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Abstract: To mimic more realistic lung tissue conditions, co-cultures of epithelial and immune cells
are one comparatively easy-to-use option. To reveal the impact of immune cells on the mode of action
(MoA) of CuO nanoparticles (NP) on epithelial cells, A549 cells as a model for epithelial cells have
been cultured with or without differentiated THP-1 cells, as a model for macrophages. After 24 h of
submerged incubation, cytotoxicity and transcriptional toxicity profiles were obtained and compared
between the cell culture systems. Dose-dependent cytotoxicity was apparent starting from 8.0 µg/cm2

CuO NP. With regard to gene expression profiles, no differences between the cell models were
observed concerning metal homeostasis, oxidative stress, and DNA damage, confirming the known
MoA of CuO NP, i.e., endocytotic particle uptake, intracellular particle dissolution within lysosomes
with subsequent metal ion deliberation, increased oxidative stress, and genotoxicity. However,
applying a co-culture of epithelial and macrophage-like cells, CuO NP additionally provoked a pro-
inflammatory response involving NLRP3 inflammasome and pro-inflammatory transcription factor
activation. This study demonstrates that the application of this easy-to-use advanced in vitro model
is able to extend the detection of cellular effects provoked by nanomaterials by an immunological
response and emphasizes the use of such models to address a more comprehensive MoA.

Keywords: nanotoxicology; co-culture; CuO; A549; THP-1; high-throughput RT-qPCR; gene expres-
sion profiles

1. Introduction

Nanomaterials are increasingly applied in various products due to their exceptional
physicochemical properties. As a consequence, human exposure to nanomaterials is in-
evitable, emphasizing the need for appropriate tools for toxicological risk assessment [1].
Occupational exposure especially deserves special attention; in such contexts, inhalation
is the most prevalent route of uptake [2]. Particles deposit in a size-dependent manner
throughout the whole pulmonary system. While insoluble micro-sized particles can be
cleared comparatively quickly and efficiently by the mucociliary escalator in the upper
respiratory tract, clearance of insoluble nanoparticles in the lower respiratory is not as effec-
tive. This results in an extended retention half-life of these particles in the alveolar region,
where they can interact with the pulmonary air-blood barrier [3]. This barrier consists of
one layer of epithelial cells, dendritic cells inside and underneath the epithelium as well
as macrophages; it is vascularized by capillaries underneath the barrier for optimized gas
exchange. The epithelium itself consists of two different epithelia cell types, type 1 and
type 2 (AT-I, AT-II). While AT-I covers most of the surface of the alveolar epithelium (>93%),
AT-II cells cover less area (ca. 7%) but are more numerous (16% compared to 8% of cells,
respectively, in the distal lung). Furthermore, AT-II cells serve for surfactant production and
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act as precursors for AT-I cells [4–6]. Also, AT-II cells have been shown to release several
immune response-related chemokines, e.g., after an infection, resulting in the recruitment of
innate immune cells, as well as pro-inflammatory cytokines [6]. One of the most frequently
applied AT-II cell models is the adenocarcinoma cell line A549, which exerts important
AT-II morphology and functionality, such as lamellar body formation, surfactant secretion
at air–liquid interface cultivation, pro-inflammatory cytokine release, and AT-II typical
transport properties [4,5,7]. Regarding xenobiotic metabolism, some contradictory results
have been published. Thus, Foster and colleagues showed consistent metabolic properties
of A549 cells when compared to type II pulmonary epithelial cells with respect to phase I
oxidative metabolism [7]. However, Castell and colleagues describe the capacity of xenobi-
otic biotransformation via phase I metabolism as not comparable with normal lung tissue
while phase II activity was found to be within the same range as lung tissue [8].

Due to ineffective particle clearance at higher doses, nanoparticles can interact not
only with epithelial cells but also with cells of the immune system such as macrophages
and dendritic cells. Therefore, for toxicological studies, it would be advantageous to use
co-cultures of epithelia and immune cells to mimic in vivo conditions more realistically.
Furthermore, such systems have been shown to allow for cell–cell communication [5].
Presently, advanced in vitro models have already been used in several studies investigating
the adverse effects of nanomaterials. However, models with up to four cell lines are
often very complex and also expensive due to the use of transwell inserts (e.g., [9–12]).
One easy-to-use co-culture system to mimic the alveolar barrier is a co-culture consisting
of an A549 cell, as a very well-known model for alveolar epithelia type II cells, together
with differentiated THP-1 (dTHP-1) cells resembling macrophage-like cells [5]. Only a
few particle toxicity studies have been performed applying this comparatively easy-to-use
advanced in vitro model under submerged conditions, revealing, for instance, changes in
inflammatory response upon particle exposure [13–17]. Within the present study, for the
first time, we combined this co-culture model with a comprehensive gene expression
analysis to potentially identify differences in the MoA between the cell models.

