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Abstract

Background

Pancreatic islet xenotransplantation is a potential treatment for diabetes mellitus, and por-

cine pancreas may provide a readily available source of islets. Islets in juvenile pigs are

smaller than those in young adult pigs, but the insulin content is very similar. In addition, as

juvenile pigs are more easily reared in uncontaminated conditions, many researchers have

conducted studies using pancreatic islets from juvenile pigs. We aimed to analyze the distri-

butions of endocrine cell clusters by comprehensively evaluating juvenile porcine pancreatic

development and to propose an appropriate age at which islets could be isolated from the

juvenile porcine pancreas.

Methods

Splenic (SL) and duodenal lobe (DL) samples were collected from the pancreases of pigs

aged 0–180 days (n = 3/day after birth). The chronological changes in endocrine cell cluster-

ing were analyzed in relation to morphological changes, cell characterization, numbers, islet

areas, and gene expression.

Results

In juvenile pigs aged 0–21 days, the pancreas contained numerous endocrine cells, and

compact islets appeared from 21 days of age. Well-defined small islets were seen at 28

days of age, and the clusters were denser in the SL than in the DL. At 35 days of age, the

islets were morphologically similar to those observed at 180 days of age, and the greater

number of islets was similar to that seen at 90 days of age. The differences in the islets’

cytoarchitecture between the lobes were negligible. The expression of β-cell-related genes

was higher in the juvenile pancreas than in the adult pancreas, and the expression of neuro-

genin-3 decreased dramatically over time.
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Conclusions

These findings may have implications for attempts to refine the most appropriate age for

islet isolation from porcine donors. Focusing on porcine pancreatic islets isolated at around

35 days after birth may offer benefits regarding their xenotransplantation potential.

Introduction

Diabetes causes several complications in patients, which burden health care systems. Alloge-

neic islet transplantation could improve physiological glucose metabolism [1]. However, the

number of available human donor organs has not kept pace with the growing transplant candi-

date waiting lists, and a significant number of these patients die without receiving transplants

[2]. This allotransplantation issue has stimulated research on the induction of insulin-produc-

ing cells and bioengineering. An alternate approach is the use of living cells, tissues, or organs

from another species as donors. The concept of cross-species transplantation is known as

xenotransplantation, and the transplanted cells, tissues, or organs are called xenografts. Xeno-

transplantation is an attractive option to overcome the issue of donor shortage [3, 4].

Pigs have been selected as the most suitable potential source of organs for xenotransplanta-

tion, because there are many similarities between humans and pigs, including similarities

related to physiology and anatomy [5, 6]. Additionally, porcine and human insulin differ by

only one amino acid, and porcine insulin has been used for several decades in clinics. Pigs are

widely available in many countries, are easily bred, and are known to have large litters. Addi-

tionally, ethical issues associated with the slaughter of nonhuman primates do not exist. More-

over, ethical and regulatory frameworks for islet xenotransplantation are present in several

countries, and now, there is a greater awareness of the importance of developing an interna-

tionally harmonized ethical and regulatory framework [7]. Thus, pig-to-human xenotrans-

plantation offers a potential bridge to the growing disparity between graft requirement among

patients with diabetes and graft availability [3, 4]. Indeed, islet transplantation from porcine

pancreas was performed for the first time in the 1990s [8]. The International Xenotransplanta-

tion Association (IXA) launched a consensus statement in 2009 on conditions for safely

undertaking clinical trials of porcine islet products in patients with type 1 diabetes [9]. This

statement covers the key aspects of ethical requirements. Recently, clinical porcine islet xeno-

transplantation was restarted under comprehensive regulations in New Zealand [10].

However, several factors impede the clinical translation of this promising therapeutic

modality. First, rearing pigs in a gnotobiotic environment is costly and technically difficult,

and considerable islet losses occur during cell isolation and tissue culture because of fragmen-

tation [11]. Second, zoonotic diseases, for example, diseases involving porcine endogenous ret-

roviruses (PERVs), could spread from pig donors to human recipients after transplantation.

Third, islets from young adult and adult pigs have not been used in clinical trials so far [6].

