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One of the major challenges in system neurosciences consists in developing

techniques for estimating the cognitive information content in brain activity.

This has an enormous potential in different domains spanning from clinical

applications, cognitive enhancement to a better understanding of the neural

bases of cognition. In this context, the inclusion of machine learning

techniques to decode different aspects of human cognition and behavior

and its use to develop brain–computer interfaces for applications in

neuroprosthetics has supported a genuine revolution in the field. However,

while these approaches have been shown quite successful for the study of

the motor and sensory functions, success is still far from being reached

when it comes to covert cognitive functions such as attention, motivation

and decision making. While improvement in this field of BCIs is growing fast,

a new research focus has emerged from the development of strategies for

decoding neural activity. In this review, we aim at exploring how the advanced

in decoding of brain activity is becoming a major neuroscience tool moving

forward our understanding of brain functions, providing a robust theoretical

framework to test predictions on the relationship between brain activity and

cognition and behavior.

KEYWORDS

brain decoding, brain–computer interfaces, machine learning, electrophysiology,
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Introduction

One of the major challenges of system neurosciences is to understand how brain
functions subtends cognition and behavior. This knowledge is essential not only for
a better description of how the brain works, but also to develop strategies to boost
cognition and to ameliorate, or even restore, cognitive functions affected by neurological
diseases. During the last decades, a humongous technical, theoretical, and clinical effort
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has been invested in exploring and analyzing the activity of the
brain. One important advance in this context that is gaining a
huge momentum in the field is the inclusion of machine learning
to the analysis of brain activity (Abraham et al., 2014; Glaser
et al., 2020; Iturrate et al., 2020). Machine learning is a branch
of artificial intelligence which consists in the development of
algorithms that imitate the way humans learn from data. The
main motivation of the application of machine learning in
neuroscience is the development of brain–computer interface
technologies (BCI), which comes with the idea that computers
might be able to mimic some of the brain’s most basic cognitive
capacities (Johnson, 2000). In other words, computers might
reproduce the type of computations (or cognitive operations)
performed by the brain. This does not imply biomimetism. In
particular, it does not imply that machine learning imitates how
humans learn. For instance, these techniques might be able
to learn predicting a specific output (specific movement or a
physical attribute of an object) from given states of a system
(the activity of a region of the brain) (Glaser et al., 2020) or
identifying which activity patterns are more alike to a certain
behavioral counterpart (Richards et al., 2019). To achieve these
goals, machine learning refers to a large list of methods spanning
from supervised linear regression algorithms to other more
sophisticated and complex learning tools such as deep learning
neural networks.

A seminal application of machine learning in the field
of neuroscience consists in the classification of brain activity
patterns to predict observable outputs such as motor behavior
(e.g., arm or leg movements) and visual inputs (physical
attributes of stimulus) (Zafar et al., 2015; Branco et al., 2017;
Contini et al., 2017; Tam et al., 2019; Kashefi and Daliri, 2021;
Nazari et al., 2021) achieved in real-time, which has allowed the
development of brain–computer interface technologies (BCI).
Nowadays, such technologies have allowed, for instance, the
real-time reconstruction of an image seen by a subject from
the analysis of the concurrent visual responses recorded in the
subject’s occipital cortex (Shen et al., 2019; Huang et al., 2020)
or to control a robotized arm by using exclusively the neural
activity recorded over the motor cortex of the subject. This has
led to the development of the research field of neuroprosthetics,
with a myriad of potential applications to restore lost motor and
sensory brain functions (Hochberg et al., 2006, 2012; Adewole
et al., 2016; Bouton et al., 2016; Lebedev and Nicolelis, 2017).
However, and while most of the research in neuroprosthetics fall
into the use of signals associated to observable outputs such as
those commented above, a whole range of cognitive functions
remain unexploited in this context, such as attention, memory,
visual imagery and motivation, and predicting these covert
cognitive functions from brain activity remains challenging
(Astrand et al., 2014b).

In addition to the development of BCI interfaces to provide
tools for neuroprosthetics, a new perspective on machine
learning in neuroscience is emerging, which consist on its

use to genuinely model different aspects of brain processes
and, thus, increase our understanding of brain functions
(Hebart and Baker, 2018). In this context, relevant advances
have been achieved in understanding covert spatial attention
mechanisms, which corresponds to the ability of a subject to
select relevant sensory information while ignoring other inputs
or stimulations, independently of eye position. Visual covert
attention is known to rely on a well described brain network
involving the prefrontal cortex and specifically the frontal eye
fields (FEF), the intra-parietal sulcus (IPS) and striate and extra-
striate visual areas (Shulman et al., 1999; Corbetta and Shulman,
2002; Bisley, 2011; Bogadhi et al., 2018). Behavioral evidence has
suggested that attention rhythmically samples space (Buschman
and Miller, 2007; VanRullen et al., 2007; Fiebelkorn et al., 2013,
2018; Dugué et al., 2015, 2016; VanRullen, 2016, 2018; Gaillard
and Ben Hamed, 2020; Gaillard et al., 2020). The use of machine
learning tools to predict the position of the attentional spotlight
have revealed that the position of the spatial attention oscillates,
at the same frequency as the behavioral performance rhythmic
fluctuations. Therefore, machine learning tools have been useful
to describe the neural bases accounting for the behavioral
attentional sampling fluctuations (Gaillard et al., 2020).

The aim of this review is to explore how advanced
machine learning methods, beyond their applicability in
neuroprosthetics, can be used as a powerful tool to better
characterize brain functions, with a specific focus on covert
functions. First, we will introduce the concept of decoding
of brain activity and its application into multiple cognitive
brain functions, and we will discuss the different methods
of brain decoding. Second, we will provide an overview of
the specific methodology that machine learning offers to
neuroscientists to describe the relationship between brain
activity and cognitive brain functions. Last, we will show how
we can use this knowledge to develop accurate cognitive brain–
computer interface tools based on neurofeedback and learning.

Decoding brain information

Input cortical signals

The aim of machine learning in neuroscience is to extract
reliable information associated to a specific cognitive function
subtended by brain activity. These computational methods
are based on neural decoding, which consists in the ability
of an algorithm to predict or reconstruct the information
that has been encoded and represented in the activity of
a specific brain region or network. In this section we will
discuss the different methods for extracting brain activity
and the different advantages and disadvantages related to
decoding of information.

