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Abstract

While neural networks can provide high predictive performance, it was a challenge to identify the 

salient features and important feature interactions used for their predictions. This represented a key 

hurdle for deploying neural networks in many biomedical applications that require interpretability, 

including predictive genomics. In this paper, linearizing neural network architecture (LINA) 

was developed here to provide both the first-order and the second-order interpretations on 

both the instance-wise and the model-wise levels. LINA combines the representational capacity 

of a deep inner attention neural network with a linearized intermediate representation for 

model interpretation. In comparison with DeepLIFT, LIME, Grad*Input and L2X, the first-

order interpretation of LINA had better Spearman correlation with the ground-truth importance 

rankings of features in synthetic datasets. In comparison with NID and GEH, the second-order 

interpretation results from LINA achieved better precision for identification of the ground-truth 

feature interactions in synthetic datasets. These algorithms were further benchmarked using 

predictive genomics as a real-world application. LINA identified larger numbers of important 

single nucleotide polymorphisms (SNPs) and salient SNP interactions than the other algorithms at 

given false discovery rates. The results showed accurate and versatile model interpretation using 

LINA.
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I. INTRODUCTION

An interpretable machine learning algorithm should have a high representational capacity to 

provide strong predictive performance, and its learned representations should be amenable 

to model interpretation and understandable to humans. The two desiderata are generally 

difficult to balance. Linear models and decision trees generate simple representations for 

model interpretation, but have low representational capacities for only simple prediction 
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tasks. Neural networks and support vector machines have high representational capacities to 

handle complex prediction tasks, but their learned representations are often considered to be 

“black-boxes” for model interpretation [1].

Predictive genomics is an exemplar application that requires both a strong predictive 

performance and high interpretability. In this application, the genotype information for a 

large number of SNPs in a subject’s genome is used to predict the phenotype of this subject. 

While neural networks have been shown to provide better predictive performance than 

statistical models [2], [3], statistical models are still the dominant methods for predictive 

genomics, because geneticists and genetic counselors can understand which SNPs are used 

and how they are used as the basis for certain phenotype predictions. Neural network model 

have also been used in many other important bioinformatics applications [4]–[6] that can 

benefit from model interpretation. To make neural networks more useful for predictive 

genomics and other applications, we developed a new neural network architecture, referred 

to as linearizing neural network architecture (LINA), to provide both first-order and second-

order interpretations and both instance-wise and model-wise interpretations.

Model interpretation reveals the input-to-output relationships that a machine learning 

model has learned from the training data to make predictions [7]. The first-order model 

interpretation aims to identify individual features that are important for a model to make 

predictions. For predictive genomics, this can reveal which individual SNPs are important 

for phenotype prediction. The second-order model interpretation aims to identify important 

interactions among features that have a large impact on model prediction. The second-

order interpretation may reveal the XOR interaction between the two features that jointly 

determine the output. For predictive genomics, this may uncover epistatic interactions 

between pairs of SNPs [8], [9].

A general strategy for the first-order interpretation of neural networks, first introduced 

by Saliency [10], is based on the gradient of the output with respect to (w.r.t.) the input 

feature vector. A feature with a larger partial derivative of the output is considered more 

important. The gradient of a neural network model w.r.t. the input feature vector of a 

specific instance can be computed using backpropagation, which generates an instance-wise 

first-order interpretation. The Grad*Input algorithm [11] multiplies the obtained gradient 

element-wise with the input feature vector to generate better scaled importance scores. As 

an alternative to using the gradient information, the Deep Learning Important FeaTures 

(DeepLIFT) algorithm explains the predictions of a neural network by backpropagating the 

activations of the neurons to the input features [11]. The feature importance scores are 

calculated by comparing the activations of the neurons with their references, which allows 

the importance information to pass through a zero gradient during backpropagation. The 

Class Model Visualization (CMV) algorithm [10] computes the visual importance of pixels 

in convolution neural network (CNN).It performs backpropagation on an initially dark image 

to find the pixels that maximize the classification score of a given class.

While the algorithms described above were developed specifically for neural networks, 

model-agnostic interpretation algorithms can be used for all types of machine learning 

models. Local Interpretable Model-agnostic Explanations (LIME) [12] fits a linear model 
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to synthetic instances that have randomly perturbed features in the vicinity of an instance. 

The obtained linear model is analyzed as a local surrogate of the original model to identify 

the important features for the prediction on this instance. Because this approach does 

not rely on gradient computation, LIME can be applied to any machine learning model, 

including non-differentiable models. Previously, we combined LIME and DeepLIFT to 

interpret a feedforward neural network model for predictive genomics [2]. Kernel SHapley 

Additive exPlanations (SHAP) [13] uses a sampling method to find the Shapley value for 

each feature of a given input. The Multi-Objective Counterfactuals (MOC) method [14] 

searches for the counterfactual explanations for an instance by solving a multi-objective 

optimization problem. The importance scores calculated by the L2X algorithm [15] are 

based on the mutual information between the features and the output from a machine 

learning model. L2X is efficient because it approximates the mutual information using a 

variational approach.