Many researchers have conducted studies using juvenile porcine pancreatic islets, because

juvenile pigs are more easily reared in uncontaminated conditions before use. Lamb et al.

reported that juvenile pigs produce the highest and most consistent yields of extremely pure,

viable islets that respond satisfactorily to glucose challenges in vitro [12]. Indeed, following

encapsulated neonatal porcine islet transplantation, some patients showed reductions in the

frequencies of unaware hypoglycemic events [10]. The consensus from the IXA states that

hypoglycemia unawareness could justify islet xenotransplantation [13]. A phase 1/2a trial

involving xenotransplantation of encapsulated neonatal porcine islets is being conducted in
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New Zealand under the regulatory framework of the IXA consensus statement [10, 14, 15].

The transmission of PERVs during this clinical trial of porcine islet transplantation has not

been confirmed [10, 14– 16], and the risk of PERV-related complications is considered to be

low [17].

Regarding the use of juvenile porcine islets as donor xenografts, the morphology, size, num-

ber, and distribution of the islets might influence the xenotransplantation results. Although

studies involving rodent and human pancreases have substantially improved our understand-

ing of the molecular processes that regulate pancreatic development [18– 32], the transcription

factor cascades that control porcine pancreatic endocrine cell differentiation and function

remain largely unknown. Hence, the present study was conducted to explore the appropriate

age at which islets could be isolated from porcine donors for future xenotransplantation by

characterizing the developmental changes that occur in porcine pancreas from 0 days to 180

days of age. Furthermore, we investigated the molecular events that occur during pancreatic

development by evaluating transcription factor genes known to be involved in pancreatic

development.

Materials and methods

Animal care

All of the animal experiments in this study were approved by Meiji University’s Institutional

Animal Care and Use Committee (IACUC-13-0019). We used 24 crossbred Large White/

Landrace × Duroc pigs of either sex. All animals were housed and maintained in accordance

with IACUC guidelines. All animal care and experimental procedures were performed in

accordance with the regulations contained in the Japanese Act on Welfare and Management of

Animals. Pigs were housed in a temperature-controlled room, had free access to water and

were provided with growth-stage appropriate commercial feed (Chubushiryo Co., Ltd.

Nagoya, Japan) and were observed on a daily basis by animal husbandry personnel under the

supervision of an attending veterinarian. The health of all pigs was assessed at feeding (08:00

and 17:00).

Surgical procedure

The pancreases were harvested from pre-weaned juvenile pigs aged 0–21 days, weaned juvenile

pigs aged 28 and 35 days, and young adult pigs aged 90 and 180 days that were fed solids. To

obtain the pancreases, the pigs were anesthetized using intramuscular injections of ketamine

(11 mg/kg) (Fujita Pharmaceutical Co., Ltd., Tokyo, Japan), and maintained under isoflurane

anesthesia (DS Pharma animal Health Co., Ltd., Osaka, Japan). The animals were then placed

in the supine position, and the surgical area was disinfected with povidone iodine (Meiji Seika

Pharma Co., Ltd., Tokyo, Japan). A midline abdominal incision was made under sterile condi-

tions, the pancreas was gently separated from the surrounding tissues, and the whole pancreas

was excised (Fig 1A). During surgery, Ringer’s solution was administered at 10 mL/kg per

hour. The animals’ body weights and whole pancreas weights were recorded. Two pancreatic

tissue samples that measured 1.0 cm were collected from the splenic lobe (SL) and the duode-

nal lobe (DL) for the analyses. At the time of removal of pancreas, the pigs are euthanized by

intravenous bolus injection of potassium chloride (1–2 mmol/kg).

Immunohistochemical analysis

One tissue sample was immediately fixed in 4% paraformaldehyde, embedded in paraffin, and

sectioned at 4 μm. Previously described immunohistochemical methods were used [33].
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Briefly, after deparaffinization and blocking, the sections were incubated with diluted primary

antibodies overnight at 4˚C. The primary antibodies used were guinea pig anti-insulin (Linco

Research Immunoassay, St. Charles, MO, USA) and mouse anti-glucagon (Sigma Aldrich

Japan, Tokyo, Japan). The secondary antibodies comprised Alexa488-conjugated and Alex-

a594-conjugated antibodies (Molecular Probes, Eugene, OR, USA). The cells’ nuclei were

counterstained with Hoechst 33342. The negative controls comprised sections that were incu-

bated with the secondary antibodies only, and the positive controls comprised stained islets.