Broadly speaking, brain activity can be recorded either
using invasive or non-invasive methods (Figure 1). Invasive
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FIGURE 1

Schematic representation of machine learning procedures applied to brain decoding. Brain activity is recorded while participants are performing
a specific behavioral task. The recorded data is stored as a matrix and data is pre-processed to extract relevant information and increase the
signal to noise ratio. Extracted information is called features. Then the data is split into two sets, a training, and a testing set. The training set can
further be divided into a training set and a validation set, used to perform feature extraction and parameters optimizations. If the algorithm is
supervised, features and labels are fed to the decoder. In unsupervised learning, only the features are used to train the algorithm. The
performance of the decoder is then estimated by testing its accuracy thanks to the remaining testing set. Splitting the data into training and
testing sets can be done by splitting the data into N sets (N is a number to be defined) allowing to generalize the performance of the algorithm
by calculating an average decoding accuracy.

electrophysiological recordings allow to record single-unit
(SUA) or multi-unit activity (MUA), reflecting the activity of a
few neurons, and corresponding to discrete action potentials,
which can be seen as bits of neuronal information. They also
allow to record the activity of a larger neuronal population,
including their synaptic inputs and outputs, called local field
potentials (LFP). To note, the size of the corresponding
neuronal population reflected in the LFP depends on the
physical impedance of the implanted electrodes (the lower the
impedance, the larger the neuronal population that the LFP
represents). These signals are characterized both by a very
high temporal resolution and signal-to-noise ratio allowing
a single trial level decoding. Indeed, this signal is recorded
using electrodes that are purposefully implanted in cortical
regions that are specifically involved in processing the function
of interest. However, these methods also have a quite low
spatial resolution as they sample only a few cortical sites,
even when dense multi-unit recordings are performed, and
therefore they are restricted to specific brain sources. Mostly
used in non-human primate experiments, this type of invasive
approach has led to massive advances in the field of motor
neuroprosthetics. Previous studies have shown in non-human
primates the possibility to drive robotic arms (Velliste et al.,
2008) or virtual effectors (Golub et al., 2014) using a direct
control over the activity of their motor cortex. These approaches
have also been applied to covert cognitive functions, that is to

say, to the decoding of the content of the cognitive processes
rather than the observable associated behavior (Astrand et al.,
2014a). In this context, important advances have been obtained
in tracking spatial attention (irrespective of eye position) with
both a high spatial (in the order of 0.5◦ visual degree) (Astrand
et al., 2016; De Sousa et al., 2021) and a high temporal
resolution (in the order of 50 ms) (Gaillard et al., 2020). Invasive
experimental set ups have also been developed in human studies,
whether using electrocorticography (ECoG), or intracranial
electroencephalography (iEEG), but strictly restricted to specific
clinical demands. Some studies have included tetraplegic
patients applying decoding methods to their cortical activity in
order to restore their motor functions (Hochberg et al., 2012;
Bouton et al., 2016; Ajiboye et al., 2017). However, and in spite
of the refined and precise information that they provide, the
application of invasive methods of decoding brain activity in
humans remains rare as they involve an invasive surgery and
they come with strong ethical limitations (Nicolas-Alonso and
Gomez-Gil, 2012).

Fortunately, brain activity can also be recorded using
non-invasive techniques such as scalp electroencephalography
(EEG) which provides recording activity at a very high
temporal but low spatial resolution, and a very low signal-
to-noise ratio; magnetoencephalography (MEG), which has a
very good temporal and cortical spatial resolution, in spite
of a variable signal-to-noise ratio; and functional magnetic
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resonance imaging (fMRI), which allows to record whole-brain
activity with a high spatial resolution, but is limited temporally
by the time of acquisition of the different brain slices
and the huge delay (in the order of few seconds) of the
hemodynamic response (BOLD signal) relative to the actual
neuronal response, as well as by a relatively low signal-to-
noise ratio (Nicolas-Alonso and Gomez-Gil, 2012). Another
example of non-invasive methods of brain recording used for
decoding information is the use of functional-near infrared
spectroscopy (fNIRS), which is characterized by a higher spatial
resolution than the non-invasive electrophysiological recordings
(EEG/MEG) and much better temporal resolution than the
fMRI, as well as by a higher portability than the abovementioned
non-invasive methods (Wilcox and Biondi, 2015).

Despite these limitations, non-invasive methods of brain
activity recording have shown quite successful decoding
capacities. For instance, the lateralization of the locus of spatial
attention has been decoded in humans using event related
brain potentials (ERPs) extracted from scalp EEG recordings in
humans in response to visual presentations (Trachel et al., 2015;
Thiery et al., 2016). In fMRI, covert visuospatial attention can
be decoded with a high level of accuracy when four positions
are encoded (80% of accuracy) (Andersson et al., 2012) and
40% accuracy when eight positions are encoded (Loriette et al.,
2021). Machine learning has also been applied to train predictive
speech models using fNIRS, obtaining a 75% of accuracy in
classifying long speech segments from brain activity (Liu and
Ayaz, 2018).

Up-to-know, the current decoding of information capacities
from non-invasive brain signal shows lower accuracies when
compared with those obtained with invasive techniques.
However, this limitation is overcome by the fact that they are
readily accessible, easy to manipulate and “discomfort-free”
by the user. Therefore, an intense effort is invested in the
field to improve the decoding capacities using such methods
to develop more successful brain–machine interface and other
therapeutic applications.

Methodology of brain decoding

Machine learning methods rely on the development of
algorithms to map recorded brain activity onto encoded
information. These algorithms can be classified into supervised
or unsupervised learning algorithms. Supervised algorithms
learn the mapping between an input to an output by using
input-output pairs from a set of training examples. From such
learning process, an inferred function is provided that can be
used to map new examples onto the different possible outputs
(Figure 1). For instance, a function can be trained to identify
whether a movement will be performed using the left or the right
upper limb by providing multiple datasets of recorded brain
activity from the left and right motor cortex concomitant with

the movement of both arms. Once the algorithm has learned this
association, it will be able to predict which arm is being moved
by merely using novel brain recordings from both hemispheres.
In contrast, unsupervised learning involves feeding a model with
brain activity without giving any explicit information about
the corresponding output, and therefore letting the algorithm
estimate the number of possible outputs from a classification of
the activity of the data based on its multidimensional statistical
structure. New observations are then associated with these
statistically defined classes. There exists a very large range of
supervised and unsupervised classification algorithms which
we will not discuss here as this would require an independent
review in itself.

Some considerations must be considered when selecting
which learning algorithm is more suitable to use. Unsupervised
learning algorithms are quite sensitive to the size of the data
(dimensionality and number of trials). It is well known that
complex models such as deep neural network (networks with
multiple layers) based learning algorithms require large data
sets to obtain a good model estimation. In the absence of
large enough data sets, these models risk overfitting, which
consists in the over-learning of the training data structure,
producing a low generalization of the prediction capacities when
novel data sets are used. The risk of overfitting is precisely
the reason why deep neural networks are often restricted to
overt visual or motor data which can be collected in large
amounts in a short time. Other lower complexity models such
as support vector machine (SVM), linear discriminant analysis
(LDA) or regression trees are applied to the decoding of
covert cognitive functions, as these require more demanding
and longer behavioral tasks to collect training data (Lemm
et al., 2011; Abraham et al., 2014; Taghizadeh-Sarabi et al.,
2015).

When considering supervised learning algorithms, specific
good practices should be followed regarding training and testing
procedures. The aim of these algorithms is to estimate the
weights of a more or less complex function which minimizes
the prediction error of the training set (i.e., a model which
minimizes the error between the actual outputs of the training
set and the outputs predicted by the model from the brain
activity associated with the actual outputs of the training set).
However, the prediction capabilities of the model (the decoding
accuracy) are generally measured by using a different set of novel
inputs (testing set) and evaluating the prediction error in these
new examples. The standard methodology used to achieve a
reliable decoding accuracy is the cross-validation, which consist
in dividing or splitting the data set iteratively in two training
and testing subsets. The decoding accuracy in these dataset will
be defined as the average of the accuracies obtained in each
iteration from different training and testing sets (Glaser et al.,
2020) (Figure 1).

