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Introduction
Subepithelial lesions (SELs) are most frequently 
found in the stomach, most of which are gastroin-
testinal stromal tumors (GISTs).1 GISTs have 

varying degrees of malignancy potential. For 
example, micro-GISTs (<10 mm) have almost 
no malignancy potential, whereas large GISTs 
and GISTs with a high mitotic count have a high 
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metastatic probability and recurrence rate.2 
Numerous systems have been proposed for the 
risk stratification of GISTs. The most widely used 
systems are the National Institute of Health 
(NIH) criteria, modified NIH criteria, and Armed 
Forces Institute of Pathology (AFIP) criteria.3–6 
The variables that are included in the abovemen-
tioned systems are mainly tumor size, mitotic 
index, and tumor location.

The mitotic index is obtained via histopathologic 
sections of the resected tumor or endoscopic 
ultrasonography-guided fine needle aspiration or 
biopsy (EUS-FNA/B). If we are able to predict 
the malignancy potential of a suspected GIST, it 
could aid clinical decision-making, especially for 
small GISTs. Previous studies have attempted to 
identify useful EUS features to predict the malig-
nant potential of GISTs, and they found that, 
large size, cystic change, surface ulceration, extra-
luminal border, depth, heterogeneity irregular 
borders, and a nonoval shape were potential pre-
dictors for malignancy.7–11 However, these pre-
dictors were not consistent in the different studies; 
moreover, except for tumor size, the judgment of 
other predictors was somewhat subjective. 
Artificial intelligence (AI) via deep convolutional 
neural networks (DCNNs) has shown promising 
results in medicine.12–14 Seven et al.15 built a deep 
learning algorithm using EUS images to predict 
the malignancy potential of gastric GISTs with 
good accuracy. Their studies used the AFIP crite-
ria as the reference, and the sample size was rela-
tively small and lacked external validation. A 
previous study indicated that the modified NIH 
criteria were the best criteria to identify a single 
high-risk group for consideration of adjuvant 
therapy.2 Hence, we aimed to build a risk stratifi-
cation EUS-AI model to predict the malignancy 
potential of GISTs in reference to the modified 
NIH criteria with larger sample sizes and external 
validation.

Methods

Clinical data and EUS image collection
The EUS images used to build the risk stratifica-
tion EUS-AI model and used for external valida-
tion were from our previous study, in which we 
successfully built a EUS-AI model to differentiate 
GISTs and non-GISTs with good accuracy.16 
EUS images obtained from The Sixth Affiliated 
Hospital, Sun Yat-sen University, and Guangdong 

Second Provincial Central Hospital were consec-
utively collected to build the model. For external 
validation, we collected EUS images from four 
other hospitals (Fudan University Shanghai 
Cancer Center, the Fourth Hospital of Hebei 
Medical University, Zhoushan Hospital of 
Zhejiang Province, and Yangjiang Hospital of 
Traditional Chinese Medicine). The inclusion 
criteria for the collected images were as follows: 
good quality EUS images showing the tumors; 
confirmed histopathology of gastric GISTs 
(obtained by endoscopic resection, surgery, or 
FNA); and modified NIH criteria risk category 
could be obtained. The exclusion criteria included 
the following: poor-quality images and repeated 
images. The following information about the 
patients was also collected: age, sex, EUS results, 
and histopathology results. The collected images 
were categorized based on the modified NIH cri-
teria risk category.

EUS procedures
EUS was performed by experienced endosonog-
raphers with experience in more than 500 cases of 
SELs. The echoendoscopes that were used in the 
models and the external validation sets are shown 
in Supplemental Tables S1 and S2. The utilized 
frequency was 5–20 MHz.

Image processing and development of the deep 
learning models
The image processing, augmentation, and devel-
opment of the deep learning models were sup-
ported by the Tianjin Jinyu Artificial Intelligence 
Medical Technology Co., Ltd. The image pro-
cessing was the same as in our previous study. 
After selecting the qualified images, two experts 
in EUS marked the borderline of the tumor with 
LabelMe software (a polygonal and open annota-
tion tool developed by the Massachusetts Institute 
of Technology, Computer Science and Artificial 
Intelligence Laboratory), and the marked tumors 
were regarded as the regions of interest (ROIs). 
Afterward, the engineers trimmed the images to 
squares or rectangles by precisely fitting the ROI. 
For images with measuring lines or measuring 
marks, Adobe Photoshop (Version 13.0; Adobe 
Systems Software Ireland Ltd., Dublin, Ireland) 
was used to erase the lines or marks and to pre-
serve the originality of the images as much as pos-
sible. Image augmentation technology, such as 
mirror flip, horizontal flip, and rotation in certain 
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degrees of the EUS images, was applied. The pre-
processed images were then changed into the 
RGB three-channel to be generated as the model 
input.