The second-order interpretation is more challenging than the first-order interpretation 

because d features would have (d2 − d) / 2 possible interactions to be evaluated. Computing 

the Hessian matrix of a model for the second-order interpretation is conceptually equivalent 

to, but much more computationally expensive than, computing the gradient for the first-order 

interpretation. Group Expected Hessian (GEH) [16] computes the Hessian of a Bayesian 

neural network for many regions in the input feature space and aggregates them to estimate 

an interaction score for every pair of features. The additive grooves algorithm [17] estimates 

the feature interaction scores by comparing the predictive performance of the decision tree 

containing all features with that of the decision trees with pairs of features removed. Neural 

Interaction Detection (NID) [18] avoids the high computational cost of evaluating every 

feature pair by directly analyzing the weights in a feedforward neural network. If some 

features are strongly connected to a neuron in the first hidden layer and the paths from that 

neuron to the output have high aggregated weights, then NID considers these features to 

have strong interactions.

Model interpretations can be further classified as instance-wise interpretations or model-

wise interpretations. Instance-wise interpretation algorithms, including Saliency [10], LIME 

[12] and L2X [15], provide an explanation for a model’s prediction for a specific instance. 

For example, an instance-wise interpretation of a neural network model for predictive 

genomics may highlight the important SNPs in a specific subject which are the basis for 

the phenotype prediction of this subject. This is useful for intuitively assessing how well 

grounded the prediction of a model is for a specific subject. Model-wise interpretation 

provides insights into how a model makes predictions in general. CMV [10] was developed 

to interpret CNN models. Instance-wise interpretation methods can also be used to explain 

a model by averaging the explanations of all the instances in a test set. A model-wise 

interpretation of a predictive genomics model can reveal the important SNPs for a phenotype 

prediction in a large cohort of subjects. Model-wise interpretations shed light on the internal 

mechanisms of a machine learning model.

In this study, we designed the LINA architecture and developed the first-order and second-

order interpretation algorithms for LINA. The interpretation performance of the new 

methods was benchmarked using synthetic datasets and a predictive genomics application 
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in comparison with state-of-the-art (SOTA) interpretation methods. The interpretations from 

LINA were more versatile and more accurate than those from the SOTA methods.

II. METHODS

A. LINA ARCHITECTURE

The key feature of the LINA architecture (Supplementary Figure 1) is the linearization layer, 

which computes the output as an element-wise multiplication product of the input features, 

attention weights, and coefficients:

y = S KT(A ∘ X) + b = S ∑i = 1
d kiaixi + b (1)

where y is the output, X is the input feature vector, S() is the activation function of 

the output layer, ○ represents the element-wise multiplication operation, K and b are 

respectively the coefficient vector and bias that are constant for all instances, and A is 

the attention vector that adaptively scales the feature vector of an instance. X, A and K are 

three vectors of dimension d, which is the number of input features. The computation by 

the linearization layer and the output layer is also expressed in a scalar format in Equation 

(1). This formulation allows the LINA model to learn a linear function of the input feature 

vector, coefficient vector, and attention vector.

The attention vector is computed from the input feature vector using a multi-layer neural 

network, referred to as the inner attention neural network in LINA. The inner attention 

neural network must be sufficiently deep for a prediction task owing to the designed low 

representational capacity of the remaining linearization layer in a LINA model. In the inner 

attention neural network, all hidden layers use a non-linear activation function, such as 

ReLU, but the attention layer uses a linear activation function to avoid any restriction in 

the range of the attention weights. This is different from the typical attention mechanism in 

existing attentional architectures which generally use the softmax activation function.

B. THE LOSS FUNCTION

The loss function for LINA is composed of the training error loss, regularization penalty on 

the coefficient vector, and regularization penalty on the attention vector:

loss = E Y , Y true + β ∥ K ∥2 + γ ∥ A − 1 ∥1 (2)

where E is a differentiable convex training error function, ∥K∥2 is the L2 norm of the 

coefficient vector, ∥A − 1∥1 is the L1 norm of the attention vector minus 1, and β and γ are 

the regularization parameters. The coefficient regularization sets 0 to be the expected value 

of the prior distribution for K, which reflects the expectation of un-informative features. 

The attention regularization sets 1 to be the expected value of the prior distribution for A, 

which reflects the expectation of a neutral attention weight that does not scale the input 

feature. The values of β and γ and the choices of L2, L1, and L0 regularization for the 

coefficient and attention vectors are all hyperparameters that can be optimized for predictive 

performance on the validation set.
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C. FIRST-ORDER INTERPRETATION

LINA derives the instance-wise first-order interpretation from the gradient of the output, y, 

w.r.t the input feature vector, X. The output gradient can be decomposed as follows:

∂y
∂xi

= kiai + ∑j = 1
d kj

∂aj
∂xi

xj (3)

Proof: Let us derive ∂y
∂xi

 for a regression task:

∂y
∂xi

=
∂kiaixi

∂xi
+ ∑

j = 1
j ≠ i

d ∂kjajxj
∂xi

+ ∂b
∂xi

= ki
∂ aixi

∂xi
+ ∑

j = 1
j ≠ i

d
kj

∂ ajxj
∂xi

= ki
∂ai
∂xi

xi + ai + ∑
j = 1
j ≠ i

d
kj

∂aj
∂xi

xj

= kiai + ∑
j = 1

d
kj

∂aj
∂xi

xj

End-of-proof.

The decomposition of the output gradient in LINA shows that the contribution of a feature 

in an attentional architecture comprises (i) a direct contribution to the output weighted by its 

attention weight and (ii) an indirect contribution to the output during attention computation. 

