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The shape and position of abdominal and pelvic organs change greatly during

radiotherapy, so image-guided radiation therapy (IGRT) is urgently needed. The

world’s first integrated CT-linac platform, equipped with fan beam CT (FBCT),

can provide a diagnostic-quality FBCT for achieve adaptive radiotherapy (ART).

However, CT scans will bring the risk of excessive scanning radiation dose.

Reducing the tube current of the FBCT system can reduce the scanning dose,

but it will lead to serious noise and artifacts in the reconstructed images. In this

study, we proposed a deep learning method, Content-Noise Cycle-Consistent

Generative Adversarial Network (CNCycle-GAN), to improve the image quality

and CT value accuracy of low-dose FBCT images to meet the requirements of

adaptive radiotherapy. We selected 76 patients with abdominal and pelvic

tumors who received radiation therapy. The patients received one low-dose

CT scan and one normal-dose CT scan in IGRT mode during different fractions

of radiotherapy. The normal dose CT images (NDCT) and low dose CT images

(LDCT) of 70 patients were used for network training, and the remaining 6

patients were used to validate the performance of the network. The quality of

low-dose CT images after network restoration (RCT) were evaluated in three

aspects: image quality, automatic delineation performance and dose

calculation accuracy. Taking NDCT images as a reference, RCT images

reduced MAE from 34.34 ± 5.91 to 20.25 ± 4.27, PSNR increased from 34.08

± 1.49 to 37.23 ± 2.63, and SSIM increased from 0.92 ± 0.08 to 0.94 ± 0.07. The

P value is less than 0.01 of the above performance indicators indicated that the

difference were statistically significant. The Dice similarity coefficients (DCS)

between the automatic delineation results of organs at risk such as bladder,

femoral heads, and rectum on RCT and the results of manual delineation by

doctors both reached 0.98. In terms of dose calculation accuracy, compared

with the automatic planning based on LDCT, the difference in dose distribution
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between the automatic planning based on RCT and the automatic planning

based on NDCT were smaller. Therefore, based on the integrated CT-linac

platform, combined with deep learning technology, it provides clinical

feasibility for the realization of low-dose FBCT adaptive radiotherapy for

abdominal and pelvic tumors.
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Introduction

With the improvement of the local control rate and 5-year

survival rate of abdominal and pelvic tumors, the survival time

of patients has been prolonged, and the side effects caused by

radical radiotherapy or concurrent radiotherapy and

chemotherapy have gradually emerged, such as persistent

hematological toxicity (1), difficult to controlled radiation

enteritis (2), radiation cystitis, femoral head necrosis, etc.

Although the tumor is effectively controlled, patients have to

face the pain and psychological burden brought by the cruel side

effects of treatment. This has also become the main appeal of

many tumor patients during their follow-up visits, but clinicians

are often powerless at this moment. During radiotherapy, the

position and shape of tissues and organs change greatly due to

differences in respiration, intestinal peristalsis or intestinal gas,

and the bladder filling. As well as changes in the patient’s outer

contour due to weight loss and muscle atrophy, the position of

the tumor or organs can be shifted. Therefore, IGRT of

abdominal and pelvic tumors is particularly necessary. Most of

the current IMRT treatment strategies for abdominal and pelvic

tumors are to scan and locate CT before the first treatment to

make a treatment plan. In the subsequent fractional treatment,

the patient is firstly set up, and then radiotherapy is performed

according to the same treatment plan. In order to avoid the

missed exposure of the target volume, the most commonly used

method is based on the clinical target volume (CTV) expansion,

also known as the planned target volume (PTV) (3, 4). However,

a larger PTV will inevitably bring serious side effects to the

surrounding normal tissues (5), and the simple CTV-PTV

expansion seems to be unable to meet the needs of modern

precision radiotherapy. Therefore, how to kill tumor cells to the

greatest extent while protecting the surrounding normal tissues

as much as possible is an eternal topic in radiotherapy.

