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Abstract

The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide
based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to
predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred
to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a
previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521–46 (2006)]. Second, shape
and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a
genetic neural network method [So et al., J. Med. Chem., 4347–59 (1997)] to generate 3D-QSAR models. The models are
extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated
correlation coefficient (q2) is used as the fitness criterion and all obtained models are evaluated based on their q2 values.
Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the
external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness
of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested
for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side
chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the
mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of
3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most
of the information to determine the cross-recognition.
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Introduction

Antigenic peptides bound to Major Histocompatibility Complex

(MHC) class I molecules on the surface of antigen presenting cells

are recognized by the ab T cell receptor (TCR) on cytotoxic T

lymphocytes (CTLs) and induce the specific CD8+ T cell immune

response against virus infected cells and tumor cells.

The ab TCRs recognize the peptide-MHC class I complexes

with a certain degree of specificity that is determined by the

peptide amino acid sequence and the MHC class I allele; it has

been shown that the comprehensive response to foreign antigens

requires some level of cross-recognition, or cross-reactivity, such

that one TCR can recognize a number of different peptides in a

same MHC [1]. Interestingly, sequence homology is not neces-

sarily needed for cross-reactivity [2]. On the other hand, very

small changes in the TCR epitope can have a large impact on the

recognition [3,4]. Due to this complexity, it is difficult to predict

the existence, or extent, of cross-recognition by a TCR with a

certain specificity for different antigenic peptides. The benefits of

successful predictions would be manifold, both in the field of
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general molecular recognition principles and in the field of

immunology or immunotherapy. Indeed, they would allow for a

deeper understanding of the shaping of the T cell repertoire during

thymic maturation and its regulation in the periphery. Indirectly,

this information would provide the key elements for peptide

mimetic design, such as optimal rational design of peptidic

vaccines in anti-tumor therapy.

Experimental studies of cross-recognition, involving the analysis

of the recognition by CTL clones (of known or unknown

specificity) of synthetic combinatorial peptide libraries in positional

scanning format (PS-SCL), have recently been reported [5–8]. The

generated data together with the assumption of independent

contributions of individual side chains to antigen recognition

allowed for a quantitative biometric analysis [9]. In this analysis,

self- or pathogen-derived peptide sequences available in public

databases were scored and ranked according to their potential

reactivity and experimental recognition assays confirmed the

cross-reactivity [6]. Although this kind of approach provides an

important insight into the peptide sequence diversity in cross-

recognition, it does not give any information about the underlying

molecular recognition principles. Such information is however

crucial for efficient peptide mimetic design.

In this study, we generate three-dimensional (3D) quantitative

structure-activity relationships (QSARs) to investigate the 3D

criteria for cross-recognition by Melan-A-specific CTLs of diverse

peptide sequences bound to the human leukocyte antigen HLA A2

molecule.

The complex relationships between different properties of

molecules and their physicochemical or biological activities have

commonly been analyzed using neural networks (NN) that are

powerful in modelling non-linear relationships [10]. Moreover,

genetic algorithms (GA) can be used to select properties that are

determinant for those relationships. The usefulness of such so

called genetic neural networks (GNN) to generate QSARs from

both conventional two-dimensional (2D) descriptors [11,12], and

molecular similarity matrices (SMs) calculated from 3D molecular

fields [13,14] has been reported.

As opposed to conventional 2D descriptors, molecular SMs

represent global measures of the resemblance between a pair of

molecules based on certain properties, such as shape or

electrostatic potential, calculated on a 3D grid. An advantage in

using molecular similarity is its efficiency in reducing the raw data

dimensionality: the large raw data matrix resulting from 3D grid

calculations is compressed into a cN x N SM, where N is the

number of compounds and c is a small integer. Nevertheless, when

such a QSAR model is used to help the design of new compounds,

the use of similarity measures between molecules implies ideally

that the optimal biological result has already been achieved by one

of the training set structures, and that the design goal is to generate

other structures that are almost as good. In this particular study,

however, the goal is rather to predict the cross-recognition of

peptide-HLA by Melan-A-specific CTLs. Our training set

contains both molecules that are totally non cross-recognized on

the one hand, and highly cross-recognized on the other hand,

which allows a large range of applicability.

In our approach, we first predict the structures of a set of cross-

reactive and non-cross-reactive peptides in the HLA A2 molecule

using a previously validated in silico approach [15]. After

computing electrostatic energy and shape data on a peptide-

centric grid, we generate a molecular SM. We use the molecular

SM and a GNN method proposed by So et al. [14] with a 4-1-1

scaled conjugate gradient NN containing seven adjustable

parameters to generate 3D-QSAR models that are validated

using several different approaches. Initially, we use a partitioned

training/test set to test the 4-1-1 NN both for its ability to produce

good 3D-QSAR models, characterized by high cross-validated

correlation coefficients (q2), and its ability to accurately predict

experimental cross-reactivities for an external test set. Thereafter,

the external test set is included in the training set to produce the

final 3D-QSAR models generated for the entire data set.

Moreover, the physical validity of all obtained models is analyzed

in detail by performing a functional dependence analysis of the

individual descriptors. Finally, the robustness of the models

obtained from the entire data set is confirmed using y-random-

ization that involves identical repetitions of the calculation

procedure using randomized biological activities; no model with

better q2 and r value could be found with the randomized

activities.

