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Abstract
Background Asthma exacerbations reflect disease severity, affect morbidity and mortality, and may lead to
declining lung function. Inflammatory endotypes (e.g. T2-high (eosinophilic)) may play a key role in
asthma exacerbations. We aimed to assess whether genetic susceptibility underlies asthma exacerbation risk
and additionally tested for an interaction between genetic variants and eosinophilia on exacerbation risk.
Methods UK Biobank data were used to perform a genome-wide association study of individuals with
asthma and at least one exacerbation compared to individuals with asthma and no history of exacerbations.
Individuals with asthma were identified using self-reported data, hospitalisation data and general
practitioner records. Exacerbations were identified as either asthma-related hospitalisation, general
practitioner record of asthma exacerbation or an oral corticosteroid burst prescription. A logistic regression
model adjusted for age, sex, smoking status and genetic ancestry via principal components was used to
assess the association between genetic variants and asthma exacerbations. We sought replication for
suggestive associations (p<5×10−6) in the GERA cohort.
Results In the UK Biobank, we identified 11 604 cases and 37 890 controls. While no variants reached
genome-wide significance (p<5×10−8) in the primary analysis, 116 signals were suggestively significant
(p<5×10−6). In GERA, two single nucleotide polymorphisms (rs34643691 and rs149721630) replicated
(p<0.05), representing signals near the NTRK3 and ABCA13 genes.
Conclusions Our study has identified reproducible associations with asthma exacerbations in the UK
Biobank and GERA cohorts. Confirmation of these findings in different asthma subphenotypes in diverse
ancestries and functional investigation will be required to understand their mechanisms of action and
potentially inform therapeutic development.

Introduction
Asthma is a heterogeneous chronic respiratory condition, estimated to affect >300 million people
worldwide [1], and has a well-established genetic component [2]. The disease features a network of
complex inflammatory endotypes, and several clinical phenotypes have been defined based on the onset of
asthma, control of symptoms and comorbidity of allergy involved in the underlying pathophysiology [3].
In early attempts to disentangle the molecular pathophysiology of asthma, the disease was broadly divided
into two major endotypes: type 2 asthma and non-type 2 asthma [4].

The type 2 inflammatory endotype represents an important clinical challenge, as it is characterised by
airway eosinophilia, difficulty to achieve asthma control and a higher frequency of exacerbations [4, 5].
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Moreover, a crucial subgroup of individuals with asthma with this endotype are uncontrolled despite
treatment with inhaled corticosteroids. This group represents a large proportion of individuals with severe
uncontrolled asthma and frequent exacerbations [4]. Type 2 inflammation is driven by increased activity of
T-helper cells type 2 (Th2), activated by dendritic cells [4]. These secrete interleukin (IL)-5, IL-4 and
IL-13 and other type 2 cytokines, which activate type 2 immunity pathways [6, 7]. Therefore, type 2
asthma is characterised by airway and systemic eosinophilia [4]. Type 2 development is thought to be
driven by genetics, as well as epigenetic and environmental factors [4, 8]. Interestingly, TANTISIRA et al. [9]
showed that genetic factors determining susceptibility to asthma differ from those determining its severity.
Determining the most important genetic variants affecting asthma severity may be fundamental to
understanding drivers of disease activity in asthma [10], and subsequently improve available treatment
approaches, either by early prediction of severity, or finding new druggable targets for severe, uncontrolled
asthma. Although several studies have attempted to disentangle the underlying genetic variants behind
asthma, the power and sample sizes required have necessitated the combination of different potential
asthma phenotypes, meaning that these studies may have missed subtype-specific and severity-determining
genetic risk factors [2].