This indicates that using attention weights directly as a measure of feature importance omits 

the indirect contribution of a feature in the attention mechanism.

For the instance-wise first-order interpretation, we defined FQi = ∂y
∂xi

 as the full importance 

score for feature i, DQi = kiai as the direct importance score for feature i, and 

IQi = ∑j = 1
d kj

∂aj
∂xi

xj as the indirect importance score for feature i.

For the model-wise first-order interpretation, we defined the model-wise full importance 

score (FPi), direct importance score (DPi), and indirect importance score (IPi) for feature i as 

the averages of the absolute values of the corresponding instance-wise importance scores of 

this feature across all instances in the test set:

FPi = FQi (4)

DPi = DQi (5)
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IPi = IQi (6)

Because absolute values are used, the model-wise FPi of feature i is no longer a sum of its 

IPi and DPi.

D. SECOND-ORDER INTERPRETATION

It is computationally expensive and unscalable to compute the Hessian matrix for a large 

LINA model. Here, the Hessian matrix of the output w.r.t. the input feature vector is 

approximated using the Jacobian matrix of the attention vector w.r.t. the input feature vector 

in a LINA model, which is computationally feasible to calculate. An approximation is 

derived as follows.

∂2y
∂xi∂xj

= KT ∂
∂xi

x1
∂a1
∂xj
⋮

xj − 1
∂aj − 1

∂xj

xj
∂aj
∂xj

+ aj

xj + 1
∂aj + 1

∂xj
⋮

xn
∂an
∂xj

= KT

x1
∂2a1

∂xi∂xj
⋮

xi − 1
∂2ai − 1
∂xi∂xj

xi
∂2ai

∂xi∂xj
+ ∂ai

∂xj

xi + 1
∂2ai + 1
∂xi∂xj
⋮

xj − 1
∂2aj − 1
∂xi∂xj

xj
∂2aj

∂xi∂xj
+ ∂aj

∂xi

xj + 1
∂2aj + 1
∂xi∂xj
⋮

xn
∂2an

∂xi∂xj

(7)

By omitting the second-order derivatives of the attention weights, Equation (7) can be 

simplified as

∂2y
∂xi∂xj

≈ kj
∂aj
∂xi

+ ki
∂ai
∂xj

(8)

Equation (8) shows an approximation of the Hessian of the output using the Jacobian of 

the attention vector. The K-weighted sum of the omitted second-order derivatives of the 

attention weights constitutes the approximation error. The performance of the second-order 

interpretation based on this approximation is benchmarked using synthetic and real-world 

datasets.

BADRÉ and PAN Page 6

IEEE Access. Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For instance-wise second-order interpretation, we define a directed importance score of 

feature r to feature c:

SQr
c = kc

∂ac
∂xr

(9)

This measures the importance of feature r in the calculation of the attention weight of feature 

c. In other words, this second-order importance score measures the importance of feature r to 

the direct importance score of feature c for the output.

For the model-wise second-order interpretation, we defined an undirected importance 

score between feature r and feature c based on their average instance-wise second-order 

importance score in the test set:

SPc,r = SQr
c + SQc

r (10)

E. RECAP OF THE LINA IMPORTANCE SCORES

The notations and definitions of all the importance scores for a LINA model are 

recapitulated below. FQ and SQ are selected as the first-order and second-order importance 

score, respectively, for instance-wise interpretation. FP and SP are used as the first-order and 

second-order importance scores, respectively, for model-wise interpretation.

Order Target Acronym Definition

First-order

Instance-wise

FQ FQi = DQi + IQi

DQ DQi = kiai

IQ IQi = ∑c = 1
d SQi

cxc

Model-wise

FP FPi = FQi

DP DPi = DQi

IP IPi = IQi

Second-order

Instance-wise SQ SQr
c = kc

∂ac
∂xr

Model-wise SP SPc,r = SQr
c + SQc

r

III. DATA AND EXPERIMENTAL SETUP

A. CALIFORNIA HOUSING DATASET

The California housing dataset [19] was used to formulate a simple regression task, which 

is the prediction of the median sale price of houses in a district based on eight input 

features (Supplementary Table 1). The dataset contained 20640 instances (districts) for 

model training and testing.
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B. FIRST-ORDER BENCHMARKING DATASETS

Five synthetic datasets, each containing 20,000 instances, were created using the sigmoid 

functions to simulate binary classification tasks. These functions were created following the 

examples in [15] for the first-order interpretation benchmarking. All five datasets included 

ten input features. The values of the input features were independently sampled from a 

standard Gaussian distribution: xi ~ N (0, 1), i ∈ {1, 2, …, 10}. The target value was set 

to 0, if the sigmoid function output is (0, 0.5). The target value was set to 1, if the sigmoid 

function output is [0.5, 1). We used the following five sigmoid functions of different subsets 

of the input features:

(F1): Sig 4 * X1
2 − 3 * X2

2 − 2 * X3
2 + X4

2 . This function contains four important features 

with independent squared relationships with the target. The ground-truth rankings of 

the features by first-order importance are X1, X2, X3, and X4. The remaining six 

uninformative features are tied in the last rank.

(F2): Sig(−10 * sin(X1) + 2 * abs(X2) + X3 − exp(−X4)). This function contains 

four important features with various non-linear additive relationships with the target. 

The ground-truth ranking of the features is X1, X4, X2, and X3. The remaining six 

uninformative features are tied in the last rank.