In rational peptide modifications for optimization of peptidic

anti-tumor vaccines, there is often a need to substitute one or a few

side chains that improve MHC affinity without modifying the

recognition by the specific CTLs. In the parental Melan-A26–

35A27L (ELAGIGILTV) peptide, the Ala side chain at position 3

(P3), which is located in front of the hydrophobic D-pocket [16] of

HLA A2, is a so-called secondary anchor residue. Substitutions at

such secondary positions are delicate and possible conformational

changes in the peptide leading to T cell repertoire shifts must be

investigated. However, the prediction of such functional modifi-

cations based on amino acid sequence information only is

impossible. Therefore, we test if our 3D-QSAR models would

be able to discriminate between peptides with only one modified

side chain and thereby guide the design of closely related analog

peptides, despite the large divergence in peptide sequences used to

build the QSARs.

To this end, we theoretically predict the structures of all P3-

substituted analogs (referred to as ELX) of the parental Melan-

A26–35A27L peptide bound to HLA A2. After calculations on a

grid, the similarity is calculated between each ELX-HLA A2

complex and the different 3D-QSAR descriptor complexes and for

each ELX-HLA A2 complex, the cross-reactivity is predicted using

the three best 3D-QSAR models obtained previously. Importantly,

the predicted cross-recognitions are confirmed experimentally in

standard 51Cr release assays using six different Melan-A-specific

CTL clones.

Our results suggest that despite the complexity of cross-

recognition, the properties of the unbound epitope are sufficient

to capture most of the information needed, and that the use of 3D-

QSARs with high predictive ability opens the door to rational

peptide mimetic design.

Materials and Methods

1. Peptide data sets
1.1. Peptide selection for 3D-QSAR model

generation. To generate 3D-QSAR models, we use a set of

peptides identified in a recent experimental study based on

positional scanning synthetic combinatorial peptide libraries (PS-

SCLs). In the study, PS-SCLs containing C terminus amidated

decapeptides were screened with the Melan-A-specific CTL clone

LAU 203/1.5 in functional chromium-release assays [5]. The data

was used to generate a scoring matrix for the identification of

potentially cross-reactive peptide sequences of self and pathogen

origin from the GenPept protein database [6]. The cross-

recognition of the retrieved peptides by a set of 17 Melan-A-

specific CTL clones was investigated and recorded by assigning +1

for a specific lysis .10%, +2 for .20%, +3 for .40%, +4 for

.60% and 21 for lack of significant specific lysis [6]. The

recognition was measured in single dose assays with a peptide

Predicting CTL Cross-Reactivity Using QSAR
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Table 1. Selected peptides.

Peptidea Sequence Scoreb Species Protein

Human

10 LLAGIGTVPI 15 H. sapiens PG transporter

22 EAAGIGILTV 56 H. sapiens Melan-A/Mart-1

Viral

23 RQAGIAGHTY 3 HSV Capsid protein p40

25 VIAGIGILAI 39 Pseudorabies virus Glycoprotein GIII

29 NTTDIGIHVV 13 Canine calicivirus Capsid protein

30 MIAGIGISLI 16 Variola virus (XHOI-F, O, H, P, Q) genes

37 RITGICFHFG 6 Puma lentivirus 14 GAG polyprotiein

Bacterial

56 MLSGIGIFFI 11 C. trachomatis Arginine/ornithine antiporter

58 VLSSIGIFPI 3 S. Coelicolor Putative secreted protein

60 RVTGIGLLTG 9 Synechococcus sp. REPA

71 RSAFIGIDPA 15 Rhizobium sp. Y4FN probable ABC transporter permease

72 LLAGIAIGPW 12 E. coli K+/H+ antiporter

100 FLPSDFFPSV 217 Hepatitis B virus Precore/core peptide

101 KLVALGINAV 17 Hepatitis C virus Polyprotein

102 LLFNILGGWV 217 Hepatitis C virus Polyprotein

103 GLYDGMEHTV 217 H. sapiens Mage A10 with 2 mutations

104 VLYRYGSFSV 217 H. sapiens Gp-100

105 TLVEVTLGEV 217 H. sapiens Mage A2, A3, A6, n

106 LLKYRAREPV 217 H. sapiens Mage A1, A2, A3, A6

107 ALVETSYVKV 217 H. sapiens Mage A3, A12

108 VLPDVFIRCV 217 H. sapiens NA17-A

109 LLFGLALIEV 217 H. sapiens Mage C2

110 ALSRKVAELV 217 H. sapiens Mage A3, n

The 12 most cross-reactive peptide sequences from the experimental work by Rubio-Godoy et al.6 (upper part of table) were selected for structure prediction together
with a set of 11 non-cross-recognized HLA A2 binding peptide sequences (lower part of table).
aThe numbering of the cross-recognized peptides is issuing from the PS-SCL study6.
bThe cross-reactivity score was calculated from experimental cross-recognition results6, see Material and Methods.
doi:10.1371/journal.pone.0065590.t001

Figure 1. The predicted structures of the 23 selected peptides are visualized in the HLA A2 molecule (gray). The backbone (left image)
and all atoms (right image) are visualized for the cross-reactive (green) and noncross-reactive (red) peptides. The N-termini of the peptides are in the
upper part of the image. The image was generated using the Chimera program [33].
doi:10.1371/journal.pone.0065590.g001

Predicting CTL Cross-Reactivity Using QSAR
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concentration of 1 mg/ml that in general corresponds to saturating

conditions, i.e. the measured recognition contains no contribution

from the peptide-HLA A2 affinity.

Importantly, it has been shown that Melan-A-specific CTLs

normally completely cross-recognize the Melan-A26–35 peptide

(EAAGIGILTV), i.e. peptide 22 in Table 1, and the analog

Melan-A26–35A27L peptide (ELAGIGILTV) [17]. It should

however be noted that in situations of non-saturated concentra-

tions of the peptides, the higher binding affinity of Melan-A26–

35A27L for HLA A2 results in a more efficient recognition of this

peptide [17].