We developed two models in this study. Model 1 
was a four-category risk EUS-AI model, and 
Model 2 was a two-category risk EUS-AI model. 
In Model 1, we classified the images into four 
categories based on the modified NIH criteria: 
very low-, low-, intermediate-, and high-risk. In 
Model 2, we classified the images into two cate-
gories: very low- and non-very low-risk (the lat-
ter included low-, intermediate-, and high-risk 
categories). The process was mainly imple-
mented by Python (Version 3.7; Python Software 
Foundation, Wilmington, DE, USA) and 
PyTorch (Version 1.7.1; Facebook artificial 
intelligence research institute, Menlo Park, CA, 
USA). The chosen images were randomly 
divided into training sets and test sets at a ratio 
of 7.5:2.5, and 10-fold cross-validation was 
used.

We used the DCNN classifier known as 
ResNeSt-50 to train Model 1 (Amazon and 
University of California, Davis, Davis, CA, USA). 
ResNeSt was developed by Zhang et al.17, and it 
showed superiority in accuracy and latency trade-
off on image classification when compared with 
other backbones.17 The Adam optimizer was 
used, which is a popular optimizer that combines 
the ideas of AdaGrad and RMSProp.18 The initial 
learning rate was set as 0.003, and cosine anneal-
ing was adopted as the attenuation method. This 
method took the cosine function as a period and 
reset the learning rate at the maximum value of 
each period.19 The model was trained for 300 
epochs, and the final learning rate was 3e−7. 
When the training reached 300 epochs, the train-
ing was stopped.

As Model 1 was a four-category model (which 
was a multicategory task), a deeper learning 
model was needed to learn the characteristics. 
Model 2 was a two-category model, and the use 
of ResNeSt-34 was sufficient to train the model. 
The Adam optimizer was subsequently used. 
The initial learning rate was set as 0.003, and 
cosine annealing was adopted as the attenuation 
method. The model was trained for 500 epochs, 
and the final learning rate was 9e−8. When the 
training reached 500 epochs, the training was 
stopped.

The output of the model was the risk category 
(ranging from 0 to 100%) of the GISTs. The type 
with the higher probability was interpreted as the 
final risk category.

Statistical analysis
Data are presented as the mean (standard devia-
tion, SD) for normally distributed continuous 
variables and presented as the median (range) 
for nonnormally distributed continuous varia-
bles. Categorical variables are expressed as 
numbers (percentages). A receiver operating 
characteristic (ROC) curve was plotted, and the 
area under the curve (AUC) was calculated. The 
sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and 
accuracy of the risk category of the EUS-AI 
model, as well as the respective 95% confidence 
intervals (CIs), were calculated. The abovemen-
tioned calculation was performed by using the 
Scikit-learn package in Python. The reporting 
of this study conforms to the Standards for 
Reporting Diagnostic Accuracy (STARD) 2015 
statement.20 The study has been registered in 
the Chinese Clinical Trial Registry (No. 
ChiCTR2100051191).

Results

Basic information about the training sets and 
the test sets
A total of 1320 images (the number of images for 
very low-risk, low-risk, intermediate-risk, and 
high-risk was 880, 269, 68, and 103, respectively) 
from 243 patients (245 GIST cases, of which 168 
were very low-risk, 56 were low-risk, 12 were 
intermediate-risk, and 9 were high-risk) were 
chosen for analysis. The median age of the 
patients was 56 (29–81) years, and 104 patients 
(42.80%) were male. A total of 990 images were 
randomly divided into the training sets, and 330 
images were randomly divided into the test sets. 
The characteristics of the chosen GISTs are sum-
marized in Table 1.

Basic information for the external validation 
sets
A total of 656 images (the number of images for 
very low-risk, low-risk, intermediate-risk, and 
high-risk was 211, 266, 88, and 91, respectively) 
from 79 patients (80 GISTs, of which 36 were 
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Table 1. The characteristics of the GISTs chosen for analysis.