Adaptive radiotherapy (ART) technology is an effective

method to deal with the above problems (6–8). It requires

online guided images to determine the patient’s anatomical

changes during the treatment process, and then adaptively

adjusts the radiotherapy plan to reduce damage to organs at
02
risk. Therefore, the accuracy of the guiding images becomes the

prerequisite for ART. Existing image-guided techniques include

ultrasound imaging (US), magnetic resonance imaging (MR),

cone beam CT (CBCT), etc. US has the characteristics of no

radiation, rich image information, and high soft tissue

resolution. They are often used for image-guided radiotherapy

for prostate cancer and bladder cancer (9, 10). Due to the high

operation requirements and few types of diseases, it has not been

widely used in clinical practice. MR images have high soft-tissue

contrast and clear contour edges between organs, which are great

advantages for image guidance of head and neck and abdominal

and pelvic tumors (11, 12). However, there is no correlation

between the gray value and electron density information in

ultrasound images and MR images, and neither can be directly

used for dose calculation in radiotherapy planning. From the

dual perspectives of scanning time and dose calculation, CT

based IGRT is popularized, and kilo-voltage cone beam CT (KV-

CBCT) is the most commonly used CT image-guided method

(13). Due to X-ray scattering and noise in the imaging area of

KV-CBCT, the artifacts are large and cannot provide clear soft

tissue images.

This study is based on an integrated CT-linac platform,

which is equipped with a diagnostic-quality 16-slice CT imager.

However, routine FBCT scans will inevitably bring additional

radiation doses, which will increase the risk of a patient’s second

primary tumor to a certain extent (14, 15). Therefore, even for

IGRT, the imaging process should follow the As Low As

Reasonably Achievable (ALARA) radiation protection safety

concept, which requires that the imaging dose should be

reduced as much as possible while meeting the imaging

needs (16).

The method of reducing the current of X-ray tube is

commonly used to reduce the radiation dose in FBCT imaging

(17). While it leads to a decrease in the number of photons

received by the detector, and the projection data is polluted by

noise. The reconstructed CT images will have a lot of noise and

artifacts, which will affect the identification of anatomical

structures. Obviously, the image quality of FBCT relying on

the reduced dose cannot be further involved in the process of
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IGRT. The existing low-dose CT image processing methods can

be divided into three categories: one is to process the projection

data. The noise in the projection data is statistically modeled and

then filtered to denoise (18, 19); the second is an iterative

reconstruction method. The system imaging geometry, photon

statistical characteristics, noise distribution, etc. are used as

objective function constraints, which are transformed to the

image domain and projection domain multiple times to

iteratively optimize the objective function (20, 21); the third is

to denoise the reconstructed CT images in the image domain.

The first two methods need to obtain the original projection

data, which is difficult to implement. The third method directly

processes the reconstructed CT images, which is fast and easy to

integrate. With the rapid development of artificial intelligence,

deep learning techniques have been increasingly applied to

medical image denoising (22–24). Among them, Geng et al.

proposed a learning strategy of the content-noise

complementary learning (CNCL) through two convolutional

networks to dnoise and content in medical images respectively,

and had good denoising performance on medical images of

different modalities (25). From the perspective of data

acquisition, the cycle-consistent generative adversarial network

(CycleGAN) adopts a dual-generator network structure and a

cycle-consistent loss function to achieve network parameter

training without paired data (26). This method greatly reduces

the difficulty of collecting medical image data and thus becomes

a commonly used network structure in low-dose CT image

processing (27–29). Due to the limitation of medical data

acquisition, simulated low-dose CT data are often used for

experiments in the above studies. Furthermore, there are no

studies evaluating low-dose FBCT images for ART in abdominal

and pelvic tumors.

In this study, we propose a content-noise cycle consistent

generative adversarial network (CNCycle-GAN) to restore the

quality of low-dose CT images. We employ a content noise

generator based on the CycleGAN framework to effectively

remove noise artifacts from low-dose CT images while

preserving the edge structure of the tissue. Then, we evaluate

the quality of the low-dose CT network restoration images

(RCT) through the objective evaluation parameters of the

images, automatic delineation performance and dose

calculation accuracy to judge whether the restored images can

be applied to the ART workflow.
Materials and methods

Image acquisition

In this study, we used a CT-Linac, uRT-linac 506c from

United Imaging Medical Technology Co., Ltd. for data

acquisition. The machine integrates a 16-slice helical CT to

acquire diagnostic-grade FBCT for IGRT. We selected the data
Frontiers in Oncology 03
of 76 patients with abdominal and pelvic tumors who received