Here we use the experimental cross-recognition results obtained

by Rubio-Godoy et al. [6] to score and rank their peptides from

highest to lowest cross-reactivity: for a given peptide, the score is

calculated by summing the results (+1, +2, +3, +4 or 21) from the

17 Melan-A-specific clones. This takes the overall probability of

cross-reactivity into account since a lack of cross-recognition by a

given clone is penalized by the subtraction of 21 from the score.

In its form, the cross-reactivity score is useful in the analysis of the

probability of cross-recognition by clones with a given specificity of

a peptide. The peptides used in the experimental assays [6] were

amidated at the C-terminus which might bias recognition.

However, if all or many clones recognize a peptide it can not in

all cases be only because of the amidation. Therefore, to ensure

that we use peptides that are truly cross-recognized by the clones

we select only peptides that are recognized by many (at least 7)

clones. The 12 most cross-reactive peptides (see Table 1), with

scores ranging from 56 (for the parental Melan-A26–35 peptide) to

3, are selected for 3D-QSAR generation.

Additionally, a set of 11 HLA A2 binding peptides known not to

be recognized by Melan-A-specific CTLs is selected for 3D-QSAR

generation (see Table 1). In line with the calculated score above,

each of these non-cross-recognized peptides are assigned a score of

217.

1.2. Melan-A26-35A27L P3-substituted analogs:

ELX. The Ala residue in peptide position 3 (P3) of the parental

Melan-A26–35A27L peptide (hereafter referred to ELA) is located

in front of the hydrophobic HLA A2 D-pocket [16]. Since

secondary pockets are poorly selective [16], the peptide P3

position can be substituted for all natural amino acids without

loosing HLA A2 binding, resulting in 19 ELXGIGILTV peptide

sequences (referred to as ELX).

2. In silico procedures
2.1. Prediction of peptide-HLA A2 structures. The X-ray

crystal structure of the ELA peptide in complex with HLA A2 is

available from the RCSB Protein Data Bank (http://www.rcsb.

org) with the PDB code 1JF118. The structure prediction of each

selected peptide (see Sections 2.1.1 and 2.1.2) in the HLA A2

molecule of 1JF1 is carried out as described briefly below and in

detail elsewhere [15].

A conformational sampling protocol adapted to the peptide-

MHC class I system is used: the sampling is performed using a

simple solvation model (e= 4r) and 1000 simulated annealing (SA)

heating-cooling cycles. At the end of each cycle, the conformation

of the peptide in the HLA A2 molecule is saved after energy

minimization. The complete peptide-HLA A2 complex is present

Figure 2. The backbone RMSD to the X-ray structure of the
parental peptide Melan-A26–35A27L (ELAGIGILTV) or to the
predicted structure of the parental peptide Melan-A26–35

(peptide 22; EAAGIGILTV) versus the experimental cross-
reactivity: no correlation can be observed.
doi:10.1371/journal.pone.0065590.g002

Figure 3. Correlation between the predicted and experimental
cross-reactivities for the external test set (6 complexes). The
correlation coefficient is 0.92; the slope is 0.97 and the intercept is 22.1.
doi:10.1371/journal.pone.0065590.g003

Figure 4. Predicted cross-reactivity as a function of the
similarity to the four different descriptors in the model
obtained for the reduced training set (17 molecules). It can be
observed that an increased similarity to the cross-reactive peptides 22
and 25 increases the predicted cross-reactivity, while an increase in
similarity to one of the non-cross-reactive peptides 103 and 107
decreases the predicted cross-reactivity.
doi:10.1371/journal.pone.0065590.g004

Predicting CTL Cross-Reactivity Using QSAR
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during the entire sampling. The HLA A2 molecule is kept rigid

except in two cases (peptides 23 and 72, see Table 1) where the C-

terminal side chain (TYR in 23; TRP in 72) is too large to fit into

the HLA A2 F-pocket [16]. In these cases, the side chains of Arg97

and Tyr116 are left flexible. To help keeping the N- and C-termini

of the peptide in the vicinity of the consensus conformation [16],

two NOE distance restraints (60.4 Å around the X-ray distances

in 1JF1) are applied to either end of the peptide. The force

constant is set to 5 kcal/(mol Å2).

For each of the peptide-HLA A2 complexes, we select the best

conformer from the collection of 1000 sampled conformers using

an ad hoc graph theory clustering approach [15,18] to cluster the

different peptide conformers based on their pairwise heavy atom

root mean square deviation (RMSD) values. We rank the clusters

based on their conformational free energy (see Equation 1), where

the first term is the average effective energy of a cluster (see

Equation 2).

Gclu~SWTclu{TS
conf
clu zC ð1Þ

SWTclu~
1

Zclu

Xm

j~1

W (xj)e
{W (xj )=kBT ð2Þ

The effective energy, W, which is computed for each conformer,

is the sum of the intramolecular energy of the complex and the

solvation free energy of the system [19]. The salvation free energy

is computed using the Poisson-Boltzmann (PB) continuum model

for the solvent [20]. The second contribution to the conforma-

tional free energy is the conformational entropy of the cluster (see

Equation 3), where the Boltzmann probability and the partition

function are evaluated according to Equation 4 and 5.

S
conf
clu ~{kB

Xm

j~1

pjlnpj ð3Þ

pj~
e
{W (xj )=kBT

Zclu

ð4Þ

Zclu~
Xm

j~1

e
{W (xj )=kBT ð5Þ

In the equations, m is the number of members in the cluster, kB

is the Boltzmann constant and T is the absolute temperature

(T = 300 K). The term C in Equation 1 consists of the free energy

contributions from the pure solvent and the ideal contribution

from macromolecular translation and rotation; these contributions

are independent of conformation and can therefore be considered

as a constant that cancels out in the determination of relative free

energies [19]. The final structure is chosen as the centre of the

cluster with lowest conformational free energy. The centre of a

cluster is defined as the conformer having the smallest RMSD sum

to all other conformers in the cluster.