Sections from each location were stained with hematoxylin and eosin and incubated with each

antibody of interest. The sections were examined under a confocal microscope (BZ-X700; Key-

ence, Osaka, Japan), and software was used for the data analysis (BZ-H3A; Keyence).

Definition of β-cells, islet cell clusters, and islets

β-cells were defined as single or pairs of insulin-positive cells. Islet cell clusters (ICCs) were

defined as cell aggregates of various sizes that were not condensed, but consisted of glucagon-

and insulin-positive cells. Islets were defined as dense cell aggregates that comprised glucagon-

and insulin-positive cells with well-defined edges.

Quantifying the β-cells, islet cell clusters, and islets during porcine

pancreatic development

The β-cells, ICCs, and islets were analyzed using a computer system (Cosmos32 Library,

Tokyo, Japan) to determine their numbers, and to determine the islets’ diameters, and areas.

To evaluate the distributions of the β-cells, ICCs, and islets, we counted them in 3 randomly

selected areas measuring 1.65 mm2, and we examined 9 samples of each pancreatic lobe from

3 different pigs of the same age. The mean values for each lobe were calculated for each day

assessed. Porcine islets can be round, oval, triangular, dumbbell-shaped, and all shapes in-

between [5]. To calculate the islets’ areas and to overcome errors caused by irregularly shaped

structures, the islets’ circumferences were demarcated, and software was used for the data

analysis.

Fig 1. Correlation between the whole pancreas and body weights during porcine pancreatic development. (A)

Developmental changes in the whole pancreas. The panels show changes on each day, from 0 to 180 days. (B) Body

and whole pancreas weights at specified times. Both the body and whole pancreas weights presented are the

means ± standard deviations (n = 3/day after birth). The orange and blue bars indicate the body and whole pancreas

weights, respectively. The time after birth is represented as days. SD = standard deviation.

https://doi.org/10.1371/journal.pone.0216254.g001
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Ribonucleic acid isolation, complementary deoxyribonucleic acid synthesis,

and the quantitative real-time polymerase chain reaction

To investigate the molecular events that occur during pancreatic development, seven tran-

scription factor genes known to be involved pancreatic development [18– 32] were selected

and evaluated in this study. The gene expression profiles were determined using the quantita-

tive real-time polymerase chain reaction (qPCR). After isolating total ribonucleic acid (RNA)

using the RNAspin Mini Kit (GE Healthcare, Little Chalfont, England), it was reverse-tran-

scribed into complementary deoxyribonucleic acid (cDNA) using the Transcriptor First

Strand cDNA Synthesis Kit (Roche Diagnostics, Rotkreuz, Switzerland), according to the man-

ufacturers’ instructions. The qPCRs were performed using the Light Cycler 480 SYBR Green I

Master Kit (Roche Diagnostics) and a Light Cycler System (Roche Diagnostics), according to

the manufacturer’s instructions. The primers used (Sigma Aldrich Japan, Tokyo, Japan) are

shown in Table 1. For the qPCRs, 20 ng of cDNA was used, and the messenger RNA (mRNA)

levels were determined from the average of reactions performed in triplicate. The following

conditions were used for the qPCRs: 40 cycles of 30 s at 94˚C, 90 s at 60˚C, and 90 s at 72˚C.

The mRNA levels were normalized to those of actin gamma 1(ACTG1) and the normalized val-

ues were compared with those from a porcine pancreas aged 180 days. To determine neuro-
genin-3 (NGN3) expression, day 0 samples were used for the normalization, and the

expression levels were determined as the average of reactions performed in triplicate.

Statistical analyses

The data were averaged and expressed as the means (standard deviations) or the means (stan-

dard errors of the means). To compare the groups, the unpaired Student’s t-test, repeated-

measures one-way analysis of variance, and Fisher’s protected least significant difference test

were used. A value of P< 0.05 was considered statistically significant.

Results

Correlations between whole body and pancreas weights during porcine

pancreatic development

The body and whole pancreas weights increased consistently with the developmental changes

(Fig 1B). These weights increased in parallel during the developmental stages, almost plateaued

at 28 days, and increased again. At 28 days, the pancreases were firm (Fig 1A).