radiotherapy in the department of radiation oncology,

First Affiliated Hospital of Soochow University from January

to April 2021 for the study, and all patients had signed the

informed consent. The patient age ranged from 27 to 77 years,

with a median age of 58 years. Each patient underwent two

helical scans with normal dose and low dose in IGRT mode in

the middle of radiotherapy, and the two scans were completed

between different fractions of treatment. Under normal dose

scanning conditions, the tube voltage was 120 kV and the tube

current was 233 mA. The average dose length product (DLP)

was 485.11mGy*cm. Under low-dose scanning conditions, the

tube voltage was 120 kV and the tube current was 24 mA. The

DLP was 47.15mGy*cm. According to AAPM Report No96, the

tissue weight factor of abdult in abdominal and pelvic is 0.015

mSv/(mGy*cm) (30). Therefore, the effective dose of the

abdominal and pelvic cavity was 7.28mSv under the condition

of normal dose scanning, and the effective dose under the

condition of low-dose scanning was 0.71mSv. The spatial

resolution of the reconstructed image was 0.9765*0.9765 mm2,

the layer thickness was 3mm, and the image size was 512*512.
Network structure

We proposed the CNCycle-GAN network to achieves

bidirectional conversion between two domain images (A, low-

dose CT images, LDCT; B, normal-dose CT images, NDCT).

The network structure of CNCycle-GAN is shown in Figure 1. It

uses two content noise convolutional networks as generators,

GA:A!B, to realize the conversion of low-dose CT images to

noraml-dose CT images; GB:B!A, to realize the conversion of

normal-dose CT images to low-dose CT images. Each generator

is adversarially trained DB and DA with the corresponding

convolutional network discriminator.

As shown in Figure 2, the content noise generator is

composed of a resnet predictor that predicts noise and a unet

predictor that predicts content in parallel. The output images are

reconstructed from the extracted features of the content

predictor and noise predictor through a fusion network which

composed of one convolutional layer. The resnet contains one

convolution layer with a 7*7 kernel with stride 1; two down-

sampling layers with a 3*3 kernel with stride 2 and channels 64

and 128; 9 residual blocks with a 3*3 kernel with stride 1; two up-

sampling layers using ConvTranspose2d function with a 3*3

kernel with stride 2 and channels 256 and 128; one convolution

layer with a 7*7 kernel with stride 1. The unet network has a 4*4

kernel stride 2 convolutional layer, 7 downsampling layers, 7

upsampling layers, and a deconvolution layer using the

ConvTranspose2d function with 4*4 kernel stride 2. Among

them, each downsampling layer contains a skip connection

block, which is composed of the LeakReLU activation

function, the convolutional layer InstanceNorm of 4*4 kernel
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stride 2, and the skip connections structure. The fusion network

consists of a concatenation operation followed by a 1×1

convolution operation.

The discriminator uses PatchGAN in pix2pix (31) and

output an array with 0 or 1 to determine whether the input

image is fake or real.

Our CNCycle-GAN network uses Resnet and Unet in the

generator to process the noise and content of the input image

separately and then fuse them, which is superior to the 2D
Frontiers in Oncology 04
cyclegan network in both denoising effect and tissue edge details.

In addition, due to the limitation of hardware resources during

training, we did not adopt 3Dcyclegan as the recovery network.

For illustration, the generator GA has the input LDCT

images IA and the output is the synthetic NDCT images

SB=GA(IA). The input of the discriminator DB is the synthetic

NDCT images SB and the real NDCT images IB. The two

networks GA and DB play against each other during the

training process, where DB acts as a second classifier to
FIGURE 1

Architecture of the CNCycle-GAN network.
A B

D
C

FIGURE 2

(A) CNCycle-GAN generator structure, (B) discriminator network structure diagram, (C) Resnet network structure in the generator, (D) Unet
network structure in the generator.
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determine whether the input images are a real LDCT images. On

the other hand, the role of DA is to increase the fidelity of the

synthetic NDCT images, thereby fooling the discriminator. The

above GA and DB training process is formulated as a min-max

optimization task of the adversarial loss function Ladv(GA,DB)

min
GA

max
DB

Ladv(GA,DB) = log (DB(IB)) + log (1 − DB(GA(IA)))            

(1)

Similarly, another set of generative adversarial losses Ladv
(GB,DA) can be formulated as:

min
GB

max
DA

Ladv(GB,DA) = log (DA(IA)) + log (1 − DA(GB(IB)))            

(2)

We used the cycle-consistent loss function Lcyc(GA,GB)

to ensure that a domain images can be restored as much as

possible after the domain transformation by two generators.