(F3): Sig(4 * X1 * X2 * X3 + X4 * X5 * X6). This function contains six important 

features with multiplicative interactions among one another. The ground-truth ranking 

of the features is X1, X2 and X3 tied in the first rank, X4, X5 and X6 tied in the second 

rank, and the remaining uninformative features tied in the third rank.

(F4): Sig(−10 * sin(X1 * X2 * X3)+abs(X4 * X5 * X6)). This function contains six 

important features with multiplicative interactions among one another and non-linear 

relationships with the target. The ground-truth ranking of the features is X1, X2 and 

X3 tied in the first rank, X4, X5 and X6 tied in the second rank, and the other four 

uninformative features tied in the third rank.

(F5): Sig(−20 * sin(X1 * X2) + 2 * abs(X3) + X4 * X5 −4 * exp(−X6)). This function 

contains six important features with a variety of non-linear relationships with the 

target. The ground-truth ranking of the features is X1 and X2 tied in the first rank, 

X6 in the second, X3 in the third, X4 and X5 tied in the fourth, and the remaining 

uninformative features tied in the fifth.

C. SECOND-ORDER BENCHMARKING DATASET

Ten regression synthetic datasets, referred to as F6-A, F7-A, F8-A, F9-A, and F10-A (−A 

datasets) and F6-B, F7-B, F8-B, F9-B, and F10-B (−B datasets) were created. The −A 

datasets followed the examples in [18] for the second-order interpretation benchmarking. 

The −B datasets used the same functions below to compute the target as the −A datasets, 

but included more uninformative features to benchmark the interpretation performance 

on high-dimensional data. Each −A dataset contained 5,000 instances. Each −B dataset 

contained 10,000 instances. The five −A datasets included 13 input features. The five −B 

datasets included 100 input features, some of which were used to compute the target. In 

F7-A/B, F8-A/B, F9-A/B, and F10-A/B, the values of the input features of an instance were 
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independently sampled from a standard uniform distribution: Xi ~ U (−1, 1), i ∈ {1, 2, …, 

13} in the −A datasets or i ∈ {1, 2, …, 100} in the −B datasets. In the F6 dataset, the 

values of the input features of an instance were independently sampled from two uniform 

distributions: Xi ~ U (0, 1), i ∈ {1, 2, 3, 6, 7, 9, 11, 12, 13} in the −A datasets and i ∈ {1, 2, 

3, 6, 7, 9, 11, …, 100} in the −B datasets; and Xi ~ U (0.6, 1), i ∈ {4, 5, 8, 10} in both. The 

value of the target for an instance was computed using the following five functions:

(F6-A) and (F6-B): πX1 * X2 * X3 + sin−1 X4 + log X3 + X5 +
X9
X10

*
X7
X8

− X2 * X7. 

This function contains eleven pairwise feature interactions: {(X1, X2), (X1, X3), (X2, 

X3),(X3, X5),(X7, X8),(X7, X9),(X7, X10), (X8, X9),(X8, X10), (X9, X10), (X2, X7)}.

(F7-A) and (F7-B): 

exp X1 − X2 + X2 * X3 − X3
2 X4 + log X4

2 + X5
2 + X7

2 + X8
2 + X9 + X10

2 1
1 + X10

2 . This 

function contains nine pairwise interactions: {(X1, X2), (X2, X3), (X3, X4), (X4, X5), 

(X4, X7), (X4, X8), (X5, X7), (X5, X8), (X7, X8)}.

(F8-A) and (F8-B): 

sin X1 * X2 + 1 − log X3 * X4 + 1 + cos X5 + X6 − X8 + X8
2 + X9

2 + X10
2 . This 

function contains ten pairwise interactions: {(X1, X2), (X3, X4), (X5, X6), (X4, X7), 

(X5, X6), (X5, X8), (X6, X8), (X8, X9), (X8, X10), (X9, X10)}.

(F9-A) and (F9-B): 

tanh X1 * X2 + X3 * X4 * X5 + log X6 * X7 * X8
2 + 1 + X9 * X10 + 1

1 + X10
. This 

function contains thirteen pairwise interactions: {X1, X2), (X1, X3), (X2, X3), (X2, 

X4), (X3, X4), (X1, X5), (X2, X5), (X3, X5), (X4, X5), (X6, X7), (X6, X8), (X7, X8), 

(X9, X10)}.

(F10-A) and (F10-B): cos(X1 * X2 * X3)+sin(X4 * X5 * X6). This function contains 

six pairwise interactions: {(X1, X2), (X1, X3), (X2, X3), (X4, X5), (X4, X6), (X5, 

X6)}.

D. BREAST CANCER DATASET

The Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) project 

[20] generated a breast cancer dataset (NIH dbGaP accession number: phs001265.v1.p1) 

for genome-wide association study (GWAS) and predictive genomics. This cohort contained 

26,053 case subjects with malignant tumor or in situ tumor and 23,058 control subjects 

with no tumor. The task for predictive genomics is a binary classification of subjects 

between cases and controls. The breast cancer dataset was processed using PLINK [21] as 

described previously [2] to compute the statistical significance of the SNPs. Out of a total 

of 528,620 SNPs, 1541 SNPs had a p-value lower than 10−6 and were used as the input 

features for predictive genomics. To benchmark the performance of the model interpretation, 

1541 decoy SNPs were added as input features. The frequencies of homozygous minor 

alleles, heterozygous alleles, and homozygous dominant alleles were the same between 

decoy SNPs and real SNPs. Because decoy SNPs have random relationships with the case/
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control phenotype, they should not be selected as important features or be included in salient 

interactions by model interpretation.