Table 1. Characteristics of the target genes evaluated using the real-time polymerase chain reaction.

Symbol Gene name RefSeq ID PCR size (bp)

PDX1 pancreatic and duodenal homeobox 1 NM_001141984 72

NGN3 neurogenin-3 KP796255 80

NEUROD1 neuronal differentiation 1 XM_005654180 95

Nkx 6–1 NK6 homeobox 1 XM_021101796 89

MAFA v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A XM_003354965 100

GLUT2 glucose transporter type 2
(solute carrier family 2 member 2 (SLC2A2))

NM_001097417 105

INS insulin NM_001109772 140

ACTG1 actin gamma 1 XM_003357928 109

PCR = polymerase chain reaction; Ref SeqID = Reference Sequence Identification.

https://doi.org/10.1371/journal.pone.0216254.t001
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Architectural changes in the porcine pancreas during development

At 14 days of age, lobular structures were present in the pancreas, and the duct- and vessel-like

structures were thin and immature (S1A and S1A’ Fig). At 21 days of age, the duct- and vessel-

like structures resembled those at 14 days of age (S1A, S1A’, S1B and S1B’ Fig). By 28 days of

age, significant changes in the tissue architecture were noted. The circumferences of the duct-

and vessel-like structures had thickened as a consequence of connective tissue surrounding

these structures to resemble the adult configuration (S1C, S1C’, S1D and S1D’ Fig).

Morphological changes in endocrine cell clustering during porcine

pancreatic development

At 0 days of age, the pancreas contained numerous cells with some endocrine cells scattered

throughout the glands. Some ICCs were detected, but no islets were seen. In the SL, glucagon-

positive cells were rarely seen (Fig 2A), and sections from the DLs contained very few gluca-

gon-positive cells (data not shown). Low glucagon and insulin signals corresponded to the low

frequencies of these cells.

From 7 days of age, insulin-positive cells were arranged in small groups and glucagon-posi-

tive cells were located not only within the cores, but also at the peripheries of the ICCs (Fig

2B). At 14 days of age, glucagon-positive cells were seen in the SL and DL, and these formed

incomplete rings around the ICCs. The cytoarchitecture remained immature (Fig 2C).

Fig 2. Spatial morphological changes in endocrine cell clustering during porcine pancreatic development from 0

to 180 days after birth. (A–H) The fluorescence micrographs show the expression of glucagon-positive cells (green)

and insulin-positive cells (red). The nuclei are stained blue with Hoechst 33342. (A) 0 days, (B) 7 days, (C) 14 days, (D)

21 days, (E) 28 days, (F) 35 days, (G) 90 days, and (H) 180 days. The time after birth is represented as days. All of the

tissue sections shown were obtained from the splenic lobe. All of the panels are at the same magnification. Scale bars:

200 μm.

https://doi.org/10.1371/journal.pone.0216254.g002
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Sections from pigs that were 0–21 days of age showed that the endocrine cell clusters contin-

ued to undergo changes. From 21 days of age, the insulin-positive cells had started to become

dense and compact, and islets appeared subsequently (Fig 2D). At 28 days of age, well-

defined small islets had formed, they had become more prominent, and their numbers had

increased dramatically (Fig 2E). At 35 days of age, the formation of small islets was similar to

that observed at 90 days of age (Fig 2F and 2G), but the larger islets were not condensed.

Greater numbers of islets were present, but single cells and small cell groups persisted. At 90

days of age, the overall pattern of insulin-containing tissue was similar to that found at 180

days (Fig 2G and 2H), and a few pairs of β-cells remained. The islets were clearly defined in

the late stage group, and some were completely surrounded by collagen (data not shown).

Most of the islets were oval, but some were triangular, dumbbell-shaped, and all the shapes

in-between.

Comparisons of the splenic and duodenal lobes regarding endocrine cell

clustering during porcine pancreatic development

Compared with the endocrine cell clustering observed in the SL and DL at 28 days of age, the

islets in the SL appeared more abundant than those in the DL. The islets were more loosely

packed in the DL, and the β-cells remained prominent (Fig 3A, 3B, 3A’ and 3B’). No significant

differences were evident between the SL and DL regarding the islets’ areas (Fig 4D), but the

clusters were more dense in the SL than in the DL (Fig 3A, 3A’, 3B’ and 3B’). These differences

did not exist at 35 days of age; the cytoarchitecture of the DL and SL was almost the same, and

the islets’ areas were similar (Figs 3C, 3D, 3C’, 3D’ and 4D).