The loss function constrains the generation directions of the

two generators while avoiding the direct interaction of the

two domain images, enabling unsupervised network

training.

Lcyc GA,GBð Þ = ‖ IA − GB GA IAð Þð Þ ‖1 + ‖ IB
− GA GB IBð Þð Þ ‖1 (3)

It has been pointed out that increasing the identity loss can

improve the stability of the generator (32), so we also introduced

the identity loss:

Liden GA,GBð Þ = ‖ IB − GA IBð Þ ‖1 + ‖ IA − GB IAð Þ ‖1 (4)

In summary, the total loss function of CNCycle-GAN is as

follows:

L(GA,GB,DA,DB) 

= Ladv(GA,DB) + Ladv(GB,DA)   +lcycLcyc(GA,GB)

+ lidenLiden(GA,GB)         (5)

where lcyc and liden are the weights of Lcyc(GA,GB) and Liden
(GA,GB) respectively, which are used to control the importance

of the corresponding loss.
Experimental details

We randomly divided the NDCT images and LDCT images

of 76 patients into a training group of 68 cases (90%) for

network parameter training, and a test group of 8 cases (10%)

for the evaluation of the image restoration performance of the

network. Before network parameter training, the data needed

to be preprocessed. We first normalized the pixel values of the

CT images Iori layer by layer to the range of (0, 1) according to

the preset window width (WW) and window level (WL) to
Frontiers in Oncology 05
         

           

improve the model training speed. The normalized images

Inor= (Iori+1000)/2800. In order to improve the robustness of

the network and reduce the limitation of memory during

training, we randomly cropped the normalized images into

image blocks of 256*256 size, and performed data

enhancement operations such as random rotation and

random flip.

During the network training phase, we used ADAM

optimization method to train all networks by minimizing

the loss function (5), where lcyc was set to 20, liden was set to
0.5, and epochs was set to 250. There were two stages to

control the learning rate during training, we set the learning

rate to 0.0002 for the first 150 epochs and linearly decreased it

to zero in the following epochs. The mini-batch size was 4.

The network parameters were initialized with values

generated from a standard normal distribution before

training. The proposed method was implemented using the

PyTorch architecture, and NVIDIA Quadro RTX 4000 GPUs

were used to train all networks. During the network testing

stage, we used the sliding prediction strategy. The LDCT

images of size 512*512 in the test group were sequentially

overlapped and taken as the input of the generator GA,and the

network output result Ioutput was obtained by weighted

average of the output results of each block. Finally, inverse

normalization operation was performed on the output of the

network to obtain the RCT images, that is IRCT= Ioutput*2800

−1000 Image quality evaluation

In order to evaluate the image quality of RCT images, this

paper adopted four objective evaluation indicators of mean

absolute error (MAE) (33), mean square error (MSE), peak

signal-to-noise ratio (PSNR) (34) and structural similarity

(SSIM) (35) for quantitative analysis. The formulas are as follows:

MAEX,Y   =
1
mo

m

i=1
Xi − Yij j                                                                                  

(6)
MSEX,Y   =
1
mo

m

i=1
Xi − Yij j2                                                                                 

(7)
PSNRX,Y   = 20 log10
MAXffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

                                                                       

(8)

SSIMX,Y   =
(2mXmY + C1)(2conv X,Yð Þ + C2)
(m2

X + m2
Y + C1)(s 2

X + s 2
Y + C2)

          (9)

Among them, X,Y are the two image to be compared, m is

the total number of pixels in the image, MAX is the maximum

value of the selected image, m and s are the mean and variance of

the image, conv is the covariance of X and Y, C1 and C2 are used

to maintain stability constant. Taking the NDCT images as the

reference standard, the index parameters of the RCT images and

the LDCT images were calculated respectively.
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Automatic delineation

Automatic delineation algorithms are often used in the ART

process to improve the speed of delineation of organs at risk and

target volumes. Therefore, the automatic delineation performance

of RCT images is a key indicator of whether the images can be

seamlessly embedded in the current ART workflow. We used the

intelligent delineation system of UIH TPS for automatic delineation

of the organ at risk and target volume. The system adopted a

VBNet-based coarse segmentation and fine segmentation cascade

network. The output result of the coarse segmentation network

would guide the cropping of the original CT images, and the

cropping result was input into the fine segmentation network to

obtain the fine segmentation result. The loss function used by the

cascaded network during training was the weighted average of the

cross-entropy loss and the dice loss (36).

