, canopy cover dips, and
small tree population increases suddenly. The delay generates
size-class oscillations that may be prominent when competitive
interactions are strong and competition as a function of size dif-
ference is sharp. Linear stability analysis of the mean-field model
suggests that oscillations may be a generic feature of competition
between sizes (SI Appendix, section H). In the case of nonlinear
metabolic growth, the rightward movement of waveforms in Fig.
5B accelerates with age: Radius grows superlinearly with time
r(t)∝ t3/2 when metabolic growth exponent b = 1/3. Other than
from superlinear growth, population waves also disperse because
of stochasticity in tree growth. Such variation in shape and speed
of population shock waves could be used to infer stochastic-
ity in growth and competitive effects following endogenous or
exogenous perturbation (60, 73).

Remarkably, we find oscillations in population number curves
across data on tropical forests. Fig. 5 A, Inset displays two exam-
ples from ref. 32. Similar oscillations are visible across other
tropical forests. For the example from La Planada, the widths
of undulations seem consistent with an example from our sim-
ulation in Fig. 5A, although this is not the case for Mudumalai,
which shows intriguingly wide oscillations. An unanswered ques-
tion is whether such oscillations are internally generated from
tuning of competitive parameters or originate from widespread
and repeated exogenous perturbations (74). After all, competi-
tive dynamics between organisms at different points of maturity
can generate oscillatory cycles perhaps influenced by or affect-
ing other classic ecological dynamics (25, 58). Although qual-
itatively similar curves in demographic data are presented as
evidence against metabolic scaling—indeed, space filling yields
poor explanation—our model shows that such deviations may
arise due to dynamics overlaying metabolic scaling.

When considering asymmetric competition with resource fluc-
tuations, we find important differences from symmetric competi-
tion. Resource constraints impose a limiting cutoff in maximum
size and dampen population waves. As in the case of symmetric
competition, accounting for resource constraints introduces an
exponentially decaying tail that dominates near the point where
resource limitations delimit the largest sustainable size. When
resource limitations are sufficiently weak that there exists a wide
scaling region in the population number that goes as n(r)∼ r−α,
asymmetric competition fixes the population number exponent
to (SI Appendix, section G)

α= 4αcan + 2− b. [16]

In contrast with Eq. 7, Eq. 16 is free of metabolic growth coef-
ficients but depends on the way that canopy area grows with
radius, 2αcan, and metabolic growth exponent b. Thus, asym-
metric resource competition leads to a different form for scaling
exponent α than that of canonical metabolic scaling theory,
its value generally incompatible with α= 2 because of physi-
cal limits on values of αcan. Although population oscillations
likely share exogenous origins, it is remarkable that competi-
tion dynamics, although discussed widely in the literature (7, 71),
present one endogenous cause, whose dynamical consequences
are hardly remarked upon and suggestively aligned with data.

5. Discussion
The physical structure of a tree is a beautiful fractal not only
along its visible constituents, trunk to branches to twigs, but down
to the microscopic vasculature that shuttles products of photo-
synthesis from its self-similar canopy to a branching network of
roots. It is remarkable then that even groups of trees seem to
obey this pervasive fractal law such that the trees of a particu-
lar size “branch off” into trees of a smaller size and so on in
such a way that we can consider, over some range, the set of
large trees as a scaled set of smaller trees (34). This self-similar
structure, reflected in power law scaling, emerges from consid-
eration of energetic constraints translated into the requirement
that trees fill the available canopy space (33). Yet, other sessile
organisms fill space in a variety of ways determined by analogous
mechanisms of growth, death, and competition (8, 62). Inspired
by the forest picture, we propose a minimal model of sessile
organism growth incorporating aspects of allometric scaling the-
ory and area-based competition. From these basic principles,
we obtain a general framework for competitive forces driven by
metabolic requirements and fluctuating resources. When inter-
action with the environment dampens resource fluctuations (e.g.,
niche construction) or changes competitive interactions (e.g.,
symbiosis), these perturbations will be reflected in the spa-
tial distribution of organisms (8) (Fig. 1). In this sense, the
spatial distribution may serve as an indicator not only of chang-
ing conditions but also of how competition evolves in altered
environments (18, 60).

We explore such variation by tuning competitive forces in
our model with a tractable mean-field theory that succinctly
relates metabolic and competitive effects in exponent relations.
In the context of resource-area competition, competitive effects
are most prominent in the population statistics of the largest
organisms. This is because area-delimited competition must
scale superlinearly with radius such that it dominates for the
largest organisms (Eq. 11). In comparison, individual metabolic
growth and mortality scale sublinearly (41), indicating two differ-
ent regimes of population number for symmetric competition:
individual-dominated scaling and competition-mediated cutoffs
(Fig. 2). Asymmetric competition, however, exacts a toll in a
scale-free way because relatively larger competitors grow, die,
and compete the same at every level. Then, competition is mani-
fest in the population number exponent (Eq. 4), affecting both
scaling and cutoffs. Our formulation of competitive interac-
tions establishes a basis to be extended to capture environment-
or organism-specific variation in resource stress response or
sharing such as by incorporating a distribution of diverse allome-
tries. Yet, it also highlights how such diversity maps to uni-
versal features summarized by exponents that quantitatively
link environmental fluctuations and metabolic scaling (Eq. 12).
Although real systems are noisy, finite, and constantly perturbed,
our idealized assumptions about allometries serve as a way to
organize models incorporating many more realistic features, a
mapping that can be made exact by taking the limit to large
systems (80, 81).