The CHARMM [21] (version c31b1) molecular modelling

program and the all-atom CHARMM22 protein parameter set

[22] are used for all calculations.

2.2. Generation of molecular similarity

matrices. Electrostatic and van der Waals interactions are the

two key components in any non-covalent ligand-receptor interac-

tion. It has been shown that QSAR predictivity obtained with the

van der Waals steric field and the shape steric field are practically

equivalent [14]. Since the shape field requires less user variables

(i.e. no truncation cut-offs etc.), we generated a double similarity

matrix (SM) based on electrostatic energy and binary shape data.

For each of the optimally superposed peptide-HLA A2 complexes,

the electrostatic energy and the shape data were computed on a

peptide-centred grid with 0.5 Å grid spacing. The grid size was

designed so as to extend beyond the peptide atomic coordinates of

the entire data set by at least 6 Å. Similar conditions were used as

in So et al. [14], except that they used a grid spacing of 2 Å for

calculation of electrostatic energy. The same grid was used for all

complexes.

The electrostatic energy was computed with a distance-

dependent dielectric constant (e= 4r) and using a probe with a

positive unit charge. To avoid singularities for the electrostatic

energy at grid points near the atomic positions, we set the

electrostatic energy of points within the van der Waals surface of

the molecule to zero. Based on the electrostatic energy distribu-

tion, where 90.8% of the values are between +5 kcal/mol and 25

kcal/mol, we truncated electrostatic energies beyond 65 kcal/

mol.

The Hodgkin index [23],

HAB~
2
P

PAPBP
P2

Az
P

P2
B

ð6Þ

was used to calculate the electrostatic SM. The sum is over all grid

points and PA and PB indicate the property of interest for molecule

A and B, respectively.

The shape data was computed using a binary function that

describes whether a grid point is inside or outside the van der

Waals surface of the molecule.

Figure 5. Correlation between the predicted and experimental
cross-reactivities for the training set (23 molecules). The three
different 3D-QSAR models (black, red, green) give very similar results
(r = 0.93–0.94).
doi:10.1371/journal.pone.0065590.g005
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The Carbó index [24],

CAB~

P
PAPBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

P2
A

� � P
P2

B

� �q ð7Þ

was used to calculate the shape SM. Note that for binary (0 or 1)

functions, the Carbó index reduces to the Meyer index [25],

SAB~
UABffiffiffiffiffiffiffiffiffiffiffiffi
TATB

p ð8Þ

that has been used for shape comparisons. In the Meyer index,

UAB is the number of grid points that are inside the common

volume of the two molecules, and TA and TB are the number of

grid points inside the individual molecular volumes.

The obtained similarity values were in the range of 0.96–1.0 for

shape and 0.74–1.0 for electrostatic energy. The lack of lower

similarity values is not a limitation since only the variation of the

values is important. As will be clear from the results, the similarity

variation is sufficient to discriminate well between different

peptides.

2.3. Genetic neural network. The genetic neural network

(GNN) method proposed by So et al. [14] was used to obtain

QSARs from a double (shape and electrostatic) molecular SM. In

this approach, a genetic algorithm (GA) is used to select molecular

descriptors and a neural network (NN) generates a non-linear

relationship between these molecular descriptors and the biolog-

ical activity score of the training set molecules (See Table 1, and

paragraph 2.1.1). For the GA we used 250 individuals and 75

evolutionary cycles to assure convergence. We used a 4-1-1 scaled

conjugate gradient NN containing 5 adjustable weights and 2

adjustable threshold parameters. The leave-one-out (LOO) cross-

validation was performed at each cycle and the cross-validated

correlation coefficient

q2~1{

PN
i~1

yi,exp{yi,pred

� �2

PN
i~1

yi,exp{yi,pred

� �2
ð9Þ

was used as the fitness criterion [13]. The yi,exp term is the

experimental activity and yi,pred is the predicted activity from the

LOO cross-validation. For the maximum possible correlation of

the data, q2 equals 1. A value of zero indicates that the predictions

are no better than those made randomly.

Since both the GA and the training of the NN are stochastic, we

performed 10 (training/test data set) or 50 (entire data set)

different GNN runs, each with a different seed for the random

number generator. A typical GNN calculation for the entire

peptide-HLA A2 data set (23 complexes) required about 1 central

processing unit (CPU) hour on an Athlon 64 dual core 4200+.

2.4. Data set partitioning into training and test set. The

7 adjustable parameters used in the 4-1-1 neural network allow for

a reasonable division of the entire data set (23 complexes) into a

training set of 17 complexes and an external test set of 6

complexes. Because of the small size of the entire data set, a larger

external test set could lead to over-fitting of the models obtained

using the training set. The partitioning agrees with the guidelines

issued by Golbraikh et al. [26], according to which the external test

set should include at least 5 complexes. Moreover, using a test set

of 6 complexes allows us to select 3 cross-reactive and 3 non-cross-

reactive complexes each.

The partitioning of the data set was based on ranking of the

cross-reactivity scores [26]. First, the complexes were sorted by

cross-reactivity and divided into three groups where the four most

cross-reactive complexes made up the first group, the four next

most cross-reactive complexes made up the second group etc.

Second, the three most active complexes of each group were

included in the training set and the remaining complexes in the

test set. The lack of ranking for the non-cross-reactive complexes

(all have score –17) obliged us to randomly pick 3 complexes for

the test set. The resulting external test set contained peptides 10,

56,58, 100, 104 and 108 (see Table 1).