We used the intelligent delineation system of UIH TPS to

automatically delineate the organ at risk and target volume in the

RCT images of 6 cases of test group data, and then invited

experienced clinicians to review and modify the delineation

results on the RCT images. The automatic delineation results

on RCT images were compared with the results of manual

delineation by clinicians using the Dice Similarity Coefficient

(DSC) and 95%Hausdorff distance to evaluate the automatic

delineation performance of RCT images. Furthermore, in order

to evaluate the performance difference of the automatic

delineation function in TPS on the three sets of CT images, we

performed the same delineation of the organ at risk and target

volume on RCT, NDCT and LDCT, respectively. Taking the

automatic contouring results of NDCT as reference, the

automatic contouring results of LDCT and RCT were

compared using DSC and 95%Hausdorff distance.
Dose calculation

In the ART workflow, the dose calculation capability of CT-

guided images determines whether the images can be used for

ART. According to the delineation revised by the doctor and

prescribed dose, we started the automatic planning function on

the RCT images, and then copied the delineation and plan to the

LDCT images and the NDCT images respectively to evaluate the

clinical acceptability of each generated plan.

Taking the NDCT-based plan as a reference, the dose

distribution and dose volume histogram (DVH) of the LDCT-

based plan and the RCT-based plan were compared. For target dose,

we assessed PTV for D90, D95 (dose to 90% and 95% of volume)

and Dmean (mean dose), V95% and V100 (target volume to receive

at least 95% and 100% of prescribed dose). For organ-at-risk doses,

we assessed volumes receiving different dose levels, comparing V40

(V40 means the percentage of volume receiving 40Gy dose) and

Dmax (maximum dose) for the rectum, bladder, and femoral head.
Frontiers in Oncology 06
Result

Figure 3 shows the image visual comparison results of

NDCT, LDCT and RCT. The image difference results of

NDCT and LDCT and RCT, and the comparison results of CT

values of the red profile lines which is located on the cross-

sectional views of NDCT, LDCT and RCT.

It can be seen from Figure 3 that, from the visual comparison,

compared with the LDCT images, the noise and artifacts on the

RCT images are significantly reduced, and the tissue edge structures

are well preserved. From the image CT value, the difference between

RCT images and NDCT images is smaller. Therefore, the image

quality of RCT images is closer to the NDCT images.

Table 1 shows the objective evaluation indicators of each

group of CT images. We performed statistical analysis on the data

with two-sample equal variance t test. It can be seen from Table 1

that compared with LDCT images, the MAE of RCT images is

reduced from 34.34 ± 5.91 to 20.25 ± 4.27, the PSNR is increased

from 34.08 ± 1.49 to 37.23 ± 2.63, and the SSIM is increased from

0.92 ± 0.08 to 0.94 ± 0.07. The P<0.01 of the above performance

indicators indicates that the difference is statistically significant.

Therefore, the image quality of RCT images is significantly

improved from the objective evaluation index of images.

The first row in Table 2 shows the DSC results of the

automatic delineation of the target volume and the organ at

risk in the RCT images and the manual delineation of the

clinician. Among them, the DSC of bladder, femoral head, and

rectum reached more than 98%, indicating that the automatic

delineation results of target area and organs at risk of RCT

images are accurate enough to meet clinical needs.

Further to analysis, the second and third rows in Table 2, the

two indicators of DSC and 95%Hausdorff in Figure 4 show the

difference between the automatic delineation results of RCT and

LDCT and NDCT, respectively, and the corresponding two-

sample equal variance t Test statistical analysis. The results show

that for the automatic delineation of the femoral head, the DSC

of RCT and LDCT are both above 0.95, and the HD95 are both

less than 2. There is no significant difference in the automatic

delineation results of the femoral head between RCT and LDCT.