E. IMPLEMENTATIONS AND EVALUATION STRATEGIES

The California Housing Dataset was partitioned into a training set (70%), a validation set 

(20%), and a test set (10%). The eight input features were longitude, latitude, median age, 

total rooms, total bedrooms, population, households, and median income. The median house 

value was the target of the regression. All the input features were standardized to zero mean 

and unit standard deviation based on the training set. Feature standardization is critical for 

model interpretation in this case because the scale for the importance scores of a feature 

is determined by the scale for the values of this feature and comparison of the importance 

scores between features requires the values of the features to be in the same scale. The LINA 

model comprised an input layer (8 neurons), five fully connected hidden layers (7, 6, 5, 4 

and 3 neurons), and an attention layer (8 neurons) for the inner attention neural network, 

followed by a second input layer (8 neurons), a linearization layer (8 neurons), and an output 

layer (1 neuron). The hidden layers used ReLU as the activation function. No regularization 

was applied to the coefficient vector and L1 regularization was applied to the attention 

vector (γ = 10−6). The LINA model was trained using the Adam optimizer with a learning 

rate of 10−2. The predictive performance of the obtained LINA model was benchmarked to 

have an RMSE of 71055 in the test set. As a baseline model for comparison, a gradient 

boosting model achieved an RMSE of 77852 in the test set using 300 decision trees with a 

maximum depth of 5.

For the first-order interpretation, each synthetic dataset was split into a cross-validation 

set (80%) for model training and hyperparameter optimization and a test set (20%) for 

performance benchmarking and model interpretation. A LINA model and a feedforward 

neural network (FNN) model were constructed using 10-fold cross-validation. For the first 

four synthetic datasets, the inner attention neural network in the LINA model had 3 layers 

containing 9 neurons in the first layer, 5 neurons in the second layer, and 10 neurons in the 

attention layer. The FNN had 3 hidden layers with the same number of neurons in each layer 

as the inner attention neural network in the LINA model. For the fifth function with more 

complex relationships, the first and second layers were widened to 100 and 25 neurons, 

respectively, in both the FNN and LINA models to achieve a predictive performance similar 

to the other datasets in their respective validation sets. Both the FNN and LINA models 

were trained using the Adam optimizer. The learning rate was set to 10−2. The mini-batch 

size was set to 32. No hyperparameter tuning was performed. The LINA model was trained 

with the L2 regularization on the coefficient vector (β = 10−4) and the L1 regularization 

on the attention vector (γ = 10−6). The values of β and γ were selected from 10−2, 10−3, 

10−4, 10−5, 10−6, 10−7, and 0 based on the predictive performance of the LINA model on 

the validation set. Batch normalization was used for both architectures. Both the FNN and 

LINA models achieved predictive performance at approximately 99% AUC on the test set in 

the five first-order synthetic datasets, which was comparable to [15]. Deep Lift [11], LIME 

[12], Grad*Input [11], L2X [15] and Saliency [10] were used to interpret the FNN model 

and calculate the feature importance scores using their default configurations. FP, DP, and IP 

scores were used as the first-order importance scores for the LINA model. We compared the 
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performances of the first-order interpretation of LINA with DeepLIFT, LIME, Grad*Input 

and L2X. The interpretation accuracy was measured using the Spearman rank correlation 

coefficient between the predicted ranking of features by their first-order importance and the 

ground-truth ranking. This metric was chosen because it encompasses both the selection and 

ranking of the important features.

For the second-order interpretation benchmarking, each synthetic dataset was also split into 

a cross-validation set (80%) and a test set (20%). A LINA model, an FNN model for NID, 

and a Bayesian neural network (BNN) for GEH as shown in [16], were constructed based 

on the neural network architecture used in [18] using 10-fold cross-validation. The inner 

attention neural network in the LINA model uses 140 neurons in the first hidden layer, 100 

neurons in the second hidden layer, 60 neurons in the third hidden layer, 20 neurons in the 

fourth hidden layer, and 13 neurons in the attention layer. The FNN model was composed 

of 4 hidden layers with the same number of neurons in each layer as LINA’s inner attention 

neural network. The BNN model uses the same architecture as that of the FNN model. The 

FNN, BNN and LINA models were trained using the Adam optimizer with a learning rate of 

10−3 and a mini-batch size of 32 for the −A datasets and 128 for the −B datasets. The LINA 

model was trained using L2 regularization on the coefficient vector (β = 10−4) and the L1 

regularization on the attention vector (γ = 10−6) with batch normalization. Hyperparameter 

tuning was performed as described above to optimize the predictive performance. The FNN 

and BNN models were trained using the default regularization parameters, as shown in 

[16], [18]. Batch normalization was used for LINA. The FNN, BNN and LINA models all 

achieved R2 scores of more than 0.99 on the test sets of the five −A datasets, as in the 

examples in [18], while their R2 scores ranged from 0.91 to 0.93 on the test set of the five 

high-dimensional −B datasets. Pairwise interactions in each dataset were identified from the 

BNN model using GEH [16], the FNN model using NID [18], and the LINA model using 

the SP scores. For GEH, the number of clusters was set to the number of features and the 

number of iterations was set to 20. NID was run using its default configuration. For a dataset 

with m pairs of ground-truth interactions, the top-m pairs with the highest interaction scores 

were selected from each algorithm’s interpretation output. The percentage of ground-truth 

interactions in the top-m predicted interactions (i.e., the precision) was used to benchmark 

the second-order interpretation performance of the algorithms.