3. Experimental procedures
3.1. Peptide-HLA A2 multimers. Peptide-HLA multimers

are complexes of refolded peptide-HLA/b2-microglobulin trimer-

ic complexes. Complexes were synthesized as earlier described

[27,28]. Briefly, purified HLA A2 heavy chain and b2-micro-

globulin were synthesized by means of a prokaryotic expression

system. The heavy chain was modified by addition of a peptide

sequence containing the BirA enzymatic biotinylation site. Heavy

chain, b2-microglobulin, and peptide were refolded. The refolded

product was biotinylated and conjugated to Streptavidin-phyco-

erythrin (-PE).

3.2. Cell lines and CTL clones. TAP-deficient T2 cells are

HLA A2 human lymphoid cells that are defective in antigen

processing, but effectively present exogenously supplied peptides

[29].

Peripheral blood mononuclear cells (PBMC) were isolated by

Ficoll-Hypaque (Beckman-Coulter, Fullerton, CA) either from a

healthy HLA A2 blood donor (BC25) or from an HLA A2

metastatic melanoma patient (LAU 203, described elsewhere [30]).

ELA-HLA A2 multimer+ CD8+ T lymphocytes were purified from

PBMC by flow cytometry cell sorting and were cloned by limiting

dilution culture in the presence of PHA, allogenic irradiated

PBMC and human recombinant IL-2, as previously described

Figure 6. Predicted cross-reactivity as a function of the
similarity to the different descriptors in the three models
obtained for the entire data set (23 molecules). The three
different models are indicated by circles, triangles and squares,
respectively. The descriptors are colored according to cross-reactivity:
cross-reactive descriptors, i.e. peptides 22 and 25, are colored green and
non-cross-reactive descriptors, i.e. peptides 103 and 105/107/110, are
colored red. It can be observed that an increased similarity to the cross-
reactive peptides increases the predicted cross-reactivity, while an
increase in similarity to one of the non-cross-reactive peptides
decreases the predicted cross-reactivity.
doi:10.1371/journal.pone.0065590.g006
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[31]. T lymphocyte clones were maintained in complete culture

medium (RPMI medium supplemented with 10% human serum,

amino acids, antibiotics) in the presence of hrIL-2 at 150 IU/ml.

Clones 25-R3 and 25-R35 are two Melan-A-specific CTL clones

derived from the healthy donor BC25. Clones 203-R1, 203-R2,

203-R3 and 203-R7 are four Melan-A-specific CTL clones

derived from the patient LAU 203. The Influenza Matrix peptide

(FluMa58–66) specific T cell clone was obtained from a healthy

donor by limiting dilution.

Written informed consent was obtained from all patients or

healthy individuals involved in this study. The study was approved

by the ethical committee of the Medical Faculty, University of

Lausanne, and the Ludwig Institute for Cancer Research.

3.3. Chromium release assay for ELX recognition. After

labelling with 51Cr during 1h at 37uC followed by extensive

washing, target cells (T2 cells) were incubated with effector cells (T

lymphocytes) at an E/T ratio of 10/1 during 4h at 37uC in V-

bottomed microtiter plates in the presence of serial dilutions of the

indicated synthetic peptide. Chromium release was measured

using LumaPlate-96 plates (PerkinElmer, Wellesley, MA) and a

TopCount-counter (PerkinElmer). The six different Melan-A-

specific CTL clones described in Section 2.3.2 were used for the

assay. Two independent experiments were performed for each

clone.

The absolute functional avidity of a CTL clone for a specific

peptide-HLA A2 complex was defined as the peptide concentra-

tion (in Molar) required to induce 50% of the maximal lysis

capacity (EC50) of the clone. To determine the absolute functional

avidity from the raw data set, a regression analysis of the linear

domain of the titration curve was performed. For comparison, the

logarithm of the relative functional avidity of a given ELX analog

to ELA was calculated: log10(EC50ELA/EC50ELX). The average

over the independent experiments was calculated.

3.4. ELX-HLA A2 competition assay. Various concentra-

tions of the competitor peptides (50ml) were incubated with 51Cr-

pulsed T2 cells (50ml; 1000 cells/well) for 15 min at room

temperature. The antigenic Influenza Matrix peptide, FluMa58–66,

was added at a concentration of 0.1 nM (50ml) together with a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r² (training set)
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Figure 7. Scatter plot for q2 against r2 (calculated on the training set) for the three real 3D-QSAR models (red crosses) and for those
obtained with randomized cross-reactivities (black circles). The real 3D-QSAR models are well-separated from the random cases, implying
robust real models.
doi:10.1371/journal.pone.0065590.g007

Table 2. Cross-recognition results for six different Melan-A-specic CTL clones in a chromium release assay: the logarithm of the
relative functional avidity of the ELX analogs to ELA is given.

Seqa Melan-A-specic CTL clones

203-R7 25-R3 203-R2b 203-R1 203-R3 25-R35

ELA 0.00c 0.00d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ELS 20.59 0.14 20.41 0.13 20.07 0.00 20.01 0.10 20.99 0.01 22.44 0.50

ELT 20.19 0.32 22.17 0.11 0.09 0.00 20.05 0.15 21.88 0.08 21.59 0.62

aThe P1-P3 peptide sequence of the ELX analog.
bOnly one experiment was done with the 203-R2 clone.
cThe logarithm of the relative functional avidity of the ELX analogs compared to ELA was calculated as log10(EC50ELA/EC50ELX). A value of 21.00 means that the molar
concentration of the ELX peptide needs to be 10 times higher than ELA to achieve the same activity, i.e. 50% of maximal lysis. The average over the independent
experiments for each CTL clone is given.
dStandard deviation. By the denition of the score, the standard deviation for ELA is zero.
doi:10.1371/journal.pone.0065590.t002
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FluMa58–66-specific CTL clone (50 ml; 5000 cells/well). Chromi-

um release was measured after 4 h incubation at 37uC in a

TopCount NXTTM (Packard) plate reader. The normalized

percent specific lysis was calculated as follows: 100x(percent

specific lysis with competitor)/(percent lysis with FluMa58–66 (at

0.1 nM)).