Category Very low Low Intermediate High Total

Training and test set

Total 168 56 12 9 245

Location (n, %)

 Cardia 2 (1.19) 0 0 0 2 (0.82)

 Gastric fundus 116 (69.05) 28 (50) 7 (58.33) 5 (55.56) 156 (63.67)

  Junction of gastric 
fundus and gastric 
body

1 (0.6) 0 1 (8.33) 0 2 (0.82)

 Gastric body 49 (29.17) 23 (41.07) 4 (33.33) 4 (44.44) 80 (32.65)

 Gastric angle 0 2 (3.57) 0 0 2 (0.82)

 Gastric antrum 0 3 (5.36) 0 0 3 (1.22)

Size (n, %)

 ⩾20 mm 0 54 (96.43) 11 (91.67) 9 (100) 74 (30.20)

 <20 mm 168 (100) 2 (3.57) 1 (8.33) 0 171 (69.80)

External validation set

Total 36 28 7 9 80

Location (n, %)

 Cardia 2 (5.56) 1 (3.57) 0 1 (11.11) 4 (5)

 Gastric fundus 18 (50) 12 (42.86) 2 (28.57) 3 (33.33) 35 (43.75)

  Junction of gastric 
fundus and gastric 
body

1 (2.78) 0 1 (14.29) 1 (11.11) 3 (3.75)

 Gastric body 14 (38.89) 13 (46.43) 4 (57.14) 4 (44.44) 35 (43.75)

 Gastric antrum 1 (2.78) 2 (7.14) 0 0 3 (3.75)

Size (n, %)

 ⩾20 mm 0 26 (92.86) 6 (85.71) 8 (88.89) 40 (50)

 <20 mm 36 (100) 2 (7.14) 1 (14.29) 1 (11.11) 40 (50)

GIST, gastrointestinal stromal tumor.

very low-risk, 28 were low-risk, 7 were interme-
diate-risk, and 9 were high-risk) were finally 
chosen in the external validation sets (Table 1). 
The number of images and tumors selected from 
each hospital are presented in Supplemental 
Table S3.

Diagnostic performance of the four-category 
risk EUS-AI model for prediction of the risk 
category in the test sets
The accuracy, sensitivity, specificity, PPV, and 
NPV for the four-category risk EUS-AI model in 
the test sets by images were 81.21%, 75.48%, 
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90.98%, 93.45%, and 68.52%, respectively, for 
very low-risk; 83.64%, 64.86%, 89.06%, 63.16%, 
and 89.76%, respectively, for low-risk; 85.15%, 
55%, 87.1%, 21.57%, and 96.77%, respectively, 
for intermediate-risk; and 94.85%, 82.14%, 
96.03%, 65.71%, and 98.31%, respectively, for 
high-risk (Supplemental Table S4). The overall 
accuracy, sensitivity, specificity, PPV, and NPV 
were 83.15%, 72.42%, 90.75%, 79.95%, and 
77.52%, respectively. The ROC curves for each 
type versus other types are shown in Figure 1(a), 
and the confusion matrices showing the pairwise 
comparison (number of images) in the test sets 
are presented in Figure 1(d).

Diagnostic performance of the four-category 
risk EUS-AI model for prediction of the risk 
category in the external validation sets
The accuracy, sensitivity, specificity, PPV, and 
NPV for the four-category risk EUS-AI model 
in the external validation sets by images and by 
tumors are shown in Table 2. The overall accu-
racy, sensitivity, specificity, PPV, and NPV by 
images were 70.55%, 47.10%, 78.23%, 46.61%, 
and 77.88%, respectively. The overall accuracy, 
sensitivity, specificity, PPV, and NPV by tumor 

were 74.50%, 55.00%, 79.05%, 53.49%, and 
81.63%, respectively. The ROC curves and the 
confusion matrices showing the pairwise com-
parison results are presented in Figure 1.

Diagnostic performance of the two-category 
risk EUS-AI model for prediction of the risk 
category in the test sets
In Model 2, we classified the images into two cat-
egories: very low and non-very low-risk. The 
accuracy, sensitivity, specificity, PPV, and NPV 
for the two-category risk EUS-AI model for the 
prediction of very low-risk GISTs in the test sets 
by images were 90.91%, 90.38%, 91.80%, 
94.95%, and 84.85%, respectively (Table 3). The 
ROC curve is presented in Figure 2(a).