Since the toxicity of CuO nanoparticles (NP) after submerged [18,19] and air–liquid
interface exposure [20,21] has been extensively studied and largely understood, this parti-
cle species was used to explore toxicity profiles under single- and co-culture conditions.
Regarding the impact of CuO NP in A549 cells, the present study continues from previous
studies of our working group, applying a high-throughput RT-qPCR (HT RT-qPCR) system
to investigate the expression of 95 genes in 96 samples in parallel by using a custom-
designed gene set focusing on the impairment of genomic stability. Briefly, the identified
MoA included endocytotic particle uptake, intracellular particle dissolution within lyso-
somes, increased oxidative stress, and genotoxicity [22–25]. Within the present study,
the gene set has been extended with markers for inflammation and fibrosis. Regarding the
impact of CuO NP on the applied co-culture, only one study has been published so far
investigating cell viability, reactive oxygen species (ROS) induction, and IL-8 secretion [26].
Here, only IL-8 secretion showed cell-type-dependent results.

Within the present study the impact of CuO NP on A549 cells in mono- and co-
culture with dTHP-1 was elucidated using a comprehensive transcriptional analysis by the
HT RT-qPCR approach described above. Major aim was to identify possible differences
in the MoA on a transcriptional level of both cell models and to elucidate whether or
not the combination of co-culture and HT RT-qPCR can be applied as an easy-to-use
screening model for nanomaterial hazard identification. The results demonstrate quite a
similar impact of both culture systems on genes related to xenobiotic metabolism, fibrosis,
metal homeostasis, oxidative stress response, apoptosis and cell cycle regulation as well as
DNA damage response and repair, but pronounced differences in transcriptional toxicity
profiles for markers of the inflammatory response, thus demonstrating the applicability of
the applied tools for the risk assessment of nanomaterials.
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2. Results
2.1. Nanoparticle Characterization

Endotoxin levels of the CuO NP in double-distilled H2O were below the detection
limit of 0.1 EU/mL. Physicochemical properties were characterized thoroughly either in
previous projects or within this study regarding their primary particle size (transmission
electron microscopy, TEM), hydrodynamic diameter, ζ-potential, specific surface area,
and solubility in the cell culture medium after 24 h. These data are summarized in Table 1.

Table 1. Summary of the nanoparticle characterization.

dprimary (nm) dhyd (nm) PDI ζ-Potential (mV) SSA (m2/g) Solubility in RPMI 2

17.1 ± 0.4 175 ± 44 0.49 ± 0.045 −14.8 ± 0.2 47 1 23 ± 12%

The determination of the hydrodynamic diameter (dhyd), ζ-potential, and solubility in cell culture media after 24 h were performed in a
suspension of 100 µg/mL in cell culture medium (RPMI, supplemented with 10% fetal bovine serum (FBS)). dprimary: primary particle size,
SSA: specific surface area, PDI: polydispersity index. 1 From Sustainable Nanotechnolgies (SUN) project [27]. 2 Supplemented with 10% FBS.

CuO particles were mostly spherical, relatively narrow distributed (10–40 nm), slightly
aggregated, and revealed a primary particle size of 17.1 ± 0.4 nm (Figure 1). Using dynamic
light scattering (DLS), a hydrodynamic diameter of 175 nm, a PDI of 0.49, and a ζ-potential
of −14.8 mV in a 100 µg/mL suspension in serum-supplemented RPMI was obtained.
The solubility of CuO NP in serum-supplemented RPMI was found to be 23 ± 12% after
24 h. A specific surface area (SSA) of 47 m2/g was determined within the Sustainable Nan-
otechnologies (SUN) project [27]. In addition, these particles were further characterized by
Gosens and colleagues using x-ray diffraction (XRD) and x-ray photoelectron sprectroscopy
(XPS) techniques, proving the presence of monoclinic CuO and the appearance of copper,
oxygen, and carbon [28].