For automatic delineation of CTV and bladder, the DSC of RCT

is above 0.93, and the HD95 is less than 3. Compared with

LDCT, the automatic delineation results of RCT are closer to the

automatic delineation results of NDCT. For the automatic

delineation of the rectum, the DSC of LDCT is less than 0.20,

and the HD95 is greater than 30. The automatic delineation

performance of LDCT are poor, and there are cases where the

automatic delineation algorithm cannot delineate normally at

some LDCT slice images. The reason is that the noise and

artifacts in the LDCT images of this layer have seriously affected

the HU value of normal tissues, so that the automatic delineation

algorithm cannot determine the boundary between normal

organs and adjacent tissues.
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For the automatic delineation of the femoral head, the P

values for both DSC and HD95 are greater than 0.5, indicating

that there is no significant difference between RCT and LDCT in

the automatic delineation of the femoral head. While the P values

of DSC and HD95 for CTV, bladder and rectum automatic

delineation are all less than 0.01, indicating that there is a

significant difference between the automatic delineation results

of RCT and LDCT on CTV, bladder and rectum.
Frontiers in Oncology 07
Figure 5 shows the results of automatic delineation on

different image sets compared to physician-modified

delineation on RCT. Taking the doctor’s modified contour on

RCT as a reference, it can be seen that the automatic contour

results on the NDCT images and RCT images are similar to the

doctor’s modified result; while the automatic contour results of

the bladder and CTV on the LDCT images are quite different at

the edge of the organ, so do the rectal contour. The automatic

delineation of rectum in some patients are even wrong.

The results of dose distribution and dose volume histograms

between NDCT-based plan, LDCT-based plan and RCT-based

plan are shown in Figure 6. It can be seen from the figure that the

difference in dose distribution between the NDCT-based plan

and the RCT-based plan is relatively small, and the DVH lines

are almost overlap. The doses of NDCT-based plan and LDCT-

based plan in rectum, bladder and PTV show small different.
A

B
C

FIGURE 3

(A) Visual comparison results of NDCT, LDCT and RCT images, (B) image difference results of NDCT and LDCT and RCT respectively (C) the
comparison results of CT values of the red profile lines which is located on the cross-sectional views of NDCT, LDCT and RCT.
TABLE 1 Objective evaluation results of CT images quality.

MAE(HU) MSE(HU) PSNR(dB) SSIM

(LDCT,NDCT) 34.34 ± 5.91 3248.75 ± 1131.03 34.08 ± 1.49 0.92 ± 0.08

(RCT,NDCT) 20.25 ± 4.27 1815.48 ± 1300.81 37.23 ± 2.63 0.94 ± 0.07

P <0.01 <0.01 <0.01 <0.01
TABLE 2 DSC comparison of CT image automatic delineation results.

CTV Bladder Femoral Head R Femoral Head L Rectum

DSC(auto,manual) 0.96 ± 0.01 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

DSC(LDCT,NDCT) 0.79 ± 0.05 0.77 ± 0.14 0.95 ± 0.03 0.95 ± 0.03 0.18 ± 0.11

DSC(RCT,NDCT) 0.93 ± 0.02 0.95 ± 0.02 0.96 ± 0.04 0.97 ± 0.03 0.85 ± 0.05

P <0.01 <0.01 0.77 0.71 <0.01
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The results of dose distribution differences on axial slices in the

second row show that in PTV, the dose difference between

NDCT-based plan and LDCT-based plan reaches 1%, while the

dose difference between NDCT-based plan and RCT-based plan

is within 1%.

The dosimetric differences of PTV, rectum, bladder and

femoral head between RCT-based plan and LDCT-based plan

and NDCT-based plan are shown in Figure 7. It can be seen from

the figure that for the PTV dose statistics, the difference in D90,

D95 and Dmean between the LDCT-based plan and the NDCT-

based plan is as high as 65cGy, while the dose difference between

the RCT-based plan and the NDCT-based plan is less than

45cGy. There was no significant difference between the LDCT-

based plan and the RCT-based plan and the NDCT-based plan

for the PTV volume that received 95% of the prescribed dose.
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For the PTV volume that received 100% of the prescribed dose,

the difference between the RCT-based plan and the NDCT-

based plan was 2.5% volume, which was smaller than the 3.6%

volume difference between the LDCT-based plan and the

NDCT-based plan. For the rectum, bladder and femoral head,

it can be seen that the difference of V40 and Dmax between

LDCT-based plan and NDCT-based plan is significantly larger

than that of RCT-based plan and NDCT-based plan.