Distributions of the endocrine cell cluster sizes during porcine pancreatic

development

Table 2 presents data describing the distribution of the sizes of the clusters during porcine pan-

creas development. No significant differences were evident between 28 and 35 days of age

Fig 3. Comparisons between the splenic lobe (SL) and duodenal lobe (DL) in relation to endocrine cell clustering

during porcine pancreatic development. (A–D, A’–D’) Morphological changes in the SL and DL in relation to

endocrine cell clustering during porcine pancreatic development. The fluorescence micrographs show the expression

of glucagon-positive cells (green) and insulin-positive cells (red). The nuclei are stained blue with Hoechst 33342. (A,

A’) SL 28 days, (B, B’) DL 28 days, (C, C’) SL 35 days, and (D, D’) DL 35 days. The time after birth is represented as

days. All of the panels are at the same magnification. Scale bars: 200 μm.

https://doi.org/10.1371/journal.pone.0216254.g003
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regarding the short or long diameters. The short and long diameters of the islets were signifi-

cantly greater at 180 days of age than those at 28 and 35 days of age (both P< 0.05). At 28 and

35 days of age, most of the islets’ diameters were < 100 μm (Table 2). The maximum islet

diameter was 384.9 μm, and it was detected in the SL at 180 days of age.

Fig 4. Chronological developmental changes and the areas of endocrine cell clustering during porcine pancreatic

development. (A–C) Hematoxylin-eosin staining of the islets at each time point analyzed. (D) The islets’ areas were

measured at each time point in both lobes. (A, A’) 21 days. The cell aggregates had started to compact and become

dense, but the boundary lines are not clear. (B, B’) 28 days. Adult-like islet clusters were observed. Well-defined small

islets were evident, but the gaps between the acinar cell structures and islets are narrow. (C, C’) 180 days. The islets in

the adult pancreas showed denser cell populations with denser nuclear volumes overall. The time after birth is

represented as days. All of the tissue sections shown were obtained from the splenic lobe. Panels A–C are at the same

magnification, and panels A’–C’ are at the same magnification. Scale bars: 250 μm. (D) Islets’ areas at each time point.

There were no significant differences between splenic lobe (SL) and duodenal lobe (DL) at each time point analyzed.

The islets were counted in 3 randomly selected 1.65 mm2-areas, and sections were obtained from 3 pigs for each day

studied. “Days” indicate days after birth. The data presented are the means atstandard errors of the means from

independent experiments. The blue and orange bars indicate the SL and DL, respectively. �P< 0.05. SEM = standard

error of the mean.

https://doi.org/10.1371/journal.pone.0216254.g004

Table 2. Distributions of the sizes of the endocrine cell clusters during porcine pancreatic development.

SL DL SL + DL

Age Short diameter, μm Long diameter, μm Short diameter, μm Long diameter, μm Short diameter, μm Long diameter, μm

28 days 52.7 ± 2.6� 75.5 ± 4.1� 45.9 ± 2.4� 67.2 ± 3.7� 49.7 ± 1.9� 71.9 ± 2.9�

35 days 50.0 ± 3.5# 75.8 ± 9.0 # 54.7 ± 3.2# 84 ± 7.1# 52.7 ± 2.4# 80.6 ± 5.6#

180 days 109.0 ± 23.2�# 200.7 ± 44.1�# 84.3 ± 6.9�# 142.8 ± 13.8�# 91.4 ± 8.3�# 159.4 ± 16.3�#

SL = splenic lobe; DL = duodenal lobe.

�P < 0.0001,
#P< 0.0001.

The time after birth is represented as days.

https://doi.org/10.1371/journal.pone.0216254.t002
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Comparisons of the areas in which the endocrine cells clustered during

porcine pancreatic development

From 21 days of age, the dense and compact islets had started to appear (Fig 4A and 4A’). At

28 days of age, well-defined small islets had become more prominent. The gaps between the

acinar cell structures and the islets were narrow (Fig 4B and 4B’).