Figure 1. Representative TEM image of the CuO NP at 2.56 mg/mL in 0.05% bovine serum albumin
(BSA) after dispersion. More images are shown in Supplementary Figure S1.

2.2. Cytotoxicity of CuO in Mono- and Co-Culture

Within this study, the relative cell count (RCC) and the ATP content were chosen as
parameters of cytotoxicity (Figure 2). In the first step, the ATP content was determined by
applying five doses of CuO NP (0.32, 1.6, 3.2, 16.1, and 32.1 µg/cm2). Within both culture
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systems, dose-dependent cytotoxicity was observed, with a tendency towards higher
sensitivity of the co-culture system, which was statistically significant at 32.1 µg/cm2.
For example, ATP contents of 73 and 53% were observed after applying 16.1 µg/cm2

and 49 and 33% at 32.1 µg/cm2 in mono- and co-culture, respectively. Subsequently,
three doses for each culture were chosen for RCC determination and transcriptional toxicity
profiling, representing no/low, mid, and high (up to 50%) cytotoxicity. Since preliminary
experiments revealed a higher sensitivity of RCC compared to the ATP-content, 3.2, 8.0,
and 16.1 µg/cm2 were applied resulting in 89, 70, and 57% viability in the monoculture and
97, 69, and 51% viability in the co-culture, respectively. For this parameter of cytotoxicity,
no relevant difference between the two cell culture models was apparent. To assess the
potential role of copper ions released extracellularly from the CuO NP on the observed
cytotoxicity, copper ion concentrations were determined to be about 150 µM at the highest
dose, resulting in an RCC of 82 ± 2% and 80 ± 7% in the mono- and co-culture, respectively.

Figure 2. Impact of CuO NP on the ATP-content and relative cell count (RCC) of a mono- (A549) and
co-culture (A549 + dTHP-1). Monocultures are displayed in green squares and co-culture in blue
circles. ATP-content is shown as a solid line, and RCC is plotted as a dashed line. Shown are the mean
values of three independent experiments ± standard deviation (SD). Statistics were performed using
either t-test (* ≤ 0.05) to compare differences between mono- and co-culture or ANOVA-Dunnet’s
t-test (• ≤ 0.05, •• ≤ 0.01, ••• ≤ 0.001) to compare differences between doses of one endpoint.

2.3. Transcriptional Toxicity Profiles in Mono- and Co-Culture

To obtain transcriptional toxicity profiles, a high-throughput RT-qPCR system was
applied investigating 95 genes in 96 samples in parallel, comprising markers related to
xenobiotic metabolism, metal homeostasis, oxidative stress response, apoptosis, and cell
cycle regulation, as well as DNA damage response and repair [25], supplemented with
markers of inflammation and fibrosis (Supplementary Table S1). In a first step, basal gene
expression profiles of mono- and co-cultures were analyzed and referred to the untreated
monoculture control. To assess changes in gene expression profiles, two parameters were
analyzed. First, alterations in gene expression were evaluated with respect to statistical
significance. Since even minor alterations appear to be significant when error bars are
small, as a second parameter, changes were judged based on fold-changes of expression
levels of the respective genes. Here, a reduction of at least 50% (log2-fold change ≤ −1) or a
doubling (log2-fold change ≥ 1) when compared to the respective control were considered
relevant [23]. The comparison of basal gene expression of both culture models is displayed
as a volcano plot in Figure 3. Even though significant differences (expression changes
−1 ≤ x ≤ 1) were observed for several genes, a relevant—according to our criteria as
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outlined above—up-regulation (≥1 log2-fold change) in the co-culture when compared to
the monoculture was observed for only two genes, namely CCL22 (6.9 log2-fold change,
119.4-fold induction), coding for a macrophage-derived chemokine (MDC, CCL22), and IL-
1b (4.0 log2-fold change, 16-fold induction), coding for a pro-inflammatory cytokine of the
IL1-family (IL-1β). A comprehensive list of all analyzed genes including their log2-fold
change and p-values is provided in Supplementary Table S2.