Asthma exacerbations are an important cause of asthma morbidity, mortality and healthcare costs [11–15].
They are useful in evaluating treatment response and are a marker of asthma control [16]. Moreover,
exacerbations may increase the rate of lung function decline, thus representing a clinically important
long-term outcome [17, 18]. Asthma exacerbations are known to be affected in part by genetics and
epigenetics [2, 19], and are associated with the active inflammatory endotype [5]. Studies investigating
asthma exacerbations focused mainly on hospitalisations and emergency department visits, and revealed
several genes including IL13, IL4RA, CHI3L1, ORMDL3, CDHR3, CTNNA3, SEMA3D, EXTL2 and
PANK1 [9, 20]. However, most studies investigating hospitalisations in asthma focused on childhood
asthma, and only included a small number of events or cases [9, 20, 21]. An analysis in the UK Biobank
focused on asthma hospitalisations (but not data from primary care records) and implicated genes in the
HLA region [22]. In this study, we aimed to evaluate the genetic factors affecting asthma exacerbations in
a large, genome-wide study. Additionally, we aimed to investigate whether eosinophilia modifies the effect
of variants on exacerbations.

Methods
Study population
This study used a case–control design in two stages. The data source for the primary analysis was the UK
Biobank (https://www.ukbiobank.ac.uk), and analysis was performed under approved application 648. The
UK Biobank is a population-based study of half a million volunteer participants between the ages of 40
and 69 years, recruited from Great Britain in 2006–2010. In total, 321 057 individuals with genetic data
were eligible for inclusion in this analysis. The data source for the replication was the Genetic
Epidemiology Research in Aging (GERA) cohort. GERA is a multiethnic cohort of over 110 000 subjects
from the Kaiser Permanente Medical Care Plan, Northern California Region (KPNC), Research Program
on Genes, Environment, and Health who provided a saliva sample [23]. Ancestry was self-reported, and
80% of subjects were non-Hispanic white. The GERA study was approved by the institutional review
boards at KPNC and Brigham and Women’s Hospital (2002P000331).

Definition of asthma
In the UK Biobank, asthma was defined as either: self-reported asthma in the touchscreen questionnaire
(data field: 6152), an asthma code in general practitioner records (Read v2 and Read v3 codes, full list of
codes is provided as supplementary tables S1 and S2; the choice of code was based on MUKHERJEE et al. [24]),
or any hospitalisation event with an asthma ICD10 code as primary or secondary cause for admission
(ICD10 codes: J45, J45.0, J45.1, J45.8, J45.9, J46, J46.0). In GERA, over 16 000 asthmatic individuals
have genotype data and longitudinal electronic medical records, including detailed diagnosis and
medication records. Prescription data were available from outpatient and emergency department visits.
Adult asthma cases were defined as patients at least 21 years of age with one or more of the following:
physician-diagnosed asthma, self-reported asthma or a report of an asthma exacerbation (i.e. emergency
department visit or hospitalisation due to asthma).

Exclusion criteria
In the UK Biobank, individuals were excluded from this study if they had incomplete genotyping data that
did not pass quality control (as described in SHRINE et al. [25] and GUYATT et al. [26]), non-European
ancestry based on K-means clustering after principal component analysis (as described in SHRINE et al. [25]
and GUYATT et al. [26]), evidence of COPD (defined as either: self-reported COPD in the touchscreen
questionnaire; a COPD hospitalisation code (ICD10 codes: J44, J44.0, J44.1, J44.8, J44.9) or a forced
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expiratory volume in 1 s (FEV1)/forced vital capacity ratio <0.7); evidence of chronic bronchitis and/or
emphysema (defined as either: self-reported chronic bronchitis or emphysema in the touchscreen
questionnaire or an emphysema hospitalisation code: J43.2, J43.8, J43.9). Related individuals up to second
degree relatives were excluded based on kinship coefficients using KING software [27]. In GERA, subjects
with COPD, pulmonary embolism, primary pulmonary hypertension, cystic fibrosis, emphysema, chronic
bronchitis, bronchiectasis or participants self-reporting a non-European ancestry were excluded.