The islets’ areas were significantly larger at 180 days of age (Fig 4C and 4C’) than those

observed at 28 and 35 days of age in both lobes (both P< 0.05). No significant differences

were evident between the SL and DL regarding the islets’ areas at any age (Fig 4D).

Comparisons of the numbers of endocrine cells clustering during porcine

pancreatic development

The numbers of β-cells (Fig 5A and 5A’) and ICCs (Fig 5B and 5B’) decreased significantly

chronologically, except between 14 and 21 days of age (Fig 5A” and 5B”). There were no signif-

icant differences between the SL and DL regarding the numbers of β-cells and ICCs at any age.

The numbers of islets (Fig 5C and 5C’) increased dramatically from 21 days of age (Fig 5C”).

Fig 5. Comparisons of the pancreatic morphology and the numbers of β-cells, islet cell clusters (ICCs), and islets.

(A–C, A’–C’) The fluorescence micrographs show the expression of glucagon-positive cells (green) and insulin-

positive cells (red). The nuclei are stained blue with Hoechst 33342. Immunofluorescence analysis of (A, A’) β-cells at 7

days of age; the cells comprise only insulin-positive cells, (B, B’) ICCs, at 35 days of age; the ICCs are not compact, and

consist of aggregates of glucagon- and insulin-positive cells of various sizes, and (C, C’) islets from the splenic lobe (SL)

at 180 days of age; the islets comprise denser cell populations, and the edges of the aggregates are well defined. All of

the tissue sections were obtained from the SL. All panels are at the same magnification. Scale bars: 100 μm. (A”–C”)

Comparisons of the numbers of (A”) β-cells, (B”) ICCs, and (C”) islets in each lobe during porcine pancreatic

development. There were no significant differences between the SL and duodenal lobe (DL) at each time point

analyzed. The numbers of β-cells, ICCs, and islets were counted in 3 different randomly selected 1.65 mm2-areas from

3 pigs for each day assessed. The data presented are the means atstandard errors of the means. The blue and orange

bars indicate the SL and DL, respectively. SL versus DL: all P< 0.05. SEM = standard error of the mean.

https://doi.org/10.1371/journal.pone.0216254.g005
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There were no significant differences between the SL and DL regarding the numbers of islets

at any age, and their numbers increased significantly until 90 days of age. At around 35 days of

age, a greater number of islets were present, although β- cells and ICCs were still observed (Fig

5A”, 5B” and 5C”). Similar observations were recorded, even at the late stage (Fig 5A”and

5C”).

Gene regulatory networks underlying endocrine cell clustering for

differentiation and maturation during porcine pancreatic development

All of the transcription factor genes, except NGN3, were expressed constantly and at random

(Fig 6). The expression of all of the genes was higher in the juvenile than in the adult porcine

pancreases, and it tended to be higher in the SL than in the DL. The expression of NGN3
decreased dramatically with time, and it was almost indistinct at 180 days of age. Like the

expression of NGN3, the expression of neuronal differentiation 1 fluctuated. The expression

patterns of the glucose transporter 2 (GLUT2) and insulin (INS) genes were similar, and both

were abundant from 0 to 21 days of age. The expression of all of the genes tended to decrease

with time.

Discussion and conclusion

In this study, porcine pancreatic development was categorized into 3 stages, namely, early (0–

21 days of age), middle (28–35 days of age), and late (� 90 days of age). Alumets et al. demon-

strated that until 10–13 days after birth, the cells did not cluster in small islets, and that many

cells remained scattered within the exocrine parenchyma [34]. These findings are similar to

Fig 6. Comparisons of the messenger ribonucleic acid (mRNA) levels of selected genes. (A–G) Gene regulatory

networks underlying endocrine cell clustering relating to differentiation and maturation during porcine pancreatic

development. The mRNA levels of the β-cell-related genes (A) pancreatic and duodenal homeobox 1 (PDX1), (B)

neurogenin-3 (NGN3), (C) neuronal differentiation 1 (NEUROD1), (D) NK6 homeobox 1 (NKX 6–1), v-maf avian
musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA), (F) glucose transporter type 2 (GLUT2), and (G)

insulin (INS) were determined using real-time polymerase chain reactions. The mRNA levels were normalized to those

of actin actin gamma 1(ACTG1). Except for NGN3, the normalized values were compared with those in the pancreas at