Results and Discussion

1. Prediction of peptide-HLA A2 structures for 3D-QSAR
model generation

The conformations of the 23 selected peptides (see Table 1) in

their fixed HLA A2 environment were predicted using a

previously described ab initio approach [15]. For a brief description

of the approach, see Material and Methods. The predicted

structure of Melan-A26–35 (peptide 22 in Table 1; EAAGIGILTV),

is very similar to the X-ray crystal structure of the Melan-A26–

35A27L (ELAGIGILTV) peptide: backbone RMSD is 0.45 Å and

heavy atom RMSD (including Cb of the side chain in position 2) is

1.24 Å. The predicted structures of the remaining peptides cover a

wide range of different conformations (see Figure 1) and, as shown

in Figure 2, there is no correlation between the backbone RMSD

to either ELAGIGILTV or EAAGIGILTV and the experimental

cross-reactivity (correlation coefficients r = 20.05 and 20.08).

Hence, for this set of peptides with highly diverse sequences, there

is no trivial way of predicting cross-recognition by Melan-A-

specific CTLs of a peptide in HLA A2 considering only its

backbone similarities to the parental peptides (Melan-A26–35 or

Melan-A26–35A27L).

2. 3D-QSAR model generation and validation using
training/test data set

Initially, we tested the 4-1-1 neural network for both its ability to

produce good 3D-QSAR models (characterized by a high q2) and

its ability to accurately predict experimental cross-reactivities of

peptide-HLA A2 complexes for an external test set, i.e. complexes

that were not used for the model development. The entire data set

(23 complexes) was divided into a training set of 17 complexes and

an external test set of 6 complexes, see Material and Methods. No

information from the external test set was used for the model

development.

The best 3D-QSAR model is characterized by a good cross-

validated correlation coefficient (q2 = 0.75) for the training set,

indicating that the necessary, but not sufficient [32], condition for

a good 3D-QSAR model is fulfilled. To evaluate the real

predictivity of the model, the correlation coefficient (r) between

the predicted and the experimental cross-reactivities is computed

for the external test set. Indeed, the high predictive ability of the

model is confirmed with a r value of 0.92 (see Figure 3). Moreover,

a slope close to 1 (0.97) and an intercept close to 0 (22.1) is

obtained for the regression line, indicating that the model is close

to the ideal model defined by Golbraikh et al. [32]. Additionally, the

high r value for the external test set shows that the 4-1-1 neural

Figure 8. The binding affinity of ELS and ELT for HLA A2 was evaluated in competition assays. (See Material and Methods.) The average
of two independent, but very similar, results is shown: the two analog peptides competed with very similar efficiency indicating that their affinities for
HLA A2 were practically indistinguishable. Note that values are relative to specific lysis with the Influenza Matrix peptide FluMa58–66 by the FluMa58–66

specific clone and can therefore take values .100%, see Material and Methods.
doi:10.1371/journal.pone.0065590.g008

Figure 9. The heavy atom RMSD to the X-ray structure of the
parental peptide Melan-A26–35A27L (ELAGIGILTV) versus the
predicted cross-reactivity for the ELX set: a correlation can be
observed (correlation coefficient:20.84). In fact, an increased
RMSD to the parental peptide corresponds to a lower predicted cross-
reactivity.
doi:10.1371/journal.pone.0065590.g009
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network with 7 adjustable parameters is not over-fitted for the

reduced training set (17 complexes).

The physical relevance of the best 3D-QSAR model, which uses

the shape similarity to peptides 22, 25, 103 and 107 to predict the

cross-reactivity, was investigated by performing a functional

dependence analysis of the individual descriptors. Using the

model, a plot was generated for each similarity descriptor by

scanning the corresponding similarity value while keeping all other

descriptors fixed at a value equal to the average similarity observed

in the set (see Figure 4). An increased similarity to the cross-

reactive peptides 22 and 25 increases the predicted cross-reactivity,

while an increased similarity to one of the non-cross-reactive

peptides 103 and 107 decreases the predicted cross-reactivity. This

supports the validity of the model.

3. 3D-QSAR model generation and validation using the
entire data set

With the aim to produce the best possible 3D-QSAR models,

the external test set was included in the training set and 3D-QSAR

models were generated from the entire data set (23 complexes).

The three best 3D-QSAR models are from a predicitivity point

of view practically indistinguishable, such that one model could

not be chosen over the other two. They are characterized by high

cross-validated correlation coefficients (q2 = 0.78-0.79) and corre-

sponding high correlation coefficients (r = 0.93–0.94). The pre-

dicted versus the experimental cross-reactivity is plotted together

with regression lines in Figure 5. All three models have three

similarity descriptors in common: the shape similarity to peptides

22, 25 and 103. The fourth descriptor is the shape similarity to

peptide 105, 107 or 110. It is noteworthy that the best model

obtained from the partitioned training/test data set (see above)

contains the same four descriptors as one of the three models

obtained here. The best model containing at least one electrostatic

similarity descriptor is characterized by a q2 value of 0.73 and an r

of 0.87; the electrostatic similarity to peptide 22 (Melan-A26–35) is

one of the descriptors. Only the three best models (see above) will

be considered below.