Last, most of the models are characterized by tuning
parameters that can be changed to refine the model. As is
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the case for training, these parameters cannot be optimized
on the whole data set as this will inflate the accuracy scores.
Most often, the dataset is divided into three sets, one set for
parameter optimization (called the validation set), one set for
training data on the optimized model and one set for testing and
estimating an unbiased decoding accuracy. As described from
training/testing, cross-validation approaches can also be applied
to model parameter optimization and to select the main features
of the data prior to model training (Glaser et al., 2020).

Exploring cognitive brain function
using decoding methods

Decoding accuracy as a window into
cognitive brain processes

Decoding information related with covert cognitive
functions such as attention, intention, and decisions are still in
its early days. Indeed, decoding covert information often leads
to lower decoding accuracies as compared to the decoding of
sensory or motor functions, despite consistent effort invested
to improve this decoding. This stems from multiple reasons.
The first reason pertains to the fact that cognitive information
(say spatial attention) is implemented in associative cortices,
mixed with multiple other sources of cognitive information
(e.g., working memory, temporal expectation, planning etc.).
Such multiplexing of cognitive information has been theorized
as a strategy to enhance the coding dimensionality of primate
brains (Rigotti et al., 2013). In the absence of an appropriate
pre-processing of the neuronal data, this results in a low
signal-to-noise (SNR) when trying to extract a given dimension
in isolation. In other words, signal corresponding to the specific
cognitive process of interest might be too low compared to
other sources of information contained in that same signal.
Such effect has been well described in specific brain regions,
such as the prefrontal cortex, in which different sources
of information are simultaneously encoded, a property of
neuronal populations known as mixed selectivity (Rigotti et al.,
2013). With appropriate pre-processing, such as dimensionality
reduction or de-mixed dimensionality reduction approaches
(Kobak et al., 2016), SNR is enhanced, as it becomes possible
to assign overall signal variance to the process of interest as
well as to the cognitive processes of non-interest. Applying
such dimensionality reduction approaches to MUA recordings
form the FEF allows to better decode the spatial orientation of
attention irrespective of whether the subjects are engaged in the
task of not, thus dissociating between attention orientation and
task engagement (Amengual and Ben Hamed, 2021; Amengual
et al., 2022).

The second reason why decoding cognitive information
does not reach high accuracies is due to the fact that, in

contrast with motor or sensory responses which can be precisely
timed relative to movement initiation or sensory stimulation
onset, cognitive information is generated endogenously by
the subjects, such that onset time can only be approximated
from external events. For example, when producing an arm
movement in response to a visual cue, subjects will produce a
range of motor response from fast to slow. When instructed
to orient their spatial attention following a visual cue, subjects
will also do so more or less rapidly. However, there is no
objective way of quantifying this precisely. Likewise, while an
awkwardly organized arm movement can directly be observed,
a sluggish attentional orientation can only be inferred from
success in the ongoing task. This thus results in uncontrolled
for sources of noise. A good example to illustrate this is the
strategy that our research group has implemented to decode
spatial attention orienting. Astrand et al. (2016) decode the
(x−,y−) position of attention by training an algorithm on
correct trials only, under the very strong assumption that on
such trials, attention is precisely oriented at the cued location.
The decoding output on the test trials makes it clear that
this assumption is false not only on error trials (where one
expects attention to be miss allocated) but also on correct
trials, such that attention can be either close or far to the cued
location, although on average, attention is positioned on the
cued location (Astrand et al., 2016, 2020). These findings have
been confirmed in humans using fMRI recordings (Loriette
et al., 2021). Indeed, when predicting the spatial orienting of
attention from BOLD activity in the striate and extrastriate
cortex, while maximum decoding accuracy is achieved for the
spatial location that the subjects are requested to attend to, on a
significant proportion of the trials, attention is actually localized
around the instructed location, thus indicating that attention is
not always anchored at the cued location. Importantly, decoding
output still strongly accounts for behavioral performance, such
that the closer the decoded attention to the cued location at
time of target presentation, the lower the probability that the
monkeys produce a miss (so the higher the probability of a
correct detection, Figures 2A,B) (Astrand et al., 2016, 2020).
Based on recent advances in machine learning (Lemm et al.,
2011; Abraham et al., 2014; Savage, 2019; Glaser et al., 2020;
Iturrate et al., 2020), we thus reasoned that not all correct trials
shared the same degree of attention-related information and we
trained a second decoder selecting only those correct trials that
predicted attention closest to the cued location from the initial
decoding step (De Sousa et al., 2021). This remarkably enhanced
the degree of correlation between the distance between decoded
attention and the cued location on the one hand and success
of the subjects in the task on the other hand. This was true
whether attention was decoded from MUAs, or from LFPs
(Esghaei and Daliri, 2014; Seif and Daliri, 2015; De Sousa et al.,
2021), suggesting that such achievements could also be expected
from ECoG, EEG or MEG signals. Indeed, pioneer studies have
obtained remarkable accuracy thresholds in decoding attention
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FIGURE 2

(A) Schematic representation of theoretical relationship between
decoded information and behavioral proxy of decoded internal
brain state. Left: Decoded information is highly correlated with
the underlying cognitive brain state, and the behavioral proxy of
this decoded brain information (hit, misses, reaction time) is
strongly correlated with the decoded information. Right: If the
decoder is not a good estimator of covert brain information,
there is no correlation between decoded information and the
behavioral proxy to the decoded cognitive function. Please note
that this type of approach is more robust when the output of the
decoder is continuous and non-categorial. (B) Decoded spatial
locus of attention correlates with behavioral performance.
Decoding was performed using MUA activity recorded from two
rhesus monkeys, while the animals played a cued target
detection task. On each trial, a cue was presented to the
monkeys who were trained to keep their gaze at the center of
the screen while orienting their covert attention to the cued
location (one amongst four possible locations), to detect. The
trained algorithm aimed at decoding the quadrant to which
attention was oriented (left) or the actual (x-,y-) location of the
attentional spotlight (right). Left: Decoding accuracy as a
function of behavioral performance. Decoding accuracy is
higher for correct detection trials than for miss trials, in which
the monkeys did not properly identify the target, indicating that
the decoding algorithm is able to capture internal attentional
orientation information. Right: Proportion of misses as function
of distance between the target and the decoded position of
attention in X-Y- coordinates. Farther is the decoded position
from the target at time of presentation, higher is the probability
of missing the target (adapted from Astrand et al., 2016).
(C) Temporal generalization of two algorithms trained with MUA
activity from two different brain regions known to have a role in
covert attention: lateral intraparietal area LIP (left) and frontal
eye field FEF (right). The algorithm is trained on successive times
intervals and for each training interval, tested on all available

(Continued)

FIGURE 2 (Continued)

time intervals (cross-temporal decoding). This highlights two
distinct neuronal population coding schemas: a dynamic coding
in LIP whereby the neuronal code for attention orientation at a
given time interval does not generalize to other time intervals,
and a static coding in FEF, whereby the code identified at a given
time generalizes at all times following cue presentation (Astrand
et al., 2015). ***p < 0.001.

using non-invasive recordings such as EEG (Treder et al.,
2011; O’Sullivan et al., 2015) and MEG (Battistoni et al., 2018;
Desantis et al., 2020). The above studies rely on attentional tasks
such that decoding attention accuracy can be confronted with
the resultant behavioral attentional bias. Quite interestingly,
decoding of attention can be achieved even when attention does
not bias behavior, i.e., when subjects are engaged in cognitive
tasks that do not explicitly monitor the attentional function
(Westendorff et al., 2016), suggesting that decoding attention
can be performed outside of a controlled laboratory setup.