180 days after birth. For theNGN3 expression, samples from 0 days after birth were used for the normalization. The

expression levels were determined based on the averages from triplicate assays. The data presented are the means T

standard errors of the means from 3 independent experiments. The blue and orange bars indicate the splenic lobe (SL)

and duodenal lobe (DL), respectively. SEM = standard error of the mean.

https://doi.org/10.1371/journal.pone.0216254.g006
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those from our study, and their results support our definitions of ICCs and islets, because the

islets did not appear until 21 days. At 21 days of age, dramatic changes in the clusters were

observed, and, at that age, we detected a second developmental change among the maturing

islets. The change may have been influenced by weaning, which occurs at around 21–28 days

of age among pigs, and islet development is associated with this age [35].

In mice, islet formation occurs just before birth [19], but islets appear in human fetuses at

11–15 weeks, and they develop into relatively large structures several weeks before birth [22].

In the pigs, the islets did not form until the middle stage in this study, and mature islets (large,

dense cell aggregates that comprised glucagon- and insulin-positive cells with well-defined

edges) were not seen until the late stage. Thus, the islets develop at different speeds in different

mammals. In addition, islet cytoarchitecture differs among animal species [22, 23, 36]. For

example, while rodent islets are characterized by a predominance of insulin-producing cells in

the cores of the clusters and scarce α-, δ-, and pancreatic polypeptide cells at the peripheries,

human islets contain α- and β-cells that are closely associated with each other throughout the

clusters [37]. The distribution of the islets in the pigs was established by 28–35 days of age, and

glucagon-positive cells were located within the cores of the islets as well as around their periph-

eries at all ages. Our study’s findings indicate that porcine islets more closely resemble human

islets than rodent islets.

Another difference was observed regarding the distributions of the islets between the SL

and DL of the pancreas. Sections of porcine pancreas from the SL and DL were studied,

because they originate from separate primordia and their morphologies differ [5]. Some ani-

mals, including mice, rats, dogs, and humans have more islets in the SL than in the DL [38,

39], but in the pigs, there were no differences between the lobes.

Glucagon-positive cells were seen at 0 days of age. In addition, the clusters were denser and

the glucagon signal was higher in the SL than in the DL at 28 days of age. Interestingly, Lyttle

et al., demonstrated changes in the glucagon-positive cell mass that coincided with significant

increases in the numbers of Ki67+/glucagon+ cells. The rapid expansion of glucagon-positive

cells is mainly caused by the replication of and changes in the β-cell mass that correlate with

increases in the pancreatic insulin content and secretion [23]. Thus, the appearance of and

changes in glucagon-positive cells indicate islet development. Jay et al. showed that glucagon-

positive cells were the second-most predominant cell group at all ages in the SL and that they

occurred less frequently in the DL of the pancreas [5]; these findings concur with our results.

Regarding islet diameter, White et al. undertook a computerized image analysis study, and

their findings showed that the mean diameters of the islets in adult and juvenile pigs were

80 μm and 87 μm, respectively [40]. Other researchers have shown islet diameters to be

between 49 μm and 100 μm [39, 41]. Islets have different shapes, and we measured the short

and long diameters of each islet (S2 Fig), and the results concurred with those from previous

studies. According to Jay et al., the most significant difference regarding the diameter of the

islets was evident at 35 days of age. By 84 and 168 days of age, the greatest volume density

within the SL of the pancreas comprised islets with diameters that ranged from 50 μm to

149 μm [5]. Importantly, they also showed that the islets comprised the greatest numbers of

cell groups and a substantial proportion of the volume density, especially at the youngest age

of 35 days; the results from our study align with these findings.

In rodents, some genes show characteristic expression patterns. For example, neurogenin-3
expression suggests that cells have the progenitor characteristics of β-cells [20, 26– 28], and its

expression ceases after the secondary transition [25, 28]. We found that the development of

the pancreas in pigs was slow, so the duration of NGN3 expression appeared to be extended.