As for the model obtained from the training/test data set, the

physical relevance of the models was investigated by performing a

functional dependence analysis of the individual descriptors. As

shown in Figure 6, the results are similar to those obtained for the

training/test data set. An increased similarity to the cross-reactive

peptides (22, 25) increases the predicted cross-reactivity, while an

increase in similarity to one of the non-cross-reactive peptides (103

and 105/107/110) decreases the predicted cross-reactivity. Again,

the results support the physical validity of the model.

As a final model validation, the robustness of the models was

evaluated using a so-called y-randomization: the GNN calculation

procedure was repeated with randomly shuffled cross-reactivities.

If some QSARs with high q2 values were still obtained using

randomized activities, the significance of the real QSARs (non-

randomized activities) would be suspect. A hundred different

randomizations of the cross-reactivities were performed and the 10

best models obtained for each randomization are plotted together

with the three best real 3D-QSARs in Figure 7. Noticeably, the

nature of the Y vector, which contained the same value for all the

non-cross recognized peptides, decreased the scrambling effect of

the Y-randomization procedure. This biased the Y-randomized

models toward larger q2 values compared to QSAR models

treating more conventional biological data. In addition, for each of

the 100 Y-randomizations, we have performed 50 GNN runs, and,

for the clarity of the figure, we only represented the 10 best models

for each on Figure 7 and deleted those with negative q2 values.

This procedure focused Figure 7 on the largest q2 values for the Y-

randomized models, which were indeed those leading to the most

challenging assessment of our real 3D-QSAR models. Despite this

difficult situation, it can be observed that the real 3D-QSAR

models are well-separated from the random cases, implying that

the real models cannot efficiently account for physically non-

relevant data.

To test the sensitivity of the generated models to the values

assigned for the cross-reactivities, the peptides were also scored

and ranked according to the number of clones that experimentally

recognized the peptide-HLA A2 complexes [6]. The score ranged

from 17 for the most cross-reactive peptide (peptide 22) to 0 for the

non-cross-reactive peptides. 3D-QSAR models were generated

with the 4-1-1 GNN approach: the three best models were

characterized by similar cross-validated correlation coefficient

values (q2 = 0.76–0.77) as before. Values similar to before were also

obtained for the correlation coefficient (r = 0.91–0.93) for the

training set. Importantly, the same four descriptors as before were

selected for the models: the shape similarity to peptides 22, 25, 103

and 107/110. These results show that the obtained 3D-QSAR

models were robust with respect to the type of scoring that were

used to describe the cross-reactivity. On the other hand, a binary

score, i.e. 0 for non-cross-reactive and 1 for cross-reactive, proved

to be too simplistic. Here, high q2 and r values were obtained for

models with randomized cross-reactivities.

4. Interpretation of the 3D-QSAR models
Molecular similarity indices are a very different kind of

descriptors from conventional 2D descriptors: they represent a

global measure of the resemblance between a pair of molecules

based on certain attributes, such as shape or electrostatic energy.

Therefore, although the approach described here produces

reliable 3D-QSAR models, the global character of the descriptors

is more difficult to interpret than conventional 2D descriptors.

Nevertheless, the 3D-QSAR models obtained in this study suggest

that shape similarities/differences between a given peptide-HLA A2

complex and the descriptor complexes are sufficient for a correct

prediction of the cross-reactivity of the former.

It is noteworthy that models containing electrostatic similarity

descriptors were generated with high q2 values (0.71–0.73).

Interestingly, a descriptor in common in these models is the

molecular electrostatic similarity to peptide 22, i.e. the parental

Melan-A26–35 peptide. In fact, for all 3D-QSAR models generated

from the entire data set, peptide 22 was selected as either a shape

or an electrostatic similarity descriptor. The omnipresence of the

Melan-A26–35 peptide as a similarity descriptor to predict cross-

recognition by Melan-A-specific CTLs is expected since QSAR

models, in order to be highly predictive, may need to select a

descriptor corresponding to a highly active compound.

The lack of electrostatic descriptors in the three best 3D-QSAR

models obtained in this study is likely due to the overall non-polar

character of the parental Melan-A26–35 (EAAGIGILTV) and the

overall non-polar character observed in most cross-reactive

peptide amino acid sequences (see Table 1). It is, however, less

expected to find that the descriptors based on the similarity to non-

cross-reactive peptides are related to shape, even though these

sequences in general contain a significant number of polar or

charged side chains. Moreover, based on previously published X-

ray crystallographic structures, hydrogen bonds are known to be

important in the interaction between TCR and peptide-MHC,

and an addition of 2D descriptors mapping such putative contacts

could be useful to generate QSAR models with high predictive

power.

No simple linear relationship could be observed between the

shape similarity to individual descriptors and the experimental
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activity (data not shown). Hence, the high predictivity of the 3D-

QSAR models suggests that the generated non-linear relationship

between several shape similarity descriptors and cross-reactivities is

crucial for the successful outcome.

Together, these results suggests that the 3D-QSAR models are

very efficient, and that a non-linear relationship is indeed

necessary for successful prediction of the probability of cross-

recognition by Melan-A-specific CTLs of peptides with diverse

sequences. Finally, although the absence of TCR influence in the

structure predictions may be a source of error in the prediction of

cross-reactivity based on those structures, the results suggest that

properties of the unbound epitope are sufficient to capture most of

the information to determine the cross-reactivity.