Definition of asthma exacerbators
Individuals were classified as exacerbators using three different data sources: hospitalisation data, primary
care general practitioner records data and primary care prescription data. Hospitalisations were considered
the result of an asthma exacerbation if: 1) asthma was listed as a primary cause for hospitalisation; 2)
asthma was listed as a secondary cause for hospitalisation with the primary cause being a respiratory
infection or condition associated with asthma (codes: J10.0, J10.1, J11.1, J11.8, J20.9, J67.9, J96.0,
J96.00, J96.01, J96.09, J96.1, J96.11, J96.19, J96.9, J96.90, J96.91, J96.99, R06.1, R06.2, R06.4, R06.5);
3), asthma was listed a secondary cause and the primary cause was chest pain/dyspnoea (codes: R06.0,
R07.0, R07.1, R07.2, R07.3, or R07.4) and the individual had no record of a cardiac condition (all ICD
cardiac-related codes I.X). Exacerbations in general practitioner records (available for ∼45% of the UK
Biobank population) were identified using read v2 and read v3 codes for exacerbations (codes: H333,
H3301, H3311, H33z0, H333z1, XE0YW, Xa1hD, Xafdy, Xafdz, Xafdj, XM0s2, 663d or 8H2P, based on
SHAH et al. [28]). In the primary care prescription data, oral corticosteroid (OCS) prescriptions were
analysed for evidence of OCS bursts [29, 30]. OCS prescriptions were considered as exacerbations if the
total dose prescribed was 200–600 mg. Prescriptions <2 weeks apart, <2 weeks after an annual asthma
review (to avoid counting rescue packs) or <2 weeks after a general practitioner-recorded exacerbation were
excluded. Individuals not meeting any of these definitions were considered controls (non-exacerbators). To
account for the potential that prescriptions may have suffered classification bias due to a fraction being
prescribed OCS bursts for other conditions, a sensitivity analysis was conducted restricting the definition of
exacerbations to those identified using hospitalisation data or primary care general practitioner diagnostic
records. In GERA, exacerbations in the GERA cohort were defined as either an emergency department
visit or hospitalisation due to asthma (ICD10 codes: J45.XX, J46.XX), or an OCS burst prescription
defined as a short course of oral steroids for 3–21 days.

Genotyping
In the UK Biobank, two arrays were used for genotyping: Affymetrix Axiom® UK BiLEVE array and the
Affymetrix Axiom® UK Biobank array [31]. The Haplotype Reference Consortium panel was used for
imputation. In total, 9 805 379 variants met our quality control criteria: minor allele frequency ⩾0.01 and
imputation score ⩾0.3. GERA sample extraction, genotyping, imputation and QC procedures were
previously published [23]. In brief, custom-designed, ethnicity-specific arrays encompassing >650 000
single nucleotide polymorphisms (SNPs) were used for genotyping [23]. The 1000 Genomes phase 3
release panel was used for imputation.

Genome-wide analysis
A logistic regression model was used to determine genome-wide associations between genetic variants and
asthma exacerbator status, assuming an additive genetic model. Imputed genotype dosage (effect allele as a
continuous variable ranging from 0 to 2, reflecting uncertainty in genotype imputation) was fitted using
Plink version 2 [32]. Age, sex, smoking status, the genotyping array and the first 10 principal components
(to adjust for population stratification) were included as covariates. From this analysis, we identified
independent, associated sentinel variants using clumping in Plink with a p-value threshold of 5×10−6, an
r2 (linkage disequilibrium) cut-off of 0.1 and the default distance parameter of 250 kb.

Annotation and functional analysis
A genome-wide association study (GWAS) catalogue was queried for variants associated with asthma at a
genome-wide significance level within 1 Mb of the sentinel variant position. Variant annotation and
functional mapping were conducted using the Ensembl Variant Effect Predictor (VEP) [33] and
SNPnexus [34]. The Kyoto Encyclopedia of Genes and Genomes (KEGG) [35–37] and the Reactome
Database [38] were used to investigate the pathways associated with the list of genes annotated to
suggestive hits. A lookup of suggestive SNPs (p<10−6) lung cis-eQTL effects was performed using data
from the Lung eQTL consortium [39].