Figure 3. Differences in gene expression between untreated mono- (A549) and co-culture (A549
+ dTHP-1) using a high-throughput RT-qPCR system. The volcano plot displays the extent (log2

(fold change), x-axis) and the statistical significance (−log10 (p-value), y-axis) of gene expression
alterations between the co-culture compared to the monoculture. Vertical lines indicate a relevant
expression change of 50% reduction (−1) or doubling (+1). The horizontal line displays the statistical
significance threshold (p ≤ 0.05, n = 3, independent samples t-test). Red: significant up-regulated
genes. Green: Significant down-regulated genes. Orange: significant changes in gene expression,
but not considered relevant (−1 ≤ x ≤ 1). Grey: no significant change in gene expression.

Subsequently, the impact of CuO NP on gene expression profiles was examined in
both cell culture models after 24 h incubation with three doses (3.2, 8.0, and 16.1 µg/cm2).
An overview after treatment with CuO NP of the mono- and co-culture, respectively, is dis-
played as a heatmap in Figure 4. On the first view, both cell models revealed similar toxicity
profiles, with the exception of alterations in the inflammatory response. The data are also sum-
marized as x-fold changes in Supplementary Table S3. Main observations in both cell models
for each investigated gene cluster are described in more detail in the following sections.

2.3.1. Impact on Genes Related to Inflammation and Fibrosis

With regard to inflammatory markers, several genes revealed a cell culture model-
dependent response (Figure 5A). Here, both, down-regulation (CCL2, COX2, IL-1b) and
up-regulation (IL-1a, IL-6) were observed after CuO NP exposure. In particular, CCL22 was
dose-dependently depressed down to −4.8 log2-fold (−27.9-fold) in the co-culture, while in
monoculture, an increased expression up to 1.4 log2-fold (2.6-fold) was apparent. For this
gene, the cell-culture-dependent difference was statistically significant at each applied dose.
In addition, a pronounced down-regulation of COX2, coding for cyclooxygenase 2 and
representing an inflammation marker, within both cell cultures was observed, at a nearly
constant level across all applied doses. Furthermore, IL-1b expression was constantly down-
regulated across all applied doses in both cell models down to −0.9 and −3.0 log2-fold (−1.9



Int. J. Mol. Sci. 2021, 22, 5044 6 of 18

and −8 fold), respectively. Even though effects were more pronounced in the co-culture
system, only the difference at the lowest dose reached statistical significance between the
cell models due to comparatively high standard deviations. Marked differences were seen
for IL-6: while the expression in monoculture was slightly, but consistently, decreased down
to −0.9 log2-fold (−1.9-fold) across all applied doses, the co-culture responded with an up
to 2.6 log2-fold (6-fold) induction at 3.1 and 8.0 µg/cm2 CuO. IL-1a expression was only
quantifiable in the co-culture revealing an enhanced expression of 2.9 log2-fold (7.5-fold)
at the lowest dose, with lower induction levels at higher doses. Finally, IL-8 was induced
dose-dependently in both cell models up to 5.6 log2-fold (48.5-fold) without any difference
between mono- and co-culture (Figure 4).

Figure 4. Overview of the impact of CuO NP on A549 cells cultured in monoculture or in co-culture with dTHP-1 cells
using a high-throughput RT-qPCR approach with a custom-designed gene set. The genes under investigation have been
clustered into groups associated with xenobiotic metabolism, inflammation, fibrosis, metal homeostasis, oxidative stress
response, apoptosis, and cell cycle regulation as well as DNA damage response and repair. Both cell models were treated
with CuO NP for 24 h. Displayed are the log2-fold changes of relative gene expression as a heatmap. Red colors indicate an
enhanced expression, and blue colors indicate a down-regulation. Shown are the mean values of at least three independently
conducted experiments. n.q.: not quantifiable due to low expression levels.
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Figure 5. Impact of CuO NP on genes related to inflammation and fibrosis in A549 monoculture
(A549) and co-culture (A549+dTHP-1) after 24 h incubation. (a) Gene expression of inflammatory
markers; (b) gene expression of fibrotic markers. Depicted are the log2-fold changes of at least
three independently conducted experiments ± SD. Significantly different from negative controls:
• ≤ 0.05, •• ≤ 0.01, ••• ≤ 0.001 (ANOVA-Dunnett’s t-test); significantly different between cell
models: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 (unpaired t-test).