Diagnostic performance of the two-category 
risk EUS-AI model for prediction of the risk 
category in the external validation sets
The accuracy, sensitivity, specificity, PPV, and 
NPV for the two-category risk EUS-AI model for 
the prediction of very low-risk GISTs in the exter-
nal validation sets by image were 82.77%, 85.31%, 

Figure 1. ROCs of the four-category risk EUS-AI model for prediction of the GISTs in the: (a) test sets by 
images, (b) external validation sets by images, (c) external validation sets by tumors, and confusion matrices 
of the pairwise comparison in the (d) test sets by images, (e) external validation sets by images, and (f) 
external validation sets by tumors.
AI, artificial intelligence; EUS, endoscopic ultrasonography; GIST, gastrointestinal stromal tumor; ROCs, receiver operating 
characteristic.
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Table 2. Diagnostic performance of the four-category risk EUS-AI model for prediction of the risk category of GISTs in the external 
validation sets.

Risk 
stratification

Very low Low Intermediate High

By images

 Accuracy 77.59% (74.25–80.62%) 59.6% (55.80–63.29%) 76.98% (73.61–80.04%) 80.03% (76.80–82.91%)

 Sensitivity 73.46% (67.12–78.96%) 42.86% (37.05–48.86%) 15.91% (9.72–24.95%) 28.57% (20.31–38.57%)

 Specificity 79.55% (75.56–83.04%) 71.03% (66.34–75.31%) 86.44% (83.38–89.02%) 88.32% (85.41–90.71%)

 PPV 63.01% (56.82–68.80%) 50.22% (43.77–56.67%) 15.38% (9.39–24.18%) 28.26% (20.08–38.19%)

 NPV 86.34% (82.68–89.33%) 64.57% (59.93–68.95%) 86.9% (83.87–89.44%) 88.48% (85.58–90.85%)

By tumors

 Accuracy 78.75% (68.58–86.29%) 63.75% (52.81–73.43%) 83.75% (74.16–90.25%) 83.75% (74.16–90.25%)

 Sensitivity 86.11% (71.34–93.92%) 32.14% (17.93–50.66%) 14.29% (2.57–51.31%) 33.33% (12.06–64.58%)

 Specificity 72.73% (58.15–83.65%) 80.77% (68.10–68.29%) 90.41% (81.50–95.28%) 90.14% (81.02–95.14%)

 PPV 72.09% (57.31–82.35%) 47.37% (27.33–68.29%) 12.5% (2.24–47.09%) 30% (10.78–60.32%)

 NPV 86.49% (72.02–94.09%) 68.85% (56.41–79.06%) 91.67% (82.99–96.12%) 91.43% (82.53–96.01%)

AI, artificial intelligence; EUS, endoscopic ultrasonography; GIST, gastrointestinal stromal tumor; NPV, negative predictive value; PPV, positive 
predictive value.

81.57%, 68.70%, and 92.13%, respectively, and 
those by tumor were 86.25%, 94.44%, 79.55%, 
79.07%, and 94.59%, respectively (Table 3). The 
ROC curves are presented in Figure 2(b) and (c).

Discussion
In this study, we built two risk stratification 
EUS-AI models to predict the malignant 

potential of GISTs in reference to the modified 
NIH criteria, and the accuracy of the four-cate-
gory risk EUS-AI model was not significantly 
good; however, the accuracy of the two-category 
risk EUS-AI model was much better with external 
validation.

Risk stratification of GISTs tries to evaluate the 
risk of poor outcomes and to choose patients who 

Table 3. Diagnostic performance of the two-category risk EUS-AI model for prediction of the very low-risk 
GISTs in different sets.

Risk 
stratification

Test sets by images External validation sets by 
images

External validation sets by 
tumors

Accuracy 90.91% (87.32–93.56%) 82.77% (79.70–85.47%) 86.25% (77.03–92.15%)

Sensitivity 90.38% (85.62–93.69%) 85.31% (79.90–89.45%) 94.44% (81.86–98.46%)

Specificity 91.80% (85.57–95.49%) 81.57% (77.71–84.90%) 79.55% (65.50–88.85%)

PPV 94.95% (90.95–97.23%) 68.70% (62.85–74.01%) 79.07% (64.79–88.58%)

NPV 84.85% (77.75–89.97%) 92.13% (89.05–94.40%) 94.59% (82.30–98.50%)