5. Application of the 3D-QSAR models to rational peptide
modifications: an additional external test set

Above we show that the 3D-QSAR models are successful in

discriminating between cross-reactive and non-cross-reactive

peptides with diverse sequences. Here, we test if these 3D-QSAR

models are able to discriminate between peptides with only one

modified side chain and thereby guide the design of closely related

analog peptides, despite the large divergence in peptide sequences

used to build the QSARs.

To this end, we theoretically predict the structures of all P3-

substituted analogs of the parental Melan-A26–35A27L peptide

bound to HLA A2, referred to as ELX-HLA A2, see Material and

Methods. After shape data calculation on the same grid as before,

the similarity is calculated between each ELX-HLA A2 complex

and the different 3D-QSAR descriptor complexes, i.e. peptide 22,

25, 103 and 105/107/110. For each ELX peptide, its cross-

reactivity is predicted using each of the three 3D-QSAR models.

According to a consensus scoring approach [11], the final

predicted cross-reactivity for each analog peptide is calculated as

the average of the results from the three models. Although

spanning a wide range, i.e. from 27 (for ELS) to 212 (for ELW),

the values are within the range of the experimental cross-

reactivities, see Table 1. Interestingly, the score for ELS indicates

that it should be very highly cross-recognized by Melan-A-specific

CTLs. On the contrary, ELY (score = 28), ELK (-10) and ELW (-

12) should not be cross-recognized. Most other ELX peptides, like

the second (ELC: 20) and third (ELG: 18) best scored peptides,

should be expected to be well recognized although to a lesser

degree than the ELS peptide. Interestingly, ELT (0) belongs to

these peptides. Hence, although this analog peptide contains

threonine that has similar physico-chemical properties as serine,

except for the larger volume due to the additional methyl group, it

is predicted to be less cross-recognized than ELS (27).

To test if these theoretical results can be confirmed experimen-

tally, we evaluated the cross-recognition by six different Melan-A-

specific CTL clones in standard 51Cr release assays, see Material

and Methods. The experimental relative cross-recognition of ELS

and ELT peptides versus the parental peptide by the six different

Melan-A-specific CTL clones is given in Table 2. It can be

observed that the ELS analog is more frequently cross-recognized

than the ELT analog: whereas 5 of 6 Melan-A-specific CTLs

recognize the ELS analog within 1.5 log of the parental peptide,

only 3 of 6 CTLs recognize the ELT analog. Moreover, the

average cross-recognition relative to ELA over all six CTL clones

is 20.75 for ELS and 20.97 for ELT, again showing the higher

cross-reactivity of ELS compared to ELT.

In these assays, saturating conditions are not satisfied and

potential differences in ELX-HLA A2 binding affinity might

contribute to the cross-recognition results. In order to exclude that

the cross-recognition results obtained for the ELS and ELT

analogs were due to differences in affinity for HLA A2, we

performed competition assays using either peptide as competitor,

see Material and Methods. The competition results from two

independent experiments are very similar and the average of

normalized specific lysis (%) from the two experiments is plotted in

Figure 8. The two analog peptides compete with very similar

efficiency indicating that their affinities for HLA A2 are practically

indistinguishable and that the observed differences in cross-

recognition (see above) are mainly due to the interaction of the

TCRs with peptide-HLA A2.

In contrast to the lack of correlation between RMSD and cross-

reactivity observed for the diverse data set used for 3D-QSAR

model generation (Figure 2), here we observe a correlation

between RMSD to the parental ELA peptide and the predicted

cross-reactivity of ELX, see Figure 9. In fact, heavy atom RMSD

values between the predicted structures of the ELX peptides and

the X-ray structure of ELA (excluding side chain atoms beyond

Ca at the substitution site) is linearly related to the predicted cross-

reactivity of ELX with a correlation coefficient of 20.84. Similar

results were obtained using backbone RMSD values (correlation

coefficient: 20.89).

Taken together, these results show that for mono-substituted

peptides the RMSD to the parental peptide is sufficient for

determining whether a peptide will be cross-reactive or not.

However, the results also show that the 3D-QSAR models

obtained from the data set of diverse peptide sequences (see

Table 1) are equally successful in discriminating between peptides

with single amino acid substitutions.

Conclusion

In this study, we have investigated the use of 3D-QSARs in the

prediction of the probability of cross-recognition by Melan-A-

specific CTLs of peptides with different sequences. We show that

the use of 3D molecular descriptors (in the form of a similarity

matrix) and a 4-1-1 genetic neural network allow for the

generation of robust 3D-QSAR models that are characterized

by a high predictive ability as evaluated on both a partitioned

training/test set and the entire data set of highly diverse peptide

sequences. Moreover, the 3D-QSARs could not be replaced by

trivial correlations between structure and cross-reactivity. Appli-

cation of the 3D-QSARs to an additional external test set of mono-

substituted peptides shows that the models are also capable of

distinguishing between different degrees of cross-reactivity for

these peptides. Importantly, experiments confirm the theoretical

results.

Taken together, our results suggest that 3D-QSARs can be

highly successful in predicting the probability of cross-recognition

by specific CTLs of different peptides. This allows for efficient

rational peptide mimetic design.

Supporting Information

Appendix S1 HLA-A2-1jf1.pdb. 3D structure of the HLA-A2

molecule used for the docking. It corresponds to the 1JF1 entry of

the PDB.

(PDB)

Appendix S2 peptides dock4.pdb. 3D structures for the

calculated binding modes of the 23 peptides shown in Figure 1. In

PDB format, following the dock4 specifications to make the

visualization easier in UCSF Chimera, using the ViewDock

plugin. In the right-most column, – 3SG corresponds to the

peptides shown in Figure 1. – 1SG corresponds to 2 residues of
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HLA-A2 (Arg97 and Tyr116) that were considered flexible during

the docking of peptides 23 and 72.

(PDB)
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