A third reason why decoding of cognitive variables might
be suboptimal is our proper understanding of how this
function interacts with other cognitive functions or a proper
understanding of its spatial and temporal properties. For
example, it has been very intriguing to us to observe that
error trials could still be produced even when spatial attention
was decoded close to the cued location (Astrand et al., 2016,
2020; De Sousa et al., 2021). De-mixed dimensionality reduction
approaches (Kobak et al., 2016), allowed us to demonstrate that
spatial attention orientation organizes in the prefrontal cortex
distinctly from engagement in the task, such that target miss-
detections could arise from both an inappropriate allocation of
attention or an inappropriate engagement in the task (Amengual
and Ben Hamed, 2021; Amengual et al., 2022). This biologically-
inferred decoding schema further enhances our accuracy at
tracking the actual spatial spotlight of attention and better
account for its contribution to overt behavior.

Another example is the recent understanding we gained
on the dynamical structure of decoded spatial attention
exploration and exploitation (Gaillard and Ben Hamed, 2020;
Gaillard et al., 2020), corroborating a large field of behavioral
(VanRullen et al., 2007; Landau and Fries, 2012; Fiebelkorn
et al., 2013, 2018; Dugué et al., 2015, 2016; VanRullen, 2016,
2018) and electrophysiological (Fiebelkorn et al., 2018) body
of research. Specifically, we show that rather than being stable
at a given location in space, the attentional spotlight explores
space rhythmically, at 8 Hz, alternating between epochs of
exploration away from the task relevant locations, and epochs
of exploitation, at task relevant locations. Considering this
dynamic nature of prefrontal attentional information results in
variations by up to 10% of decoding accuracy and enhances the
predictive power of whether the subjects will correctly respond
to a target, miss the target or else miss-respond to a distractor.
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What cross-temporal decoding tells us
about the brain

Cognitive processes in the brain are non-stationary and they
evolve in time. In this context, neural decoding has shown
to be a powerful tool to describe the temporal dynamics of
coding information, describing the evolution of information
decoding performance in time. For example, Bae (2020) studied
the different time course differences between face identification
(recognition) and face expression (emotion) processes using
EEG recordings. In this study, participants performed a working
memory task in which they were asked to remember a face
image presented in the screen and, after a short delay, they were
asked to report either the identity or the expression of the face.
Importantly, participants had no a priori knowledge about the
information they would be asked to report, thus, they had to
extract and maintain both types of information during each
trial using whole scalp raw data. In order to decode these two
types of information, Bae and Luck (2018) used a combination
of support vector machine and error-correcting output coded
(Dietterich and Bakiri, 1994) to classify either facial expression
of facial identification by using the scalp distribution of the
phase-locked ERP voltage in the alpha-band activity (8–12 Hz).
The decoding performance of both types of information was
tracked in time, showing that these types of information
exhibited a dissociated temporal dynamic. More specifically,
decoding of the identification of the face was more prominent
only during the time interval corresponding to the perception of
the image, while the decoding of the face expression was more
prominent during working memory maintenance, thus, along
the whole trial duration. This result suggests that the neural
representation of face identity and face expressions were, at least
partially, independent. In addition, Bae and Luck (2018) uses
the decoding performance as a tool to understand the temporal
dynamics of encoded information not only within the same
trial, but also between trials. Interestingly, they succeeded in
decoding the identification of the face in the current trial using
the information encoded from the previous trial. This did not
apply to the decoding of face expression information. Therefore,
this result suggested that neural decoding might be a useful tool
to study how information encoded in the past can be reactivated
regardless of its relevance for the current goal of the task.

Other studies have used neural decoding to study the
dynamics of the hippocampal replay. Davidson et al. (2009)
recorded multiple single unit activity in the hippocampal area
CA1 in rodents while those were exploring a track. Using a
probabilistic neural decoding strategy to estimate the animal’s
position on the track from the spike trains, they evaluated
whether recorded cells replayed spatial memory sequences
(Brown et al., 1998; Zhang et al., 1998). Therefore, they
conceived a neural decoding approach specific for replay
detection. Interestingly, when rodents stopped exploring the
environment, they showed signatures of time-compressed

forward and reverse hippocampal replay of long behavioral
sequences that, in turn, were associated with trains of ripple
events. In addition, they found that replay was neither limited
to locations associated with the reward, nor to those locations
tied to the animal’s current location. Other studies have shown
evidence of replay using non-invasive brain recordings in
humans. Kurth-Nelson et al. (2016) recorded MEG activity from
a cohort of human subjects while they were performing a non-
spatial reasoning task. The aim of this study consisted in finding
sequences of neural representations associated with learning and
online planning, similarly to those found by replay, but in a
non-spatial context. Indeed, the task required selecting paths
through a set of six visual objects. They trained pattern classifiers
on the MEG activity evoked by the direct presentation of the
objects alone. Posteriorly, they tested these classifiers using the
activity obtained during periods when no object was presented.
They show that brain activity encodes the representation of at
least four objects that were presented sequentially, following
backward trajectories along the paths in the task. This was one
of the first studies showing clear signatures of replay using
non-invasive methods of brain recordings.