For the breast cancer dataset, 49111 subjects in the breast cancer dataset were randomly 

divided into the training set (80%), validation set (10%), and test set (10%). The FNN 

model and the BNN model had 3 hidden layers with 1000, 250 and 50 neurons as described 

previously [2]. The same hyperparameters were used in our previous study [2]. The inner 

attention neural network in the LINA model also used 1000, 250 and 50 neurons before the 

attention layer. All of these models had 3082 input neurons for 1541 real SNPs and 1541 

decoy SNPs. β was set to 0.01 and γ to 0, which were selected from 10−2, 10−3, 10−4, 

10−5, 10−6, 10−7, and 0 based on the predictive performance of the LINA model on the 

validation set. Early stopping based on the validation AUC score was used during training. 

The FNN, BNN and LINA models achieved a test AUC of 64.8%, 64.8% and 64.7% on the 

test set, respectively, using both the 1541 real SNPs with p-values less than 10−6 and the 

1541 decoy SNPs. The test AUCs of these models were lower than that of the FNN model 

in our previous study [2] at 67.4% using real 5,273 SNPs with p-values less than 10−3 as 
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input. As the same FNN architecture design was used in the two studies, the reduction in the 

predictive performance in this study can be attributed to the use of more stringent p-value 

filtering to retain only real SNPs with a high likelihood of having a true association with the 

disease and the addition of decoy SNPs for benchmarking the interpretation performance.

Deep Lift [11], LIME [12], Grad*Input [11], L2X [15] and Saliency [10] were used to 

interpret the FNN model and calculate the feature importance scores using their default 

configurations. The FP score was used as the first-order importance score for the LINA 

model. After the SNPs were filtered at a given importance score threshold, the false 

discovery rate (FDR) was computed from the retained real and decoy SNPs above the 

threshold. The number of retained real SNPs was the total positive count for the FDR. 

The number of false positive hits (i.e., the number of unimportant real SNPs) within the 

retained real SNPs was estimated as the number of retained decoy SNPs. Thus, FDR 

was estimated by dividing the number of retained decoy SNPs by the number of retained 

real SNPs. An importance-score-sorted list of SNPs from each algorithm was filtered 

at an increasingly stringent score threshold until reaching the desired FDR level. The 

interpretation performance of an algorithm was measured by the number of top-ranked 

features filtered at 0.1%, 1% and 5% FDR and the FDRs for the top-100 and top-200 SNPs 

ranked by an algorithm. For the second-order interpretation, pairwise interactions were 

identified from the BNN model using GEH [16], from the FNN model using NID [18], and 

from the LINA model using the SP scores. For GEH, the number of clusters was set to 20 

and the number of iterations was set to 20. While LINA and NID used all 4,911 subjects 

in the test set and completed their computation within an hour, the GEH results were 

computed for only 1000 random subjects in the test set over >2 days because GEH would 

have taken approximately two months to complete the entire test set with its n2 computing 

cost where n is the number of subjects. NID was run using its default configuration in the 

FNN model. The interpretation accuracy was also measured by the numbers of top-ranked 

pairwise interactions detected at 0.1%, 1% and 5% FDR and the FDRs for the top-1000 and 

top-2000 interaction pairs ranked by an algorithm. A SNP pair was considered to be false 

positive if one or both of the SNPs in a pair was a decoy.

IV. RESULTS AND DISCUSSION

A. DEMONSTRATION OF LINA ON A REAL-WORLD APPLICATION

In this section, we demonstrate LINA using the California housing dataset, which has 

been used in previous model interpretation studies for algorithm demonstration [16], [18]. 

Four types of interpretations from LINA were presented, including the instance-wise first-

order interpretation, the instance-wise second-order interpretation, the model-wise first-order 

interpretation, and the model-wise second-order interpretation.

1) INSTANCE-WISE INTERPRETATION—Supplementary Table 1 shows the 

prediction and interpretation results of the LINA model for an instance (district # 20444) 

that had a true median price of $208600. The predicted price of $285183 was simply the 

sum of the eight element-wise products of the attention, coefficient, and feature columns 

plus the bias. This provided an easily understandable representation of the intermediate 

BADRÉ and PAN Page 12

IEEE Access. Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computation behind the prediction for this instance. For example, the median age feature had 

a coefficient of 213 in the model. For this instance, the median age feature had an attention 

weight of −275, which switched the median age to a negative feature and amplified its direct 

effect on the predicted price in this district.

The product of the attention weight and coefficient yielded the direct importance score of 

the median age feature (i.e., DQ = −58,524), which represented the strength of the local 

linear association between the median age feature and the predicted price for this instance. 