In the context of fibrosis markers, a consistent down-regulation of several genes
across all applied doses was apparent. The strongest depressions were observed for
ACTA2 and PDGFA, coding for alpha smooth muscle actin (α-SMA) and a growth factor
of the PDGF family, respectively. While ACTA2 was consistently down-regulated roughly
−3 log2-fold (−8 fold), PDGFA was dose-dependent depressed down to −5 log2-fold
(−32-fold). However, no difference was seen between mono- and co-culture (Figure 5).
Furthermore, in the case of COL1A1, quantification was only possible in the co-culture since
expression levels in A549 cells themselves were below the detection level. For all other
markers, at most slight differences were apparent, which were not considered relevant.
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2.3.2. Impact on Genes Related to Xenobiotic Metabolism and Metal Homeostasis

Regarding xenobiotic metabolism, two genes were found to be affected by CuO,
independent of the applied cell culture system (Figure 4). Here, a −2 log2-fold (−4-fold)
down-regulation of AHR was apparent at the lowest dose of 3.2 µg/cm2, reaching a constant
expression level of −3.8 log2-fold (−13.9-fold) at higher doses. In contrast, the expression
of CYP1A1 was increased at all doses applied from 2.2 to 2.6 log2-fold (4.6 to 6-fold).

MT1X and MT2A, coding for metallothioneins and thus related to metal homeosta-
sis, revealed an increased expression level after CuO NP exposure in both cell models
(Figure 6A). In both cases, the lowest dose provoked the most pronounced induction by 4.6
and 5.1 log2-fold (24.3 and 34.3-fold) for MT1X and 4.2 and 4.7 log2-fold (18.4 and 26-fold)
for MT2A, respectively. With increasing dose, a plateau in gene expression was observed
for both MT1X and MT2A. Altogether, no statistically significant differences between mono-
and co-culture were apparent in these gene clusters.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 18 
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Figure 6. Impact of CuO NP on genes related to metal homeostasis and oxidative stress response
in A549 monoculture (A549) and co-culture (A549+dTHP-1) after 24 h incubation. (a) Expression
of genes related to metal homeostasis and transcriptional oxidative stress markers; (b) expression
of genes associated with anti-oxidative defense mechanisms. Depicted is the log2-fold change of
at least three independently conducted experiments ± SD. Significantly different from negative
controls: • ≤ 0.05, •• ≤ 0.01, ••• ≤ 0.001 (ANOVA-Dunnett’s t-test); significantly different between
cell models: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 (unpaired t-test).
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2.3.3. Impact on Genes Related to Oxidative Stress Response

As a broad picture, an impact on the transcriptional oxidative stress response after CuO
NP exposure was apparent from an up-regulation of oxidative stress markers (Figure 6a)
and a down-regulation of several genes associated with anti-oxidative defense mechanisms
(Figure 6b). Most pronounced was an up-regulation observed for HMOX1 and HSPA1A,
coding for heme oxygenase 1, and heat shock protein A1A, respectively. HMOX1 expression
was consistently induced up to 4.8 log2-fold (28-fold) in both cell culture models, with a
small but statistically significant lower induction in the co-culture at the lowest dose.
Regarding HSPA1A, an almost identical induction in mono- and co-culture was observed,
reaching a maximum of 6 log2-fold (64-fold) expression level. In addition, SOD2, coding
for manganese-dependent superoxide dismutase 2, was up-regulated. While the induction
was small and not considered relevant in the monoculture, the effect was more pronounced
in the co-culture system, where a constant induction of 1.4 to 1.6 log2-fold (2.6 to 3-fold) was
observed. Most other genes associated with anti-oxidative defense mechanisms were down-
regulated; effects were either dose-independent (CAT, G6PD, GPX2) or dose-dependent
(GCLC, KEAP1, MAP3K5, NFE2L2, NFKB1, NFKBIA), after CuO NP exposure (Figure 4).
When comparing the two cell culture models, NFKB1, KEAP1, and NFE2L2 exerted slightly
lower effects in the co-culture system as compared to the A549 monoculture (Figure 6b).

2.3.4. Impairment of Genes Related to Apoptosis and Cell Cycle Regulation

Considering genes related to apoptosis and cell cycle regulation, all genes except
for one (JUN) were down-regulated, most of them independently from the applied cell
culture system. In particular, a distinct dose-dependent down-regulation of BBC3, CDKN1B,
MYC, and PLK3 was apparent (Figure 4). Only three genes showed rather slight but at
some concentrations statistically significant changes between the cell models, namely BAX,
PPM1D, and SIRT2 (Supplementary Figure S2). However, these differences did not seem to
be relevant since similar expression patterns with similar degrees of down-regulation were
observed across all applied doses.