Decoding can also be used to investigate brain networks
dynamics and coding regime. In this context, several studies
have used cross-temporal decoding (King and Dehaene, 2014;
Astrand et al., 2015; Amengual and Ben Hamed, 2021), which
consists in training models at a given time in the trial and
testing these models all throughout the trial time. This method
allows discriminating different computational properties of the
neural population, between stable coding regime (whereby
the code identified at a given time generalizes at all times,
indicating a stable coding schema by the underlying neuronal
population, Figure 2C), and dynamic computational/cognitive
processes (whereby the neuronal code identified at a given
time does not generalize at other times, indicating a recurrent
dynamic coding schema by the underlying neuronal population;
Figure 2C). Astrand et al. (2015) studied the different
dynamics of population coding during a spatial attention task
using parietal and prefrontal electrophysiology recordings in
macaques. Cross-temporal decoding matrices were used to
determine whether tow brain regions, the frontal eye field (FEF)
and the lateral intraparietal area (LIP) were presenting stable
or dynamic coding. They show that the spatial attention code
identified in the FEF at any given time can generalize to other
times, thus indicating a stable coding schema. Indeed, this
coding regime characterizes regions with activation dynamics
mimicking those observed in artificial recurrent neural networks
(Buonomano and Maass, 2009). Conversely, population activity
in LIP showed a dynamic coding regime when decoding spatial
attention, variable from one time to the next within the same
trial. Therefore, these results show that neural decoding is a
very suitable tool to study how different neural populations
encode the same type of information by using different coding
regimes.
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In this line, other studies have addressed the question
on how decision making might exploit cognitive flexibility to
adapt behavior. Using time-resolved population-level neural
pattern analysis from intracranial recordings from the prefrontal
cortex in macaques, Stokes et al. (2013) investigated how
context is encoded and maintained in the neural population
in order to be exploited behaviorally. Specifically, they show
that an instruction cue indicating the context of the trial in the
task triggers a dynamic coding at trial onset, while the same
information during the delay period prior to the decision is
coded by a stable low energy state (Stokes et al., 2013). This
method allowed the extraction of hidden patterns of activity
in the data characterized by high and low energy states that
tuned the prefrontal cortex according with the task demands.
This observation extends to human brain function. This tuning
mechanisms by hidden population states has been also explored
in humans using non-invasive electrophysiology. In a series of
studies, Wolff et al. (2015, 2017) ask participants to perform
a working memory task while they record concomitant brain
activity using EEG and MEG. In some of the trials, they
presented a non-informative image (called impulse) during
the period of working memory maintenance. They trained a
decoder to predict the memorized item using activity previous
to the impulse presentation (pure memory activity), or on the
activity elicited by the task-irrelevant probe The authors show
that the impulse generates a dynamic coding of the memory
item which does not generalize to the other testing times. Taken
together, these studies support the theory of hidden coding low
energy states, whereby working memory information is encoded
dynamically and reactivated by task-relevant but also by task
irrelevant items (Wolff et al., 2015, 2017).

What confusion matrices tell us about
the brain

Until know, we have discussed how decoding performance
and their variation in time provides unique information about
the cognitive processes underlying behavior. The question
we will tackle in this section is whether we can extract
genuine knowledge about cognition by studying how decoding
algorithms fail in classifying information on which they have
been trained. Indeed, studying how a decoder fails may also be
very informative about cognitive brain processes. In this context,
confusion matrixes are used to quantify the miss-classifications
produced by a given decoder (Kriegeskorte and Kreiman,
2011). Confusion matrices allow a fine-grained analysis of the
performance of the decoding algorithms in terms of hit rates
and errors. Specifically, it permits to visualize the number of
correct and incorrect prediction for each label (Figure 3). In a
confusion matrix, each row represents one of the labels to be
predicted, and each column represents the actual output of the
classifier. In other words, for any given label presented along the

FIGURE 3

Confusion matrices. The instances of correct classification (true
positives) and misclassifications (false negatives or false
positives) are represented in a matrix with each row representing
the actual true labels to be classified and each column
representing the predicted label by the outcome of the classifier.
Incorrect classification can be defined against the actual true
label as a false negative or against the predicted label as a false
positive.

rows, the confusion matrix presents the count of classification
outputs assigned to that specific label but also to each of the
other labels. A label correctly classified is considered as a true
positive classification. When a label is not correctly classified,
this is considered as a false negative for the targeted label, and as
a false negative for the predicted label. For example, the study of
confusion matrices when decoding covert attention using fMRI
shows clear attentional biases toward the lower visual field or
along the horizontal and vertical meridians such that decoding
accuracy is up to 10% higher at these locations relative to other
locations in the visual field, thus confirming attentional biased
observed behaviorally (Zenon et al., 2008; Zénon et al., 2009;
Loriette et al., 2021). In another fMRI study, Kim et al. (2019)
studied how the brain visually encodes tactile intensities. To
do this, they used an associative learning method to decode
the representation of tactile intensities (roughness) evoked
either by tactile exploration only, or by visual observation
of the tactile exploration. In this work, they show that the
behavioral data obtained while evaluating roughness during
tactile exploration or visuo-tactile exploration correlates with
the confusion matrices obtained when they decoded the
roughness based on fMRI brain activity. In particular, this
correlation was specific of the supramarginal gyrus, suggesting
its role in tactile discrimination (Kim et al., 2019). Confusion
matrices have also provided insightful information for the
development of categorical models of emotions. Saarimäki
et al. (2016) acquired fMRI data while participants participated
in a task consisting in the identification of different fine
emotions such as “joyful,” “amazed,” or “nervous,” embedded
into basic emotion groups like “happiness,” “surprise,” or” fear.”
Using multivariate pattern analysis (MVPA), they classified
emotions from the activation in different brain areas including
medial and inferior lateral prefrontal cortices, frontal pole,
precentral and postcentral gyri, precuneus and posterior
cingulate cortex. Importantly, participants behaviorally tended
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to misclassify emotions which are in the same group and
these misclassifications were similar to those obtained by
decoding emotions from fMRI signal, suggesting a link between
the activity in these regions and the emotional perception
(Saarimäki et al., 2016). Electrophysiological studies have been
benefited as well from the use of confusion matrices to
evaluate the decoding capacities of the brain signal. Chen et al.
(2019) developed a LFP-based close-loop deep brain stimulation
strategy in Parkinson patients implanted with electrodes in the
subthalamic nucleus. The aim of this method was to adapt the
stimulation interval based on the sleep stage (Amara et al.,
2016). Therefore, machine learning methods were applied to
decode in real time the sleep stage of the patient from the LFP
recorded from the DBS leads. Based on different combinations
of signal features extracted within the time domain, frequency
domain and variance of the signal, they succeeded in decode
the sleep stage from the LFP in this region using a SVM-
based algorithm. However, confusion matrix revealed that not
all sleep stages were decoded with the same accuracy: while
the decoder was able to accurately classify wakefulness against
sleep and N2 phase against REM, phase N1 and REM showed
a high degree of confusion, although still above chance level.
Therefore, this study showed that subthalamic nucleus LFP-
based activity encode information about the brain state activity
(but only some of these states). Other studies have addressed
the question of the regional- and modality-specificity of the
decoding capacities of the cortex. Enander et al. (2019) delivered
a set of electrical spatiotemporal tactile afferent activation
patterns to the skin of the contralateral second digit of the
forepaw in anesthetized rats. Concomitantly to this stimulation,
there performed in vivo single neuron recordings in the right
hemisphere, more specifically in the primary somatosensory
cortex, but also in other cortical locations within and out
of the somatosensory cortex. They used the recorded brain
activity of these neurons to decode the different stimulation
patterns delivered by the electrical stimulation. Interestingly,
they found that neurons from the primary sensorimotor cortex
showed similar decoding performance compared with neurons
from out of this area. Indeed, confusion matrix revealed that
neurons from regions of the visual cortex showed less miss-
classification rates than those in the sensorimotor cortex. This
study provided direct evidence on how the tactile information
could be propagated globally across the neocortex, presumably
via cortico-cortical but also cortico-thalamo-cortical pathways
(Lübke and Feldmeyer, 2007; Frostig et al., 2008).