AI, artificial intelligence; EUS, endoscopic ultrasonography; GIST, gastrointestinal stromal tumor; NPV, negative predictive 
value; PPV, positive predictive value.

https://journals.sagepub.com/home/tag


Y Lu, L Chen et al.

journals.sagepub.com/home/tag 7

may benefit from adjuvant therapy.21 Independent 
prognostic factors for GIST include the mitotic 
index, tumor size, tumor location (gastric versus 
non-gastric), and tumor rupture.2 Patients in the 
low-risk group generally have favorable outcomes 
and may not require adjuvant therapy or frequent 
surveillance. In the past few years, several studies 
have explored AI applications in GISTs which not 
only include differentiating GISTs from non-
GISTs,13,14,22–24 but also risk stratification and pre-
diction of prognosis.15 Most of the previous studies 
regarding AI applications in GIST risk stratifica-
tion were computed tomography (CT)-derived 
analyses and only a few studies have researched the 
performance of EUS-derived images. Two major 
machine learning methodologies, radiomic analy-
sis and DCNNs have shown promise in pattern 
classification in previous studies.15,25

Seven et al.15 investigated AI via DCNNs in pre-
dicting the malignant potential of GISTs. The 
overall sensitivity, specificity, and accuracy of the 
AI system for predicting four-category malig-
nancy risk based on AFIP criteria in their study 
were 83%, 94%, and 82%, respectively, in the 
training dataset, and 75%, 73%, and 66%, respec-
tively, in the validation cohort. When patients 
were divided into two categories: low-risk (includ-
ing very low-risk and low-risk groups) and high-
risk groups (including intermediate-risk and 
high-risk groups), the sensitivity, specificity, and 
accuracy in the validation cohort increased to 
99.7%, 99.7%, and 99.6%, respectively.

In our study, the overall accuracy, sensitivity, and 
specificity of the four-category risk EUS-AI model 

by tumor in the external validation set were 
74.50%, 55.00%, and 79.05%, respectively, 
which is comparable to the results of the valida-
tion cohort in Seven’s study. The overall perfor-
mance of AI in the four-category risk EUS-AI 
model was not satisfactory because the sensitivity 
was observed to be relatively low. One possible 
reason for this phenomenon was that, in our 
study, the distribution of patients in each risk 
group of the training set was not balanced, and 
there were more patients in the very low-risk 
group than in the other three groups. Therefore, 
we may not have obtained optimized results for 
unbalanced classes, as the model did not obtain a 
sufficient understanding of the underlying classes. 
This imbalance is naturally inherent in our real-
life medical practice. Intermediate and high-risk 
GISTs were usually larger in size and accompa-
nied by ulceration which could be diagnosed by 
biopsies alone in most cases; thus, EUS was not 
required in the diagnosis and preoperative man-
agement. Additionally, some of the patients with 
intermediate- or high-risk GISTs underwent sur-
gery directly after CT examinations with no addi-
tional required EUS in our center. These factors 
can explain the low number of patients in the 
higher-risk group.

When patients were divided into very low-risk 
and non-very low-risk groups according to modi-
fied NIH criteria, the two-category EUS-AI 
model that we built showed better accuracy, sen-
sitivity, and specificity of 86.25%, 94.44%, and 
79.55%, respectively, by tumor in the external 
validation sets. Previous studies15,25 have com-
bined the very low-risk and low-risk groups 

Figure 2. ROCs of the two-category risk EUS-AI model for prediction of the very low-risk GISTs in the: (a) test 
sets by images, (b) external validation sets by images, and (c) external validation sets by tumors.
AI, artificial intelligence; EUS, endoscopic ultrasonography; GIST, gastrointestinal stromal tumor; ROCs, receiver operating 
characteristic.
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together, which was different from our study. 
According to European guidelines,26 very low-risk 
GISTs probably do not require routine follow-
up. National Comprehensive Cancer Network 
guideline 2022 version27 also mentioned that less 
frequent surveillance is acceptable for very small 
tumors (<2 cm), which is consistent with the 
modified NIH criteria for the very low-risk group. 
These results indicate that the very low-risk group 
has a much lower risk of recurrence compared to 
the other risk groups; therefore, dividing patients 
into very low-risk and non-very low-risk groups 
may be of more clinical significance because the 
management and follow-up strategy would be dif-
ferent. Our EUS-AI models demonstrated 
encouraging results in differentiating very low-
risk GISTs from other risk groups, which can 
benefit actual clinical work.