Fine-mapping
Fine-mapping was conducted using susieR package version 0.11.42 [40]. All biallelic variants with MAF
>0.0005 within a 1 Mb window surrounding the sentinel SNP were included. Summary statistics from
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logistic regression using Plink were passed to the susie_rss function with a variant correlation matrix
generated from hard-calls using the cor function in R. Region plots were generated using LocusZoom [41].

Interaction with eosinophils
Given the potential that genetic variants may have varying effects on exacerbations in different asthma
phenotypes, we conducted a secondary analysis to investigate effect modification by eosinophilia
(associated with type 2 asthma) on the association between genetic variants and exacerbator status.
Eosinophilia was defined as a binary variable using a cut-off of 300 cells·μL−1, collected during any of the
three available visits to the UK Biobank assessment centre. Eosinophilia × variant was used as an
interaction term, in the following model: Exacerbator(0/1) ∼ SNP + age + sex + smoking + Eosinophilic
(0/1) + SNP × Eosinophilic + 10 principal components.

Power analysis
Using Genetic Association Study (GAS) power calculator, detecting variants with a minimum relative risk
of 1.3 with 80% power at a 5×10−8 significance level was estimated to require a sample size of at least
1130 cases and 3000 controls for risk alleles with a frequency of at least 10% (assuming frequency of
exacerbators 40% among individuals with asthma).

Results
Discovery cohort
In total, 70 918 individuals were selected from the UK Biobank as asthma cases (based on self-reported
asthma, hospitalisation with an asthma code or a primary care record of asthma), of which 49 494
individuals met our inclusion criteria for this analysis. The baseline characteristics for all included
individuals are shown in table 1. Of included individuals, 11 604 (23.4%) met our criteria for having at
least one exacerbation during follow-up (under any of the definitions used) and the remaining individuals
(n=37 890) were considered as non-exacerbating controls. Exacerbators were slightly older, included a
lower proportion of ever-smokers, had higher levels of eosinophils on average and were less likely to be
identified as childhood-onset asthma.

Association signals for asthma exacerbations (discovery)
No SNPs were associated with risk of asthma exacerbations at a genome-wide significance threshold
(p<5×10−8), but 33 SNPs representing 12 independent loci were significant at a suggestive p-value
threshold (p<5×10−6) (figure 1). A quantile–quantile plot is shown in supplementary figure S1. These
associations were followed up in a sensitivity analysis where exacerbations were defined as either
hospitalisations or general practitioner recorded exacerbations only (therefore excluding prescription data).
Two SNPs retained a nominally significant association and direction of effect with exacerbations in the
sensitivity analysis.

Association signals in replication cohort (GERA)
Aiming to replicate our suggestively significant signals from the discovery and to generate more accurate
effect estimates for any reproducible loci, all signals showing a suggestive association in the discovery

TABLE 1 Baseline characteristics of cases and controls

Characteristic Exacerbators
(n=11 604)

Non-exacerbators
(n=37 890)

Age years, mean±SD 57±8 56±8
Female sex 7096 (54.5) 20 542 (54.2)
Ever-smoking 6053 (52.2) 21 231 (56.0)
Eosinophilic (⩾0.3 cells·μL−1) 3117 (26.7) 8911 (23.5)
Childhood-onset asthma (<18 years at age of diagnosis) 2680 (23.1) 11 102 (29.3)
Primary asthma hospitalisation# 1670 (14.4)
Secondary hospitalisation# 717 (6.2)
Chest pain/dyspnoea#,¶ 1514 (13.0)
Primary care (read codes)# 1136 (9.8)
Primary care exacerbations (prescriptions)# 8788 (75.7)

Data are presented as n (%) unless indicated otherwise. #: some exacerbators met multiple definitions of
exacerbations; ¶: secondary asthma hospitalisations with chest pain/dyspnoea as primary hospitalisation cause.
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cohort (UK Biobank) were tested for association with exacerbations in an independent study (GERA). In
GERA, the analysis included 7927 participants with asthma of European ancestry, of which 40.1% were
considered exacerbators. Two variants (rs34643691 and rs149721630) showed consistent direction of effect
and nominal significance (p<0.05) for association (table 2) (supplementary file S1).