Exploring shared functional substrates
amongst different cognitive tasks

Another possible application of decoding methods is to
evaluate the decoding performance of a decoder trained
to decode a specific type of information (e.g., position) of

a cognitive process (e.g., memory) and testing this neural
decoding on a different information (e.g., color) or cognitive
modality (e.g., attention). By using this method, it is possible
to identify informational communalities between both sources
of information or between two cognitive processes. We selected
two different fMRI studies that exemplify this point (Albers
et al., 2013; Dijkstra et al., 2019). In these studies, participants
were presented either with a visual stimulus, or asked to
mentally imagine these stimuli. Interestingly, both studies
succeeded in decoding each of the two cognitive processes
(mental imagery and visual perception) by using a decoder
trained on either mental imagery brain activities or visual
perception related brain activities, indicating that mental
imagery coding and visual perception share similar cortical
representation.

Exploring model parameters to model
the brain

Until now, we have shown that neural decoding accuracy
provides information about a broad series of cognitive processes
and their neural underpinnings. However, other elements
associated with the neural decoding algorithms, such as the
parameters obtained from the decoding model (e.g., the
weights that are fit in linear regression), can be exploited to
study cognitive brain functions. One of these parameters is
the number of extracted features. This number is obtained
by a process consisting in extracting a small number of
features that maximizes the information about the statistical
structure of the data. Numerous methods are available in
order to perform feature selection, ranging from statistical test
as ANOVA, to principal component analysis (PCA), mutual
information maximization, searchlight and others (Pedregosa
et al., 2011; Abraham et al., 2014; Allefeld and Haynes,
2014; Cunningham and Yu, 2014; Padmanaban et al., 2018).
For example, in fMRI, an ANOVA-based feature selection
precisely reveals the cortical topography for covert visual
attention to guide single trial fMRI-based spatial decoding
of attention (Loriette et al., 2021). Another type of feature
selection, called searchlight, aims at searching for the most
informative features and select them to train the decoder,
by looking at how each feature separately contributes to
improving the classification accuracy. Stokes et al. (2009)
investigated mental imagery in an fMRI study with human
participants. Authors compared the classification accuracy in
different fMRI regions while participants imagined different
letters. This method allowed to identify high informative
areas in mental imagery [including inferior occipital gyrus
(IOG), middle occipital gyrus (MOG), fusiform gyrus (FG),
middle temporal gyrus (MTG) and temporal gyrus/Heschl’s
gyrus (STG/HG)]. When comparing these areas to the ones
obtained from a searchlight procedure on brain activity elicited
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by visual stimuli, the authors further identify cortical regions
that are involved in mental imagery and not in pure visual
perception (STG/HG) (Stokes et al., 2009). Another study
compared searchlight method to 3D classical fMRI analysis,
showing that the searchlight method is more spatially specific
compared to classical methods (Chen et al., 2011). This result
indicates that this method outperforms classical statistical tests
and reveal very precise local functional selectivity patterns
in brain areas that were initially thought as functionally
homogenous. Other studies have succeeded in using EEG
recordings to decode semantic information. One of the relevant
questions here is what kind of signal (or pattern) might
provide more exploitable semantic information to be used for
decoding. For instance, Jafakesh et al. (2016) used different
features of the recorded EEG signal to decode the semantic
category of different visual stimuli. Specifically, they used several
within electrode cross-frequency coupling (CFC) measures
such as amplitude-amplitude coupling (AAC), phase-amplitude
coupling (PAC), and phase-phase coupling (PPC) within each
electrode and used them as input to SVM classifier. They
found a higher decoding performance using PPC than using
the other two measures, specifically in the alpha and gamma
frequency bands. In addition, they tested whether using CFC-
based measures to classify semantic information outperformed
the decoding with respect of using wavelet transform of
the EEG signal. In this context, they obtained a higher
decoding performance using PAC relative to using wavelet
coefficient. Therefore, CFC measures provide information
regarding semantics that is not available in the time-frequency
components.

Although there is not a clear consensus on their
interpretation, the weights of the decoder are often used
to analyze informative cortical voxels, under some conditions.
Generally speaking, weights represent the accountability of
the information content of each feature which is fed into
the decoding algorithm (Kriegeskorte and Bandettini, 2007;
Haufe et al., 2014; Kia et al., 2017; Hebart and Baker, 2018).
As an example, weights extracted from Linear Discriminant
Analysis (LDA) model in EEG while performing gesture
classification at the single trial level reveals the frequency
and the channels which are the most informative during
walk preparation (Velu and de Sa, 2013). In contrast,
weights extracted using a linear regression analysis on
intra-cortical neuronal data to decode spatial attention from
the single trial activity of a prefrontal or a parietal neuronal
population can only be interpreted when normalized by the
average response of each neuron (Astrand et al., 2015). As a
result, high weights associated with weak average neuronal
responses might turn out less informative than smaller
weights associated with high average neuronal responses.
In other types of decoders yet, weights cannot be readily
interpreted (Haufe et al., 2014; Kriegeskorte and Douglas,
2019).

Interfering with brain activity with
neurofeedback or learning

Brain–machine interfaces

Although the scope of this review is to present the neural
decoding as a tool not only used to develop strategies for
neuroprosthetics but also to understand cognitive function, we
found it necessary to discuss some examples on how decoding
of cognitive information has been used to develop brain–
computer interfaces (BCI) in turn producing knowledge on
brain organization and plasticity. BCIs are direct or indirect
communication interfaces between the brain and a computer.
These methods rely on closed-loop systems, which refers to
the fact of providing to the subject a direct (e.g., MUA or
BOLD activation level in a specific cortical region) or an
indirect (e.g., decoded information across a set of MUA, EEG
or BOLD signals, or signal coherence across multiple EEG
channels) feedback extracted from brain activity (Chaudhary
et al., 2016). One example of BCIs is the neuroprosthetic
BCIs, aiming at replacing a deficient brain function. For
example, motor neuroprosthetics have been developed to allow
tetraplegic patients to control a robotic arm thanks to the
real-time decoding of ECoG recordings (Hochberg et al.,
2012; Bensmaia and Miller, 2014). Sensory neuroprostheses
have also been developed to restore tactile sensation, for
example injecting complex microstimulation patterns into the
somatosensory cortex of macaque monkeys to generate artificial
sensations guided by touch sensors implemented in a robot arm
(O’Doherty et al., 2011) (Figure 4).