In the study of Li et al.,25 an EUS-derived radi-
omics model was developed to differentiate 
GISTs of the higher-risk classification (interme-
diate-risk and high-risk) from the lower-risk clas-
sification (very low-risk and low-risk). The 
accuracy, sensitivity, and specificity were 82.3%, 
81.3%, and 82.6%, respectively. However, they 
did not specify which classification criteria were 
used in their study. The radiomics model has 
been investigated in many previous studies for the 
risk stratification of GISTs; however, most of the 
studies28 were focused on the performance of AI 
using CT images. Li’s study demonstrated that a 
EUS-derived radiomics model could increase 
preoperative diagnostic accuracy and provide a 
valuable reference in physicians’ decision-mak-
ing. The steps of radiomics analysis include the 
first extraction of numerous handcrafted imaging 
features, followed by feature selection and 
machine learning-based classification. However, 
handcrafted features are limited to the current 
knowledge of medical imaging, which may limit 
the potential of the predictive model.

Deep learning improves these handcrafted fea-
tures by automatically learning discriminative 
features directly from images.29 A previous 
study30 demonstrated that a hybrid structure that 
includes different features selected with a radi-
omics model and DCNNs (AUC: 0.882, 95% 
CI: 0.816–0.947) outperforms independent radi-
omics (AUC: 0.807, 95% CI: 0.724–0.892) and 
CNNs (AUC: 0.826, 95% CI: 0.795–0.856) 
approaches for the classification of GISTs  
at CT. Moreover, deep learning also has 

advantages and applications in other related 
fields, such as sequence methods and synthesis 
generation. Future studies that explore AI models 
integrating radiomics and DCNN features for the 
risk classification of GISTs using EUS images 
would likely add valuable information to this 
topic.

There were several limitations of our study. First, 
this was a retrospective study, and we did not 
perform prospective validation. It would be bet-
ter to validate the EUS-AI model in a prospective 
cohort prior to its application in clinical practice. 
Another shortcoming, as was mentioned above, 
is that the number of intermediate- and high-risk 
GISTs was too small relative to very low-risk 
GISTs. In future studies, we need to enroll more 
patients with non-very low-risk to improve the 
imbalanced dataset model and to make it more 
stable. Despite these limitations, our results are 
of value in that our EUS-AI model was trained 
on a relatively large dataset and validated in an 
external validation cohort including four 
hospitals.

In conclusion, we developed a EUS-AI model for 
the risk stratification of GISTs with promising 
results. The accuracy and sensitivity of the two-
category risk EUS-AI model were high with exter-
nal validation, which may complement current 
clinical practice in the management of GISTs.

Declarations

Ethics approval and consent to participate
This study was a part of our previous work, which 
was approved by the Institutional Review Board 
of the Sixth Affiliated Hospital, Sun Yat-sen 
University (Approval Code: 2021ZSLYEC-319), 
and the informed consent was waived.

Consent for publication
Not applicable.

Author contributions
Yi Lu: Data curation; Formal analysis; 
Investigation; Project administration; Writing – 
original draft.

Lu Chen: Data curation; Formal analysis; 
Writing – original draft.

Jiachuan Wu: Data curation; Formal analysis; 
Investigation; Project administration.

https://journals.sagepub.com/home/tag


Y Lu, L Chen et al.

journals.sagepub.com/home/tag 9

Limian Er: Data curation; Investigation; Project 
administration; Supervision.

Huihui Shi: Data curation; Investigation; Project 
administration.

Weihui Cheng: Data curation; Investigation; 
Project administration.

Ke Chen: Data curation; Investigation; Project 
administration; Supervision.

Yuan Liu: Data curation; Investigation; Project 
administration.

Bingfeng Qiu: Data curation; Investigation; 
Project administration; Supervision.

Qiancheng Xu: Data curation; Investigation; 
Project administration.

Yue Feng: Formal analysis; Methodology; 
Project administration; Software; Validation; 
Visualization.

Nan Tang: Formal analysis; Methodology; 
Project administration; Software; Validation; 
Visualization.

Fuchuan Wan: Formal analysis; Methodology; 
Software; Validation; Visualization.

Jiachen Sun: Conceptualization; Data curation; 
Project administration; Resources; Writing – 
review & editing.

Min Zhi: Conceptualization; Funding acquisi-
tion; Supervision; Writing – review & editing.