Fine-mapping (UK Biobank)
Figure 2 represents regional association plots for regions (±500 kb) centred at the two replicated SNPs.
SNP rs34643691 is in an intergenic region close to Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3)
and did not show strong linkage disequilibrium with other SNPs in the region. SNP rs149721630 is an
intronic variant within ATP Binding Cassette Subfamily A Member 13 (ABCA13) and is in moderate–high
linkage disequilibrium with three other nearby SNPs. Fine-mapping results showed both signals to be the
most likely causal variant in their region (supplementary figure S2).

SNP by eosinophilia effect on exacerbations
As two genomic loci reproducibly associated with risk of exacerbations in all participants with asthma
were identified, we aimed to explore potential endotype-specific effects. To do this, we performed a
genome-wide interaction analysis to test for interactions between eosinophilia (indicative of a type 2-high
endotype) and variants on exacerbation status. This analysis showed no genome-wide significant
associations and 86 signals that were associated with a gene by eosinophilia effect on exacerbations at
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FIGURE 1 Manhattan plot of association results for asthma exacerbations in the UK Biobank. The x-axis shows
genomic location by chromosome, the y-axis shows the –log10 p-value. The blue line indicates p=5×10−6, and
the red line corresponds to p=5×10−8 (commonly known as genome-wide significance level).

TABLE 2 SNPs associated with asthma exacerbations within patients with asthma in both the UK Biobank and GERA

RsID Allele Chr:
position

IS Consequence Nearest
gene

MAF
(discovery)

OR (discovery) p-value
(discovery)

OR
(replication)

p-value
(replication)

rs149721630 C 7: 48 542
408

0.94 Intronic
variant

ABCA13 0.012 0.70 3.57×10–6 0.64 0.049

rs34643691 T 15:88
374 252

0.94 Intergenic
variant

NTRK3 0.010 1.46 8.67×10−8 1.74 0.017

SNPs: single nucleotide polymorphisms; GERA: Genetic Epidemiology Research in Aging; IS: imputation info score; MAF: minor allele frequency;
IS: imputation info score; OR: odds ratio; RsID: unique SNP identifier.

https://doi.org/10.1183/23120541.00566-2023 5

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | A. EDRIS ET AL.

http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00566-2023.figures-only#fig-data-supplementary-materials
http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00566-2023.figures-only#fig-data-supplementary-materials


p<5×10−6 (figure 3, supplementary figure S3). The top hit (rs8095133) comprised a locus on chromosome
18 overlapping two genes (CXADRP3 and POTEC), as shown in the regional association plot (figure 4).
The minor allele of the sentinel variant increased exacerbation risk in eosinophilic patients (OR=1.17,
p=0.0001) and decreased exacerbation risk in non-eosinophilic patients (OR=0.90, p=4.83×10−5).
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Annotation and functional analyses
Using Haploreg and Ensembl Variant Effect Predictor, we annotated the top hits and identified potential
functional consequences of SNPs in both steps of the analyses [33]. GWAS catalogue analyses of the
replicated associations as well as the top hit in the interaction analysis did not reveal any previous
significant genome-wide associations with asthma. Additionally, the three SNPs did not show an eQTL
effect on gene expression levels in the Genotype-Tissue Expression (GTEx) database [42]. Conversely, in
the lung eQTL consortium results, the rs149721630 T allele decreased PKD1L1 expression in lung cells
(3.085×10−6). Analyses of KEGG and Reactome databases using the annotated genes for the list of
suggestive hits, showed no significant associations beyond the false discovery rate, although potential
involvement in neutrophil degranulation and immune system pathways was shown (supplementary file 2).

Post hoc power analysis
Aiming to confirm that we had enough power to detect significant associations, we conducted a post hoc
power analysis. The number of cases and controls included in our study (11 604 and 37 890, respectively)
allows for the detection of variants with a minimum relative risk of 1.2 and an allele frequency of at least
0.05, with >80% power at a 5×10−8 significance level.