These decoding approaches allow not only to explore brain
functions but also to train them, by providing a feedback to
the participant or the animal about their brain activity (raw or
processed/decoded) for them to act on it to improve behavior.
This closed-loop procedure is called neurofeedback (Sitaram
et al., 2017). One example of these neurofeedback tools is
the P300 speller, which is an EEG-based BCI. This method
consists in spelling a word that the participant has in mind by
attending to a target letter presented in the midst of other letters
(all alphabet letters being covered sequentially) by flashing
a sequence of letters alternating between rows and columns.
When the letter selected by the participant is flashed, the evoked
response in the brain is stronger and the decoder can exploit this
difference to identify the selected letter amongst the presented
letters (Guy et al., 2018). Performing with the P300 speller
trains subjects to flexibly use their attentional resources and
this results in an enhancement of their attentional performance
beyond this specific task (Arvaneh et al., 2019). Neurofeedback
has also been implemented in fMRI protocols on categorical
attention in order to increase behavior as well as attention-
related brain information as assessed by the decoder’s accuracy
(deBettencourt et al., 2015).
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FIGURE 4

Schematic representation of a closed-loop brain–machine
interface. The brain activity is recorded while the subject is
performing a behavioral task. Here, the participant performs a
motor-task and tries to grab a coffee cup with a robotic arm,
while her/his brain activity is being recorded using ECoG
sensors. The recorded data is pre-processed and fed into a
machine learning algorithm previously trained to interpret the
participant’s motor intentions (Hochberg et al., 2012). The
decoded movement is translated into a robotic arm movement.
The actual movement of the robotic arm serves as a feedback
for the participant on her/his brain activity, allowing her/him to
learn control the device.

Importantly, neurofeedback has additionally been used
in order to investigate the effects of interfering with brain
functions. For example, an fMRI study shows that it is possible
to selectively increase or decrease a participant’s confidence
in her/his performance during a behavioral task without
interfering in her/his actual success rate in the task using
neurofeedback specifically based on the decoded participant’s
confidence (Cortese et al., 2016). In another fMRI study,
participants were able to learn to associate red or green
color with different grating orientations. Specifically, after
training a decoder to discriminate the color the participants
were presented with (green or red), participants were trained
to modulate their brain activity while a grating with a
specific orientation was displayed. If the grating was vertical,
participants had to modulate their brain activity in order to
increase the likelihood of decoding red color in the visual
cortex. If the grating was horizontal, participants were asked
to increase the likelihood of decoding “green.” As a result,
after neurofeedback training, when presented with vertical
or horizontal achromatic gratings, the participants tended to
perceive them in the color they were trained to modulate their
activity in association with the grating orientation. Surprisingly,
these effects persisted up to 5 months (Amano et al., 2016).

There is an ever-growing number of neurofeedback studies
and tools aiming at both training cognitive functions and
understanding brain functions. In particular, this approach has
been shown to potentiate brain plasticity, triggering not only
behavioral long term effects, but also plastic changes in brain

structure and anatomy, such as an increase in gray matter
volume and white matter myelinization (Ghaziri et al., 2013;
Marins et al., 2019; Loriette and Ziane, 2021).

An important field of application of brain decoding and
neurofeedback relies on using brain–machine interfaces (BCIs)
in order to restore an acute or chronic brain deficits for
neurorehabilitation (Chaudhary et al., 2016; Lebedev and
Nicolelis, 2017; Bockbrader et al., 2018). Impressive advances
have been achieved in BCI-driven motor rehabilitation after
stroke (Wang et al., 2018) or spinal cord injury (Pohlmeyer
et al., 2009; Bensmaia and Miller, 2014; Ajiboye et al., 2017).
As an example, Pohlmeyer et al. (2009) used a cortical
controlled electrical stimulation of the forelimb of spinal
cord injured macaques and managed to restore voluntary
movement. Another study using EEG BCI coupled with
electrical stimulation restored hand movements in patients after
a stroke injury, this restoration persisting 6–12 months after the
BCI training (Biasiucci et al., 2018).

Manifold coding and learning, a new
approach to understand cognition

Recording brain activity with the most up-to-date recording
methods result in very high dimensional data sets. This can
be a limiting factor in decoding speed. Techniques such as
principal component analysis (PCA) (Cunningham and Yu,
2014), independent component analysis (ICA) (Brown et al.,
2001) and their derivatives have been developed to reduce
the dimension of the dataset. Importantly, such dimensionality
reduction methods, in addition to compressing dataset size
provide a very unique insight in how the neural code is encoded
in the brain. These low-dimensional spaces which allow to
analyze patterns of activity and interaction between neurons
are called neural manifold (Elsayed and Cunningham, 2017;
Degenhart et al., 2020). These manifolds can be seen as low
dimensional spaces that reflect neural modes (Figure 5A), that
is to say, patterns of activity corresponding to cognitive actions
which can be embedded into a surface. The response activity
from one cognitive task (for example moving the arm) can be
tuned differently depending on little variations of this task but
the activity remains embedded in the same surface, while a
second action (for example walking around) will be embedded
in a different manifold. As an example, moving an arm in
a certain direction can be seen as a trajectory in a three-
dimensional surface. Each movement direction is embedded in
this surface but can be separated visually and mathematically
one from the other (Gallego et al., 2017, 2018) (Figure 5B).
While dramatically enhancing our understanding of how
the brain copes with the dimensionality of the information,
decisions and cognitive functions it has to implement (Rigotti
et al., 2013), it also allows to enhance brain computer interfaces
techniques, accelerating computational speed as well as allowing
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FIGURE 5

(A) Neuronal activity, here MUA recordings, taken as an example,
is converted into a lower dimensional space called manifold. In
this low dimensional surface, the neural code can be
represented as data points or trajectories when the pattern of
activity is analyzed over successive time epochs. (B) Example of
a motor task. Here, neuronal activity is recorded while subjects
move a joystick in one of four possible directions. On individual
trials, each movement can be represented by a different pattern
of activity or trajectory but all trajectories are embedded in the
same neuronal low dimensional manifold neural space [based
on Gallego et al. (2017, 2018)]. (C) Example of cognitive training
using manifold perturbation. Participants or animals are given a
feedback (for example, cursor velocity) and have to learn to
control it by using the same neuronal pattern as recorded during
previous tasks (left) (for example, during a motor task). It is also
possible to train subjects by using a different pattern embed in
the original manifold (center) or in a new manifold surface
(right). The last option leads to a slower learning and an
increased difficulty of the task (based on Sadtler et al., 2014;
Golub et al., 2018; Oby et al., 2019).

to cope with neural instability by realigning recorded activity
to its original manifold before performing decoding, thus
maintaining constant decoding accuracy in time (Degenhart
et al., 2020; Gallego et al., 2020).

The theory of neural patterns embedded into manifolds
has been specifically applied in order to investigate learning,
which by definition impacts neuronal computation as learning
progresses. For example, researchers have used brain computer
interfaces in order to train monkeys to control the velocity
of a cursor by using the neuronal activity generated by their
motor cortex. They first decoded arm velocity from the neuronal
activity of the arm region of the primary motor cortex. Then,
they trained the monkey to control the velocity of the cursor,
not based on the pre-existing code assessed in the first step,

but either using a new activity pattern embedded into the
original manifold, or using a new activity pattern positioned
outside of the original manifold (Figure 5C). They found that
monkeys learn faster if the new pattern of activity they have to
learn is embedded in the original manifold (Sadtler et al., 2014;
Golub et al., 2018). Moreover, researchers found that forcing the
monkey to learn a new neural code out of the original manifold
is not only slower, but leads to the emergence of a new neural
mode, in other words, a new manifold in which the neural code
will be embedded (Oby et al., 2019). Overall, these studies result
in a new understanding of how learning is implemented in the
brain and how it can best be potentiated. This substantiates why
learning complex and new tasks is slower than learning familiar
tasks, as this requires creating new patterns of activity that do
not interfere with prior learning (Figure 5C).