Acknowledgements
The authors thank all the members of Tianjin 
Economic-Technological Development Area 
(TEDA) Yujin Digestive Health Industry 
Research Institute who have made contributions 
to this program.

Funding
The authors disclosed receipt of the following 
financial support for the research, authorship, 
and/or publication of this article: This study was 
funded by grants from the Sun Yat-sen University 
Clinical Research 5010 Program (Grant num-
ber: 2014008) and the Sixth Affiliated Hospital 
of Sun Yat-sen University of Horizontal Program 
(Grant No. H202101162024041054).

Competing interests
The authors declare that there is no conflict of 
interest.

Availability of data and materials
Data used in this study are available from the cor-
responding authors upon reasonable request.

ORCID iDs
Yi Lu  https://orcid.org/0000-0003-3979- 
5421
Jiachen Sun  https://orcid.org/0000-0003- 
3646-1039

Supplemental material
Supplemental material for this article is available 
online.

References
 1. Deprez PH, Moons LMG, OʼToole D, et al. 

Endoscopic management of subepithelial lesions 
including neuroendocrine neoplasms: European 
Society of Gastrointestinal Endoscopy (ESGE) 
Guideline. Endoscopy 2022; 54: 412–429.

 2. Joensuu H, Vehtari A, Riihimäki J, et al. Risk  
of recurrence of gastrointestinal stromal  
tumour after surgery: an analysis of pooled 
population-based cohorts. Lancet Oncol 2012; 
13: 265–274.

 3. Joensuu H. Risk stratification of patients 
diagnosed with gastrointestinal stromal tumor. 
Hum Pathol 2008; 39: 1411–1419.

 4. Khoo CY, Chai X, Quek R, et al. Systematic 
review of current prognostication systems for 
primary gastrointestinal stromal tumors. Eur J 
Surg Oncol 2018; 44: 388–394.

 5. Miettinen M and Lasota J. Gastrointestinal 
stromal tumors: pathology and prognosis at 
different sites. Semin Diagn Pathol 2006; 23: 
70–83.

 6. Fletcher CDM, Berman JJ, Corless C, et al. 
Diagnosis of gastrointestinal stromal tumors: 
a consensus approach. Hum Pathol 2002; 33: 
459–465.

 7. Jeon SW, Park YD, Chung YJ, et al. 
Gastrointestinal stromal tumors of the stomach: 
endosonographic differentiation in relation to 
histological risk. J Gastroenterol Hepatol 2007; 22: 
2069–2075.

 8. Shah P, Gao F, Edmundowicz SA, et al. 
Predicting malignant potential of gastrointestinal 
stromal tumors using endoscopic ultrasound. Dig 
Dis Sci 2009; 54: 1265–1269.

https://journals.sagepub.com/home/tag
https://orcid.org/0000-0003-3979-5421
https://orcid.org/0000-0003-3979-5421
https://orcid.org/0000-0003-3646-1039
https://orcid.org/0000-0003-3646-1039


Volume 16

10 journals.sagepub.com/home/tag

TherapeuTic advances in 
Gastroenterology

 9. Chen TH, Hsu CM, Chu YY, et al. Association 
of endoscopic ultrasonographic parameters and 
gastrointestinal stromal tumors (GISTs): can 
endoscopic ultrasonography be used to screen 
gastric GISTs for potential malignancy? Scand 
J Gastroenterol 2016; 51: 374–377.

 10. Chen T, Xu L, Dong X, et al. The roles of CT 
and EUS in the preoperative evaluation of gastric 
gastrointestinal stromal tumors larger than 2 cm. 
Eur Radiol 2019; 29: 2481–2489.

 11. Brand B, Oesterhelweg L, Binmoeller KF, et al. 
Impact of endoscopic ultrasound for evaluation of 
submucosal lesions in gastrointestinal tract. Dig 
Liver Dis 2002; 34: 290–297.

 12. Marya NB, Powers PD, Chari ST, et al. 
Utilisation of artificial intelligence for the 
development of an EUS-convolutional neural 
network model trained to enhance the diagnosis 
of autoimmune pancreatitis. Gut 2021; 70: 
1335–1344.

 13. Seven G, Silahtaroglu G, Seven OO, et al. 
Differentiating gastrointestinal stromal tumors 
from leiomyomas using a neural network trained 
on endoscopic ultrasonography images. Dig Dis 
2022; 40: 427–435.