2.3.5. Impact on Genes Related to DNA Damage Response and Repair

CuO NP provoked a pronounced impact on various genes associated with DNA
damage response and repair. Most strikingly, genes coding for DNA damage response
proteins (DDIT3, GADD45A) were induced, whereas genes coding for specific DNA repair
proteins were decreased in their expression. Thus, the genotoxic stress marker DDIT3
showed a dose-dependent increase up to 4.5 log2-fold (22.6-fold), with both cell culture
systems showing a similar induction (Figure 7). In addition, GADD45A, as a second marker
for genotoxic stress, was consistently induced in both cell systems across all applied doses
(Figure 7). Nevertheless, genes coding for specific DNA damage signaling or DNA repair
factors such as ATR, ATM, BRCA2, ERCC4, ERCC5, or PCNA exerted a dose-dependent
down-regulation. Even though the pattern was similar in both cell culture systems, in the
case of ATR, ATM, and BRCA2, there was a tendency towards stronger effects in the
monoculture as compared to the co-culture system, which was statistically significant at
some dose points.
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Figure 7. Impact of CuO NP on genes related to DNA damage response and repair in A549 monocul-
ture (A549) and co-culture (A549+dTHP-1) after 24 h incubation. Depicted is the log2-fold change
of at least three independently conducted experiments ± SD. Significantly different from negative
controls: • ≤ 0.05, •• ≤ 0.01, ••• ≤ 0.001 (ANOVA-Dunnett’s t-test); significantly different between
cell models: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 (unpaired t-test).

3. Discussion

Within this study, CuO NP were applied on A549 cells in mono- and co-culture with
dTHP-1 cells followed by a comprehensive transcriptional analysis using an HT RT-qPCR
approach and applying a custom-designed gene set as described previously [22–25]. For the
purpose of this study, the gene set originally comprising markers of metal homeostasis,
(oxidative) stress response, DNA damage and repair, cell cycle control, and apoptosis was ex-
tended with genes coding for inflammatory and fibrotic pathways (Supplementary Table S1).
The aim of the present investigation was to identify potential differences in the MoA on
a transcriptional level of both cell models and to elucidate whether the combination of
co-culture and HT RT-qPCR can be applied as an easy-to-use screening model for nano-
material hazard identification. Since no separation of epithelial cells and macrophage-like
cells was performed within the co-culture experiments and A549 were more numerous,
most effects were likely dominated by A549 cells, potentially influenced by dTHP-1 cells in
the co-culture system.

The cytotoxic effects of CuO NP are consistent with previous studies using A549 cells
(e.g., [18,19]). When comparing the two cell models, a tendency towards higher toxicity of
CuO in the co-culture system was observed when assessing the ATP-content, while for RCC,
a similar toxicity was observed. This is in general agreement with data from literature using
A549 in mono- or co-culture, with one study reporting a slight difference [13], while others
did not observe any difference [26,29]. To elucidate the contribution of copper ions to the
observed toxicity, the solubility of the applied particles after dispersion for 24 h in cell
culture medium was determined. Here, 23% solubility was observed within the cell culture
medium applied in the present study, which is considerably lower than 67% previously
found in another cell culture medium (DMEM) [30], indicating a moderately dependent
solubility. The soluble fraction of 23% reflects a concentration of roughly 150 µM copper
ions at the highest applied dose for gene expression and RCC. As previously shown within
our working group, CuCl2 reduced the colony-forming ability in A549 cells by 50% at
252 µM [18], while no relevant impact by CuCl2 was apparent on RCC in BEAS-2B cells [22].
In experiments performed within the present investigations, 150 µM CuCl2 corresponding
to 25% solubility resulted in roughly 80% RCC in both cell systems, indicating that most
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cytotoxicity resulted from CuO NP, with a small impact of extracellularly released copper
ions. With regard to the potential contribution of soluble copper ions to the gene expression
alterations, Strauch and colleagues previously showed that a copper ion concentration
of 126 µM did provoke some alterations on the transcriptional level [22]. Accordingly,
it is suggested that the highest possibly released extracellular concentration of 150 µM
water-soluble copper ions might have an impact on the observed gene expression changes
within the present study. However, it was also shown that the endocytotic uptake and
lysosomal acidification add significantly to intracellular copper levels and transcriptional
changes provoked by CuO NP [24]; therefore, it is suggested that extracellular copper ions
contribute to the cellular effects investigated but are not the driving force.