By assuming that the attention weights of this instance are fixed, one can expect a decrease 

of $58,524 in the predicted price for an increase in the median age by one standard deviation 

(12.28 years) for this district. But this did not consider the effects of the median age increase 

on the attention weights, which was accounted for by its indirect importance score (i.e., IQ 

= 91,930). The positive IQ indicated that a higher median age would increase the attention 

weights of other positive features and increase the predicted price indirectly. Combining 

the DQ and IQ, the positive FQ of 33,407 marked the median age to be a significant 

positive feature for the predicted price, perhaps through the correlation with some desirable 

variables for this district. This example suggested a limitation of using the attention weights 

themselves to evaluate the importance of features in the attentional architectures. The full 

importance scores represented the total effect of a feature’s change on the predicted price. 

For this instance, the latitude feature had the largest impact on the predicted price.

Supplementary Table 2 presents a second-order interpretation of the prediction for this 

instance. The median age row in Supplementary Table 2 shows how the median age feature 

impacted the attention weights of the other features. The two large positive SQ values of 

median age to the latitude and longitude features indicated significant increases of the two 

location features’ attention weights with the increase of the median age. In other words, 

the location become a more important determinant of the predicted price for districts with 

older houses. The total bedroom feature received a large positive attention weight for this 

instance. The total bedroom column in Supplementary Table 2 shows that the longitude and 

latitude features are the two most important determinants for the attention weights of the 

total bedroom feature. This suggested how a location change may alter the direct importance 

of the total bedroom feature for the price prediction of this district.

2) MODEL-WISE INTERPRETATION—Figure 1 shows the first-order model-wise 

interpretation results across districts in the California Housing dataset. The longitude, 

latitude and population were the three most important features. The longitude and latitude 

had both high direct importance scores and high indirect importance scores. However, the 

population feature derived its importance mostly from its heavy influence on the attention 

weights as measured by its indirect importance score.

Figure 2 shows the second-order model-wise interpretation results for pairs of different 

features. Among all the feature pairs, the latitude and longitude features had the most 

prominent interactions, which was reasonable because the location was jointly determined 

by these two features.
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Some significant differences existed between the instance-wise interpretation and model-

wise interpretation (e.g., Supplementary Table 1 vs. Figure 1 and Supplementary Table 2 

vs. Figure 2). This illustrates the need for both instance-wise and model-wise interpretation 

methods for different purposes.

B. BENCHMARKING OF THE FIRST-ORDER AND SECOND-ORDER INTERPRETATIONS 
USING SYNTHETIC DATASETS

In real-world applications, the true importance of features for prediction cannot be 

determined with certainty and may vary among different models. Therefore, previous studies 

on model interpretation [12], [16] benchmarked their interpretation performance using 

synthetic datasets with known ground-truth of feature importance. In this study, we also 

compared the interpretation performance of LINA with the SOTA methods using synthetic 

datasets created as in previous studies [15], [18].

The performance of the first-order interpretation of LINA was compared with DeepLIFT, 

LIME, Grad*Input and L2X (Table 1). The three first-order importance scores from LINA, 

including FP, DP and IP, were tested. The DP score performed the worst among the 

three, especially in the F3 and F4 datasets which contained interactions among three 

features. This suggested the limitation of using attention weights as a measure of feature 

importance. The FP score provided the most accurate ranking among the three LINA scores 

because it accounted for the direct contribution of a feature and its indirect contribution 

through attention weights. The first-order importance scores were then compared among 

different algorithms. L2X and LIME distinguished many important features correctly from 

un-informative features, but their rankings of the important features were often inaccurate. 

The gradient-based methods produced mostly accurate rankings of the features based on 

their first-order importance. Their interpretation accuracy generally decreased in datasets 

containing interactions among more features. Among all the methods, the LINA FP scores 

provided the most accurate ranking of the features on average.

The performance of the second-order interpretation of LINA was compared with those of 

GEH and NID (Table 2). There were a total of 78 possible pairs of interactions among 13 

features in each −A synthetic dataset and there were 4950 possible pairs of interactions 

among 100 features in each −B synthetic dataset. The precision from random guesses was 

only ~12.8% on average in the −A datasets and less than 1% in the −B datasets. The three 

second-order algorithms all performed significantly better than the random guess. In the −A 

datasets, the average precision of LINA SP was ~80%, which was ~12% higher than that of 

NID and ~29% higher than that of GEH. The addition of 87 un-informative features in the 

−B datasets reduced the average precision of LINA by ~15%, that of NID by ~13%, and that 

of GEH by ~22%. In the −B datasets, the average precision of LINA SP was ~65%, which 

was ~9% higher than that of NID and ~35% higher than that of GEH. This indicates that 

more accurate second-order interpretations can be obtained from the LINA models.
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C. BENCHMARKING OF THE FIRST-ORDER AND SECOND-ORDER INTERPRETATION 
USING A PREDICTIVE GENOMICS APPLICATION

As the performance benchmarks in synthetic datasets may not reflect those in real-world 

applications, we engineered a real-world benchmark based on a breast cancer dataset for 

predictive genomics. While it was unknown which SNPs and which SNP interactions 

were truly important for phenotype prediction, the decoy SNPs added by us were truly 

unimportant. Moreover, a decoy SNP cannot have a true interaction, such as XOR or 

multiplication, with a real SNP to have a joint impact on the disease outcome. Thus, if a 

decoy SNP or an interaction with a decoy SNP is ranked by an algorithm as important, it 

should be considered a false positive detection. As the number of decoy SNPs was the same 

as the number of real SNPs, the false discovery rate can be estimated by assuming that an 

algorithm makes as many false positive detections from the decoy SNPs as from the real 

SNPs. This allowed us to compare the number of positive detections by an algorithm at 

certain FDR levels.