 14. Yang X, Wang H, Dong Q, et al. An artificial 
intelligence system for distinguishing between 
gastrointestinal stromal tumors and leiomyomas 
using endoscopic ultrasonography. Endoscopy 
2022; 54: 251–261.

 15. Seven G, Silahtaroglu G, Kochan K, et al. Use of 
artificial intelligence in the prediction of malignant 
potential of gastric gastrointestinal stromal tumors. 
Dig Dis Sci 2022; 67: 273–281.

 16. Lu Y, Wu J, Hu M, et al. Artificial intelligence 
in the prediction of gastrointestinal stromal 
tumors on endoscopic ultrasonography images: 
development, validation and comparison with 
endosonographers. Gut Liver Epub ahead 
of print 26 January 2023. DOI: 10.5009/
gnl220347.

 17. Zhang H, Wu C, Zhang Z, et al. ResNeSt: 
split-attention networks, https://arxiv.org/
pdf/2004.08955.pdf, 2020.

 18. Cortiñas-Lorenzo B and Pérez-González F. 
Adam and the ants: on the influence of the 
optimization algorithm on the detectability of 
DNN watermarks. Entropy 2020; 22: 1–36.

 19. Xie H and Wu Z. A robust fabric defect detection 
method based on improved RefineDet. Sensors 
2020; 20: 1–24.

 20. Korevaar DA, Cohen JF, Reitsma JB, et al. 
Updating standards for reporting diagnostic 
accuracy: the development of STARD 2015. Res 
Integr Peer Rev 2016; 1: 7.

 21. Tirumani SH, Baheti AD, Tirumani H, et al. 
Update on gastrointestinal stromal tumors for 
radiologists. Korean J Radiol 2017; 18: 84–93.

 22. Kim YH, Kim GH, Kim KB, et al. Application of 
a convolutional neural network in the diagnosis 
of gastric mesenchymal tumors on endoscopic 
ultrasonography images. J Clin Med 2020; 9: 
1–11.

 23. Minoda Y, Ihara E, Komori K, et al. Efficacy 
of endoscopic ultrasound with artificial 
intelligence for the diagnosis of gastrointestinal 
stromal tumors. J Gastroenterol 2020; 55: 
1119–1126.

 24. Oh CK, Kim T, Cho YK, et al. Convolutional 
neural network-based object detection model 
to identify gastrointestinal stromal tumors in 
endoscopic ultrasound images. J Gastroenterol 
Hepatol 2021; 36: 3387–3394.

 25. Li X, Jiang F, Guo Y, et al. Computer-aided 
diagnosis of gastrointestinal stromal tumors: a 
radiomics method on endoscopic ultrasound 
image. Int J Comput Assist Radiol Surg 2019; 14: 
1635–1645.

 26. Casali PG and Blay JY. Gastrointestinal stromal 
tumours: ESMO clinical practice guidelines for 
diagnosis, treatment and follow-up. Ann Oncol 
2022; 33: 20–33.

 27. National Comprehensive Cancer Network. 
Gastrointestinal stromal tumors (GISTs) 
(Version 1.2022), https://www.nccn.org/
professionals/physician_gls/pdf/gist.pdf (accessed 
21 January 2022)

 28. Yang CW, Liu XJ, Liu SY, et al. Current and 
potential applications of artificial intelligence 
in gastrointestinal stromal tumor imaging. 
Contrast Media Mol Imaging 2020; 2020: 
6058159.

 29. Sun Q, Lin X, Zhao Y, et al. Deep learning vs. 
Radiomics for predicting axillary lymph node 
metastasis of breast cancer using ultrasound 
images: don’t forget the peritumoral region. Front 
Oncol 2020; 10: 53.

 30. Ning Z, Luo J, Li Y, et al. Pattern classification for 
gastrointestinal stromal tumors by integration of 
radiomics and deep convolutional features. IEEE 
J Biomed Health Inform 2019; 23: 1181–1191.

Visit SAGE journals online 
journals.sagepub.com/
home/tag

  SAGE journals

https://journals.sagepub.com/home/tag
https://arxiv.org/pdf/2004.08955.pdf
https://arxiv.org/pdf/2004.08955.pdf
https://www.nccn.org/professionals/physician_gls/pdf/gist.pdf
https://www.nccn.org/professionals/physician_gls/pdf/gist.pdf