Table 3, 4 show that compared with the NDCT-based plan dose

calculation results, the RCT-based plan and the LDCT-based plan

have dose statistics P-values greater than 0.01 on PTV, bladder,

rectum, and femoral head, indicating that both differences are not

significant. The reason is that the CT values of RCT, LDCT and

NDCT images are not very different, which can also be seen from

theHU comparison results of the section line in Figure 3. Therefore,
FIGURE 4

DSC and 95% Hausdorff distance results of the automatic delineation performance of RCT and LDCT with NDCT, respectively. The lower part of
the figure is the statistical analysis results of the two-sample equal variance t test corresponding to the region of interest. FH_L and FH_R
represent the left and right femoral heads.
FIGURE 5

Comparison of automatic delineation results on different image sets with those manually modified by physicians on RCT. The results manually
modified by the physician on the RCT were replicated on the LDCT and NDCT. ROI names suffixed with “_RCT_m” indicate that the physician
manually modified the results on the RCT. ROIs with “_a” suffix indicate TPS automatic delineation results.
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there was no significant difference in the dose calculation for RCT,

LDCT and NDCT using the same plan.
Discussion

The linear accelerator uRT-linac 506c of United Imaging

Medical Technology Co., Ltd. is the first radiotherapy equipment

in the world that uses coaxial co-bed technology to integrate the

accelerator and CT. Its diagnostic-grade FBCT can provide clear

images for Monitoring of positioning errors during

radiotherapy, tracking of tumor regression, etc. The abdominal

and pelvic cavity is dominated by soft tissue structures, and
FIGURE 6

Comparison of dose distribution and dose-volume histogram results for NDCT-based plan, LDCT-based plan, and RCT-based plan.
FIGURE 7

Dosimetric differences between RCT-based plan and NDCT-based plan and NDCT-based plan for PTV, bladder and femoral head plans.
TABLE 3 Two-sample equal variance t-test results of dose statistics
for RCT-based plan and LDCT-based plan on PTV.

D90 D95 Dmean V95(%) V100(%)

P 0.70 0.71 0.67 0.81 0.83
TABLE 4 Two-sample equal variance t-test results of dose statistics
on bladder, rectum and femoral head for RCT-based plan and LDCT-
based plan.

P V95(%) V100(%)

Bladder 0.28 0.55

Rectum 0.03 0.14

Femur Head 0.46 0.55
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traditional CBCT images cannot clearly display the boundaries

of various tissues and organs. Therefore, the integrated FBCT

imaging system brings convenience to image-guided

radiotherapy for abdominal and pelvic tumors. New Zealand

authors scanned daily CT (CT on-rails) in 5 pancreatic cancer

patients treated with SBRT and found that, without violating the

clinical limit of 5cc, the volume of stomach, duodenum, and

small intestine received greater than 35Gy, was found to increase

or remain constant during treatment. It demonstrating that

diagnostic-grade CT imaging greatly contributes to the

development of image-guided adaptive radiotherapy (37).

However, guided radiotherapy based on diagnostic-grade CT is

bound to bring the risk of excessive scanning radiation dose.

In recent years, with the wide application of low-dose CT

scanning methods in the field of imaging diagnosis, the denoising

methods of low-dose CT images based on deep learning have

become a hot issue in this field (38, 39). In this study, we proposed a

CNCycle-GAN network to solve the noise and artifacts in low-dose

CT images of the abdominal and pelvis. Figure 3 showed very

intuitively that the noise and artifacts of the RCT images were

significantly reduced. Table 1 showed that compared with LDCT

images, theMAE value of RCT images decreased by 41%, the PSNR

value increased by 9.2%, and the SSIM value increased by 2.1%.

Moreover, compared with the existing low-dose CT images

restoration methods based on CycleGAN with the same multiple

dose reduction (40), our proposed method had achieved the same

images restoration performance a and the results on PSNR were

even outperforms existing methods. The above results showed that

the image quality of RCT images was closer to that of normal dose

CT images, which laid a research foundation for subsequent image

segmentation and planning.

Solving the problem of image quality is only the first step of

adaptive radiotherapy. How to apply RCT images to image

segmentation and planning is the more concerned issue of

adaptive radiotherapy. As can be seen from Figure 4 and

Figure 5, the three groups of CT images had almost no difference

in the results of automatic delineation of the femoral head. But for

the automatic delineation of the bladder and rectum, it was difficult

to judge the boundary of the bladder and rectum due to the

influence of noise and artifacts in LDCT images. This shows that

the use of LDCT images alone cannot meet the requirements of

clinical image delineation of multiple normal organs. Once the

delineation of soft tissue structures such as bladder and rectum is

involved, CT images with close to normal doses must be used.