Deep learning: A window onto the
complexity of brain functions

The vast majority of decoding algorithms used in the
examples cited in this review are based on learning certain
rules of inference that are used to estimate linear or non-
linear prediction functions to map input activity onto a
set of outputs. Importantly, these algorithms do not learn
neural representations directly, but are trained to determine
decision boundaries that are used to classify the inputs onto
specific outputs (Amengual and Ben Hamed, 2021). However,
some non-linear properties of these representation and their
large dimensionality prevent the optimal performance of these
classification algorithms and, thus, additional preprocessing
methods based on reducing data dimensionality and feature
extraction techniques are needed (Blum and Langley, 1997;
Schölkopf et al., 2007; Abrol et al., 2021). The application
of these preprocessing steps on input data imposes certain
a priori assumptions and requires a certain high expertise of
the users, which reduces part of the automatization of the
knowledge extraction process. As a response to this need, deep
learning approaches have been introduced for neural decoding
purposes. Differently to standard machine learning approaches,
deep learning characterizes patterns embedded in the raw data
as a part of the training process. To do this, deep learning models
are based on multiple layers artificial neural networks (ANN)
that allow to progressively extract high-level features from input
data. These models consist in a composition of components
that are formed by linear and non-linear operations forming
complex layered architectures. Some examples of these networks
are the recurrent neural networks (RNN), which are suitable
to model the temporal dynamic behavior of a given process,
convolutional neural networks (CNN), most commonly applied
to analyze visual imagery and long short-term memory (LSTM)
networks, a particular case of RNN with feedback connections,
suitable to model memory processes. In the following we will
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discuss some applications of the deep learning methods for
neural decoding in vision.

Indeed, decoding visual stimuli, understood as the capacity
to predict the identity (meaning) or physical attributes of visual
stimuli by using brain activity, represents a major challenge
in neuroscience. Seminal fMRI studies have shown that visual
features such as orientation, motion direction and visual object
categories can be decoded from BOLD signal recorded over the
visual cortex and ventral parietal cortex (Haxby et al., 2001; Cox
and Savoy, 2003; Kamitani and Tong, 2005, 2006). However,
these studies used the activation from voxels in selected visual
cortices to feed into the decoding algorithm and, thus, they
did not take into account the internal relationship between
the different visual areas. Indeed, it is well known that a
higher level function such as object recognition requires the co-
activation of different brain areas in a hierarchical manner along
the ventral stream (Mishkin et al., 1983). Anatomical studies
have found that connections between the different layers of
the ventral stream are bidirectional (Bar, 2003). These forward
and backward connections provide the anatomical substrate
of the information flow in the visual cortex. In this context,
visual information might flow from primary visual cortices
toward high-level visual cortices to obtain high-level semantic
understanding [bottom-up visual mechanisms, (Logothetis and
Sheinberg, 1996)]. In turn, visual information feedbacks from
high-level to low-level visual cortices, which is known the
top-down visual mechanisms (McMains and Kastner, 2011).
In order to succeed in neural decoding of object recognition,
Qiao et al. (2019) conceived the use of a RNN in which
they split the neurons into positive and negative directions
and fed the activity of each voxel in each visual area while
participants observed natural photographs. In this way, they
did not model only the information of each visual area,
but also the internal relationship between the different visual
cortices, in the decoding method. Comparing the decoding
accuracy of this method with the accuracy obtained using
other classical classifiers such as decision trees and random
forest, they found that this method of decoding improved the
classical decoding methods by a 5% of accuracy, on average.
In addition, they concluded that the representation in visual
cortices were hierarchical, distributed and complementary, since
the increment in decoding performance depended on the
conception of the multiple layers simultaneously. Other studies
have tried to use deep learning approaches to decode brain’s
responses to representation of natural video stimuli. To this end,
Wen et al. (2018) acquired very long fMRI acquisitions of three
human subjects watching 972 different video clips that included
diverse scenes and actions. The aim of this study was to use a
convolutional neural network (CNN) in order to reconstruct
and categorize the visual stimuli based on the fMRI activity
recorded from the dorsal and ventral streams in a dynamic
condition. They found that the CNN was able to predict non-
linear and complex patterns of responses in both dorsal and

ventral streams, with a high decoding accuracy in category
representation. Indeed, the CNN supported the reconstruction
of decoded natural movies and direct semantic categorization.
All in all, these studies exemplify how deep learning algorithms
can decode visual information with a very high degree of
specificity. It is expected that such methods can be generalized in
the future to the read out of more complex cognitive functions.

Conclusion

Advances in brain activity recording and processing and
in machine learning have led, in these recent years, to a new
way of exploring brain function. In fact, it is now possible
to access to a better understanding of brain function using
recorded activity, as for example while trying to infer the
spatial location of covert attention in real-time in macaques or
humans. Decoding neuronal brain activity can be performed
with both invasive and non-invasive techniques, each presenting
its pros and cons. It permits to have a direct access to a part
of brain information and build brain–machine interfaces as for
example, controlling a robotic arm with motor cortex activity.
But these major advances performed in this field in these last
years did not only permit to perform “mind reading” of the
brain. These methods have also generated robust statistical
tools to better understand brain function and cognition. In
this review, we have explored brain decoding approaches, not
only from the perspective of inferring hidden brain states but
also from the perspective of understanding brain functions.
For example, exploring decoding accuracy allows to explore
the temporality and the stability of brain processes (Astrand
et al., 2015; Wolff et al., 2015, 2017) while searchlight methods
or decoder weights analysis allows to extract a refined view
of how the brain organizes information processing at a high
spatial resolution (Chen et al., 2011; Haufe et al., 2014). The
development of these exploratory methods has resulted in new
hypotheses about how neural networks can encode a given
function and even how this code can be modified by learning.
As an example, numerous articles are now exploring the theory
of manifolds embedding neural activity (Gallego et al., 2017,
2018).

These advances in decoding and computational
neurosciences open the way of combining different brain
activity modalities when exploring any given function (e.g.,
EEG and fMRI or MUA and LFP). Indeed, each recording
technique can bring specific information. This is expected
to enhance our understanding of brain functions and allow
to explore differences in information content between data
collected simultaneously in different modalities. One thinks
of differences in temporal and spatial resolution, but other
functional differences are also increasingly reported, as for
example in the informational content of spikes versus LFP
(Pesaran et al., 2002; Perel et al., 2013).

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.811736
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-811736 September 3, 2022 Time: 16:27 # 14

Loriette et al. 10.3389/fnins.2022.811736

The road is still long before a full exploitation of all of
the potentialities of this new research field which combines a
mechanistic understanding of the brain with machine learning
tools (Pedregosa et al., 2011; Savage, 2019; Glaser et al.,
2020; Iturrate et al., 2020). Brain computer interfaces and
neurofeedback protocols are still at their early days and will
probably benefit from the continuous progresses observed in
computational sciences.
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