Discussion
In this large, genome-wide association study, two novel loci were reproducibly associated with
exacerbation risk in individuals with asthma. Exacerbations were identified using three different sources:
hospitalisation data, general practitioner records and OCS bursts prescriptions. In an interaction analysis
aiming to explore effect modification of eosinophilia on the association between genetic variants and risk
of asthma exacerbations, the top locus showed opposite directions of effect on exacerbation risk in
eosinophilic versus non-eosinophilic patients.

Two SNPs affected exacerbation status in our primary analysis: rs149721630 and rs34643691.
Rs149721630 is an intron variant annotated to the ABCA13 gene, a member of the ATP-binding cassette
(ABC) family of transmembrane transporters [43]. ABC is a family of conserved transporters involved in
transporting different substrates and consisting of seven subfamilies [43, 44]. Members of the family have
been previously associated with several lung conditions [44, 45]. ABCA13 is expressed in the lungs and its
expression levels in epithelial cells have been shown to be affected by asthma and smoking [43].
Additionally, decreased expression levels were associated with a trend towards increased asthma
severity [43]. Moreover, differential methylation in the region was also associated with rhinovirus-induced
wheezing and asthma [46]. Importantly, we have shown that rs149721630 is associated with PKD1L1
expression in lung tissue. PKD1L1 has previously been associated with asthma–COPD overlap in African
Americans [47]. It is also a component in cilia motility [48], which affects asthma severity [49]. This
suggests that this variant may be associated with asthma exacerbations through an effect on PKD1L1
expression. Finally, ABCA13 is associated with psychiatric disorders, including depression, a condition
which shares potential links (including genetic) with asthma [50, 51]. This variant could indicate a
potential link between this genetic region and asthma severity through an effect on impaired lipid
transport, inflammation or cilia motility [51, 52]. Further investigations may be needed to determine its
role in asthma exacerbations. Conversely, rs34643691 lies in an intergenic region, and has not been
previously associated to either regulatory elements or phenotypes. The closest gene is NTRK3, previously
shown to be involved in the neurotrophin signalling pathway, which may impact phosphatidyl inositol
signalling via phosphatidylinositide 3-kinase (PI3K), affecting zileuton (a leukotriene receptor
antagonist)-related changes in FEV1 [53].

To investigate the hypothesis that there is effect modification by inflammatory subtype, we conducted an
analysis using an interaction term (SNP × eosinophilia). Our interaction analysis identified a suggestive
signal on chromosome 18, associated with CXDARP3 and POTEC genes. CXDARP3 is a pseudogene for
the CXDAR (Coxsackie Virus And Adenovirus Receptor) gene, and both are expressed in oesophageal
mucosal tissues [54]. This indicates a potential link between exacerbations in type 2 asthma and viral
respiratory infections. Viral respiratory infections are well known to be one of the most important triggers
of asthma exacerbations, and adenoviruses can trigger wheezing and predispose to allergy [55, 56].
Importantly, viral infections and their interaction with allergens not only increase the risk of exacerbations,
but also trigger an increased Th2 response [57]. Conversely, POTEC belongs to a multi-gene family
encoding Cancer-Testis Antigens and is highly expressed in both ovaries and testes [54, 58]. Importantly,
the SNPs identified in the primary analysis were not significant in the interaction analysis, suggesting that
the effects of these genetic risk variants are not modified by background eosinophilia.
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Our study has several unique strengths: first, we conducted and replicated our GWAS of asthma
exacerbations within adults, whereas most previous studies have been conducted in children. Second, we
focused on the potential differences between genetic variants affecting the general risk of asthma
exacerbations and variants affecting exacerbations modified by type 2 asthma (defined as patients with a
blood eosinophil level ⩾300 cells·μL−1). This is a unique approach which allows unravelling variants
affecting exacerbations in individuals with specific active inflammatory pathways. Finally, we used a broad
definition of exacerbations, by including data from various sources in both analysis stages. We included
severe exacerbations (hospitalisations) using several definitions, aiming for a wider coverage of
hospitalisations associated with asthma. Hospitalisations (in individuals with asthma) recorded as primarily
due to influenza, respiratory failure, stridor or wheezing were considered asthma exacerbations.
Hospitalisations associated with chest pain or dyspnoea in non-cardiac individuals with asthma were also
considered exacerbations. Additionally, we added exacerbations in the community using prescription data
and general practitioner records. This broad definition of asthma exacerbations aimed to provide a more
accurate picture of asthma exacerbations by including all asthma exacerbators. Using this approach, 23.5%
of our asthma population had at least one exacerbation, a figure close to previous estimates indicating the
potential usefulness of the broader definition [5]. As most exacerbators were identified based on OCS
prescriptions, we carried out sensitivity analyses to show that these variants had consistent magnitude and
direction of effect in those identified from diagnostic ICD-10 and primary care read codes alone.