The numbers of β-cells and ICCs decreased over time, which coincided with a decrease in

NGN3 expression. β-cells and/or ICCs in pigs may possess the progenitor characteristics of β-
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cells, and this should be investigated during the next stages of our research. In humans, unlike

mice, the expression of NGN3 is not synchronized with that of endocrine differentiation fac-

tors following the secondary transition [23, 29]. Other transcription factors in this study were

expressed constantly and at random. The expression of all of the genes investigated was higher

in the juvenile pancreas than in the adult pancreas. Transitional events may occur, but at mul-

tiple foci and without the same temporal coincidence as those in mice or humans.

Taking these findings together, we suggest that pancreatic islets isolated from pigs aged

around 35 days could be used as xenotransplants. Compared with the late-stage islets, the

islets’ shapes were similar, and the number of islets was adequate at around 35 days of age. Fur-

ther, previous differences in the islets’ cytoarchitecture between the SL and DL were negligible

in pigs aged 35 days. Isolating islets from pigs aged around 35 days would be advantageous

because large isolated islets often succumb to central necrosis caused by the inadequate diffu-

sion of oxygen and nutrients, which may lead to graft failure after transplantation before the

graft becomes vascularized. As most of the islets in pigs aged around 35 days are < 100 μm,

they may be better suited to transplantation, because essential nutrients should diffuse more

easily [42]. Young adult porcine islets release higher levels of insulin in response to glucose

[43]. Our analyses of the qPCR results showed that the expression of genes in the juvenile por-

cine pancreas, including the GLUT2 and INS genes, was higher than that observed in the adult

porcine pancreas. Next, we will investigate the appropriate method for isolating islets from

pigs aged 35 days because this differs from the method used to isolate islets from adult humans.

Islets in pigs aged around 35 days are smaller than those in adult pigs and humans, and the

Ricordi isolation method will not be suitable [44]. We suggest that 35 days of age is suitable for

porcine islet isolation, but there are a number of questions. The optimal age of the islet from a

porcine source is of major importance to the future of islet xenotransplantation. In our study,

we have used only LWD pig strain and both sexes of pigs. In adult pigs, it has been known that

strain influences the islet yield [41, 45– 49]. However, Prabhakaran S et al and Nagaraju S et al

concluded that there is no clear information concerning the yield in relation to the species of

fetal/neonatal donor pigs [50, 51]. The confirmation whether our study could extrapolate to

other strains would be addressed in our future study. Regarding the sex chosen, retired female

breeders of large size certainly have been favored for the high yield and good compact mor-

phology of the islets [52– 54]; however, both male and female pigs have been used as donors

[55, 56] and there is no convincing information concerning the yield in relation to the sex of

neonatal donor pigs.

The expression patterns of the glucose transporter 2 (GLUT2) and insulin (INS) genes were

both abundant from 0 to 21 days of age. However, we do not know how the higher gene

expressions influence islet isolation and transplantation. This would be investigated after isola-

tion of the islets from pigs aged 35 days and transplantation.

Further studies are required to assess whether isolated islets at 35 days of age will function

as expected.

Supporting information

S1 Fig. Architectural change in the porcine pancreas during development. (A–D, A’–D’)

Hematoxylin and eosin staining shows changes in the pancreas structure at each time point.

The histological analyses revealed progressive developmental changes in the pancreas. (A, A’)

14 days. The lobule structure of the pancreas is evident, but not elaborate. The duct- and ves-

sel-like structures were thin and immature. (B, B’) 21 days. The structures of the duct- and ves-

sel-like structures resembled those at 14 days of age. (C, C’) 28 days. Significant changes in the

tissue architecture were noted. The circumferences of the duct- and vessel-like structures had
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thickened as a consequence of connective tissue surrounding these structures to resemble the

adult configuration (D, D’) 180 days. The time after birth is represented as days. All of the tis-

sue sections were obtained from the splenic lobe. All of the panels are at the same magnifica-

tion. Scale bars: 250 μm.

(TIF)

S2 Fig. Measurement of the islets. Islets from the pancreas sections analyzed in Fig 5 are

shown according to their apparent areas. After immunofluorescence, the glucagon- and insu-

lin-positive areas were demarcated and measured using a computer system (Cosmos32

Library, Tokyo, Japan).

(TIF)
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