The first-order interpretation performance of LINA was compared with those of DeepLIFT, 

LIME, Grad*Input and L2X (Table 3). At 0.1%, 1%, and 5% FDR, LINA identified more 

important SNPs than other algorithms. LINA also had the lowest FDRs for the top-100 and 

top-200 SNPs. The second-order interpretation performance of LINA was compared with 

those of NID and GEH (Table 4). At 0.1%, 1%, and 5% FDR, LINA identified more pairs 

of important SNP interactions than NID and GEH did. LINA had lower FDRs than the other 

algorithms for the top-1000 and top-2000 SNP pairs. Both L2X and GEH failed to output 

meaningful importance scores in this predictive genomics dataset. Because GEH needed to 

compute the full Hessian, it was also much more computationally expensive than the other 

algorithms.

The existing model interpretation algorithms and LINA can provide rankings of the features 

or feature interactions based on their importance scores at arbitrary scales. We demonstrated 

that decoy features can be used in real-world applications to set thresholds for first-order 

and second-order importance scores based on the FDRs of retained features and feature 

pairs. This provided an uncertainty quantification of the model interpretation results without 

knowing the ground-truth in real-world applications.

The predictive genomics application provided a real-world test of the interpretation 

performance of these algorithms. In comparison with the synthetic datasets, the predictive 

genomics dataset was more challenging for model interpretation, because of the low 

predictive performance of the models and the large number of input features. For this 

real-world application, LINA was shown to provide better first-order and second-order 

interpretation performance than existing algorithms on a model-wise level. Furthermore, 

LINA can provide instance-wise interpretation to identify important SNP and SNP 

interactions for the prediction of individual subjects. Model interpretation is important for 

making biological discoveries from predictive models, because first-order interpretation can 

identify individual genes involved in a disease [22], [23] and second-order interpretation can 

uncover epistatic interactions among genes for a disease [24], [25]. These discoveries may 

provide new drug targets [26]–[28] and enable personalized formulation of treatment plans 

[29]–[31] for breast cancer.
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V. CONCLUSION

In this study, we designed a new neural network architecture, referred to as LINA, for 

model interpretation. LINA uses a linearization layer on top of a deep inner attention 

neural network to generate a linear representation of model prediction. LINA provides 

the unique capability of offering both first-order and second-order interpretations and both 

instance-wise and model-wise interpretations. The interpretation performance of LINA was 

benchmarked to be higher than the existing algorithms on synthetic datasets and a predictive 

genomics dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
First-order model-wise interpretation. The three bars of a feature represented the FP, IP and 

DP scores of this feature in the LINA model.

BADRÉ and PAN Page 19

IEEE Access. Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Second-order model-wise interpretation. The second-order model-wise importance scores 

(SP) are undirected between two features and are shown in a symmetric matrix as a heatmap. 

The importance scores for the feature self-interactions are set to zero in the diagonal of the 

matrix.
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TABLE 3.

Performance benchmarking of the first-order interpretation for predictive genomics.

Methods LINA FP Saliency grad*Input DeepLift LIME L2X

# SNPs at 0.1% FDR 127 35 75 75 9 0

# SNPsatl%FDR 158 35 88 85 9 0

# SNPs at 5% FDR 255 57 122 119 9 0

FDR at top-100 SNP 0.0% 7.5% 3.0% 2.0% 16.3% N/A

FDR at top-200 SNP 1.5% 16.2% 9.3% 9.3% 20.5% N/A
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TABLE 4.

Performance benchmarking of the second-order interpretation for predictive genomics.

Methods LINA SP NID GEH

# SNP pairs at 0.1% FDR 583 415 0

# SNP pairs at 1% FDR 1040 504 0

# SNP pairs at 5% FDR 2887 810 0

FDR at top-1000 SNP pairs 0.9% 10.5% N/A

FDR at top-2000 SNP pairs 3.0% 31.8% N/A

IEEE Access. Author manuscript; available in PMC 2022 April 22.


	Abstract
	INTRODUCTION
	METHODS
	LINA ARCHITECTURE
	THE LOSS FUNCTION
	FIRST-ORDER INTERPRETATION
	Proof:

	SECOND-ORDER INTERPRETATION
	RECAP OF THE LINA IMPORTANCE SCORES

	Table T1
	DATA AND EXPERIMENTAL SETUP
	CALIFORNIA HOUSING DATASET
	FIRST-ORDER BENCHMARKING DATASETS
	SECOND-ORDER BENCHMARKING DATASET
	BREAST CANCER DATASET
	IMPLEMENTATIONS AND EVALUATION STRATEGIES

	RESULTS AND DISCUSSION
	DEMONSTRATION OF LINA ON A REAL-WORLD APPLICATION
	INSTANCE-WISE INTERPRETATION
	MODEL-WISE INTERPRETATION

	BENCHMARKING OF THE FIRST-ORDER AND SECOND-ORDER INTERPRETATIONS USING SYNTHETIC DATASETS
	BENCHMARKING OF THE FIRST-ORDER AND SECOND-ORDER INTERPRETATION USING A PREDICTIVE GENOMICS APPLICATION

	CONCLUSION
	References
	FIGURE 1.
	FIGURE 2.
	TABLE 1.
	TABLE 2.
	TABLE 3.
	TABLE 4.