However, our study also had several limitations. First of all, there were no genome-wide significant
associations in our primary analysis of exacerbation risk, or in our interaction analysis, within adult
asthmatic individuals. This could be in part due to power, especially as most of our top hits had a
relatively low minor allele frequency, and heterogeneity of the cases (which were defined using a variety of
data sources) [59]. Second, there could be three main criticisms to our definition of asthma
exacerbations. 1) We defined all chest pain/dyspnoea in asthmatic non-cardiac patients admitted to a
hospital as exacerbations. We aimed to include important signs of exacerbations which would be otherwise
missed due to the strict coding system, as these symptoms may be confusing to clinicians on a patient’s
initial presentation and are common in acute asthma [60]. 2) UK Biobank secondary care data do not
include emergency department admissions unless those patients are transferred as inpatients to another
department. We will therefore have missed any such exacerbations. 3) We used OCS burst prescriptions to
identify asthma exacerbations in the community setting, which could be difficult to fully ascertain as
patients may have had additional comorbidities for which they were prescribed OCS at the same dose (also
as the available data on the intended duration of the specific prescription were missing). Alternatively,
clinicians might have used lower doses intended for exacerbations than the dose threshold we used. Both
broad definitions could have misclassified some patients as exacerbators or controls. However, the
moderate percentage of exacerbators within our population as well as the results of sensitivity analyses
suggest that any potential misclassification had limited effects on our final results. Third, we did not
include follow-up time in our model. In the UK Biobank, hospitalisation data were available from 1995 up
to 2020, while primary care data (for approximately half the cohort) were available from 1995 until 2016,
which could have caused differences in follow-up and therefore the ability to record an exacerbation.
Fourth, we did not replicate the interaction analysis assessing the effects of eosinophilia on the association
between SNPs and asthma exacerbations, as blood eosinophil levels were not available in the GERA
cohort. Fifth, our definition of eosinophilic patients was only based on blood eosinophil levels taken
during any of three visits to the UK Biobank assessment centre. Airway eosinophilia could have provided a
more accurate definition of eosinophilic patients, but this is less feasible in population-wide studies [61].
Moreover, eosinophilia in participants with less visits to the centres could have been underestimated.
Finally, our analysis was restricted to individuals of European ancestry and therefore our results may not
be generalisable to other populations.

Understanding the complex factors affecting the severity of asthma is essential to advance the
understanding and treatment of asthma. Our study adds to the existing evidence of genetic involvement in
the severity of asthma and the presenting clinical phenotype. Further work to translate findings and
understand exactly how these variations are contributing towards different inflammatory pathways is
required. Additional layers of data (including epigenetic or proteomics data) may be needed to unravel the
biologically complex network of interactions, aiming to identify disease markers and/or drug targets.

In conclusion, our GWAS in the UK Biobank identified two variants that are associated with risk of
exacerbations, highlighting a potentially important effect for ABCA13 and/or PKD1L1. Additionally, we
identified a locus near CXADRP3 and POTEC genes associated with increased exacerbation risk in
eosinophilic patients and decreased risk in non-eosinophilic patients. These findings could shed light on
important pathways involved in asthma severity.
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