Through the comparison of RCT images and NDCT images, we

found that the two showed high consistency in the automatic

delineation of organs at risk and target areas. Among them, the

DSC of the bladder reached 95%. Even though the automatic

delineation of the rectum required some minor modifications at

some layers, it was sufficiently accurate compared to most model

performance. The research on intelligent target delineation based on

deep learning in pelvic tumors is also relatively mature. United

Imaging’s TPS already has target delineation models for cervical
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cancer, rectal cancer and other tumors, and has published relevant

literature (41, 42). As shown in Table 2, the automatic delineation

results of CTV in 2 cases of cervical cancer surgery and 1 case of

rectal cancer surgery achieved 96% of the DSC with the doctor’s

manual modification of the delineation results. Therefore, for RCT

images, the intelligent delineation model can be directly used in

clinical work to delineate organs at risk and target areas, especially

for patients with standardized target areas after surgery. This

process can replace manual delineation and further improve the

work efficiency of image-guided radiotherapy and adaptive

radiotherapy without affecting the accuracy of the target volume.

It’s well known that there are two key technologies for adaptive

radiotherapy. The first is precision and the second is speed. Our

ultimate goal is to ensure that PTV covers online-GTV. These

varied strategies include automatic planning as a key step in

adaptive radiotherapy. In this study, we used the automatic

planning function to evaluate the clinical acceptability of the

generated plans and the time of automatic planning for each of

the three sets of CT sets in the test data according to the organ at

risk and target volume modified by the doctor and the given

prescribed dose. Not only the PTV but normal tissue, there is

little difference in dose distribution between RCT-based plan and

NDCT-based plan. The accuracy of RCT images involved in dose

calculation is confirmed, which is also consistent with the results of

most RCT images involved in dose calculation (43). We observed 4

patients with large bladder and/or rectal displacement triggering off-

line adaptive planning on FBCT scans. In TPS, the RCT images are

automatically delineated first, and the attending physician reviews

and appropriately modifies the target area, then completes the

automatic plan, and calculates the total time required for the entire

process of “automatic segmentation + manual modification +

automatic planning”. Statistics show that it took 15s for

automatic segmentation, 60s for manual modification, and 30s

for automatic planning, which took nearly 2 minutes in total. The

time taken is the shortest among the different adaptive radiotherapy

methods currently available in the field of radiotherapy (44). We

deserve further discussion for the accuracy and time advantages of

image segmentation and dose calculation deserve, as well as how to

use RCT image-guided individualized adaptive radiotherapy in

clinical work. In addition, there is currently no scientific basis for

the use of deep learning low-dose CT images for dose calculation.

We need to explore the accuracy of low-dose CT directly involved

in the calculation of radiotherapy planning. Therefore, the

realization of online ART still needs further research.
Conclusion

In this study, we used an integrated CT-linac system

equipped with diagnostic-grade FBCT as the medium of

image-guided radiotherapy, which avoided the deformation

error of CBCT in image-guided radiotherapy. The system

utilizes the advantages of low-dose CT in soft tissue imaging
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and radiation dose to provide high-quality, low-dose CT

images, effectively reducing the random effect caused by

ionizing radiation, and reducing the probability of secondary

tumors. The possibility of frequent image-guided radiotherapy

can be achieved. We used the CNCycle-GAN network method

to solve the problem of noise and artifacts in low-dose CT

images of 1/10 normal dose. The image quality, automatic

delineation performance and dose calculation accuracy were

used to evaluate whether the restored image RCT could be

applied to the ART workflow. The results showed that the low-

dose images RCT restored by the network had significantly

reduced noise and artifacts, and the image quality was

comparable to the NDCT images. The delineation of the

target volume and the organ at risk was similar to that of the

clinician’s manual delineation, and its dose calculation results

were very close to the dose calculation results of NDCT images.

The method proposed in this paper effectively restores the

image quality of low-dose CT images of abdominal and pelvic

regions, and provides a solution for IGRT of low-dose FBCT

images in the ART process of abdominal and pelvic tumors.

With the rapid development of artificial intelligence, it is

expected that lower-dose CT scans can be used as a medium

for image-guided radiotherapy to make greater contributions

to individualized and precise radiotherapy.
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