Other than indicating limitations of metabolic scaling theory—
namely that it may be more accurate in forests with weaker
local competition and smaller environmental fluctuations—our
work suggests limitations of spatial correlation-based measures
of regularity when varying organism size introduces disor-
dered spacing (2). As we show by comparing the form of
the nearest-neighbor distance distribution with the KL diver-
gence (Eq. 13), this measure changes weakly with compet-
itive strength, suggesting that statistical approaches to mea-
suring competition are limited. Instead, an integrated frame-
work considering deviations from predicted scaling in demo-
graphics as well as spatial patterning may better specify the
range of competitive forces acting across environments (4, 18,
60, 82, 83).
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Beyond competitive forces, we find strong additional con-
straints necessary to stabilize spatial order in models with
metabolic growth (Fig. 3). Whereas metabolic scaling tends to
inject spatial disorder by constantly changing organism size and
by opening free space upon organism death, regular tiling such as
seen for fairy circles and some termite mounds requires the elim-
ination of unbridled growth along with slow natural mortality and
overwhelming competitive attrition in a background of sparse
newcomers. This emergence of order starting with individuals
and their metabolic dynamics presents a complementary per-
spective to field-theoretic derivations of vegetation patterns that
start instead with densities (17, 84–86). In a similar vein, some
field-theoretic models, such as those introduced by Mart́ınez-
Garćıa et al. (87, 88), have incorporated competition with local
(logistic) limits on growth. That hexagonal packing occurs only in
a corner of the much broader model space encompassed by our
theory (Fig. 3) reflects the extraordinary nature of such regular
patterns.

Complementary to the connection between spatial patterns
and asymmetric competition (79, 89), we explore transient
dynamics in the context of a size-based competitive hierarchy
(58). Asymmetric competition can couple different timescales
to one another and lead to oscillatory modes in size classes
and thus, population number (Fig. 5)—although touching on
the topic of self-thinning, our model extends beyond the typi-
cal focus on monoculture stands (6, 7, 71, 75). When there is a
threshold at which such effects become important, such as with
canopy light competition, we expect to find similar population
shock waves. Remarkably, oscillatory modes manifest in multi-
ple datasets of tropical forest demography (39). Such die-offs
also may be observable in other systems or directly measurable
if future data collection permits highly resolved temporal data
on organism death. Furthermore, the lifetimes of these transient
phenomena, indicated by width evolution, may allow us to dis-
tinguish internal competitive forces by leveraging demographic
perturbation (20, 90). Oscillatory modes and instabilities are a
widely studied feature of biological populations [for example,
with the classic logistic equation (91, 92)], and metabolic growth
in sessile organisms presents an unexplored mechanism by which
they can arise.

Growth, death, and competition are essential characteristics of
life. Yet, for particular ecosystems, assumed allometric forms for
these forces will need to be refined. More specifically, we assume
that demographic diversity is summarized in terms of individual
age, which then determines individual properties like size and
growth rate. Notably, the relations we derive do not have to be

fixed by principles like space filling as is assumed for metabolic
scaling of forests (33), and so, they relay a universe of possible
allometries and environments. Nevertheless, power law scaling
relations are an approximation of a population, and individu-
als will deviate from them (42). Accounting for such variation
may be important in high-resolution models (93, 94). More fun-
damentally, organism growth or death may not neatly abide by
allometric scaling relations with respect to age. We show one
extreme in the example of hexagonal packing, where growth is
truncated. Although technically, this is still a form of allomet-
ric scaling (if a trivial one), the analogy is only mathematically
exact in the limit where individuals live for a long time, and
thus, the growth period is short. Individual organisms that do not
obey such behavior, perhaps displaying persistent oscillations in
size, would present a new set of dynamics extending beyond the
canonical picture of metabolic growth. We emphasize that such
extensions would be natural and interesting to incorporate into
the framework we present here.

The most striking ecological patterns occur when local interac-
tions generate large-scale regularities, propagating information
coherently over large scales and long times (95, 96). Fairy cir-
cles and termite mounds are a breathtaking example. Although
forests, fairy circles, and termite mounds all seem to obey forces
driving the cycle of birth, growth, and death at the level of the
individual, population-level structure varies widely. Even among
forests, some are characterized by randomly spaced trees, such
as the examples we show here, but others, such as the pinyon–
juniper ecosystem of the US Southwest, are more spatially
regular. To connect the wide range of spatial patterns shaped by
competitive forces in sessile organisms, we build on theoretical
foundations of metabolic scaling. The resulting realm of models
may frame analogies between organisms across species, environ-
ments, and times in the language of competitive forces acting on
top of individual properties constrained by metabolic principles.

Previously published data were used for this work from
Tschinkel (1), Grohmann et al. (2), Muvengwi et al. (3), Adams
and Tschinkel (4), and Schneider et al. (5).

Data Availability. Code for reproducing the results shown
in this work is available at https://github.com/eltrompetero/
simple sessile.
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