In order to obtain information on different gene expression patterns in between the
two cell culture models, in a first step, untreated controls of both cultures were analyzed
and compared. Statistically significant and, according to our criteria, relevant (±1 log2-fold)
changes were seen only for two genes, namely an increased expression of up to almost
120-fold in the case of CCL22 and 16-fold in the case of IL-1b in the co-culture system when
compared to the monoculture of A549. CCL22 encodes the protein macrophage-derived
chemokine (MDC, CCL22) which is mainly synthesized by macrophages and dendritic
cells [31], explaining the enhanced expression in the co-culture with macrophage-like
cells. IL-1b and IL-1a both encode pro-inflammatory cytokines of the IL1-family (IL-1β and
IL-1α), which are produced by multiple cells, including macrophages [32,33]. In contrast
to IL-1b, the expression of IL-1a was only quantifiable in the co-culture, indicating its
induction. Kolesar and colleagues previously characterized the expression of cytokine
genes in THP-1 cells after co-culture with A549 cells. Among other cytokines, a strong
increase in IL-1b expression in THP-1 cells was observed after 24 h, indicating an impact
of the epithelial cells on gene expression in macrophages in their co-culture system [34].
Furthermore, both CCL22 and IL-1b are markers for macrophage polarization either towards
the pro-inflammatory M1 (IL-1b) or the anti-inflammatory M2 (CCL22) phenotype [35].
The simultaneous expression of these genes within this study suggests a mixture of M1
and M2 macrophages after differentiation of THP-1 cells.

Transcriptional toxicity profiles of CuO NP in A549 cells have already been obtained
previously after submerged and air-liquid exposure conditions [22–24]. The presented
data within this study for A549 cells are consistent with the proposed “Trojan horse
type mechanism”. Briefly, this involves endocytic particle uptake followed by lysosomal
degradation of the NP with subsequent copper ion release; this is in agreement with the
enhanced MT1A and MT2X expression. This leads to elevated levels of intracellular copper
ions, which induce an oxidative (HMOX1, HSPA1A) and inflammatory (IL8) response
via the activation of redox-sensitive transcription factors such as Nrf2, HSF-1, NF-κB,
and AP-1. In support of this theory, within the present study, HMOX1 and HSP1A1
were up-regulated in a pronounced manner. Nevertheless, other genes involved in the
anti-oxidative stress response such as GPX2, GSR, KEAP1, NFE2L2, and NFKB1 were
downregulated. This may be explained by the fact that, in A549 cells, Nrf2 is constitutively
activated due to a dysfunction of its negative inhibitor Keap1 [36]. A similar down-
regulation of several anti-oxidative genes in A549 cells was also observed in a previous
study in our working group, while the complete oxidative stress response was apparent in
Beas-2B cells [22]. Regarding the role of Nrf2 in HMOX1 transcription, it is known that not
only Nrf2 but also members of the heat-shock factor, NF-κB, and AP-1 families regulate
HMOX1 expression [37], which may explain the induction of HMOX1 expression in A549
cells. Interestingly, HMOX1 expression is also even more pronounced in Beas-2B cells [22].
Nevertheless, several Nrf2- independent genes associated with apoptosis and cell cycle
regulation, such as APAF1, BAX, BBC3, BCL2, CCND1, CDKN1B, MDM2, MYC, and PLK3,
were clearly down-regulated as well. One potential explanation is epigenetic alterations
as postulated by Chibber and Shanker [38]; however, this mechanism would need to be
further investigated. The induction of the genotoxic stress markers DDIT3 and GADD45A is
in agreement with the induction of DNA damage by elevated levels of redox-active copper
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ions; however, at the same time, other genes related to DNA damage signaling such as
ATM and ATR as well as genes coding for specific DNA repair pathways were consistently
down-regulated. These observations resemble those made in our previous study under
submerged conditions [22]. The repression of DNA repair pathways despite the induction
of DNA damage is still not fully understood; however, Collin and colleagues suggested
that cellular senescence may result in repressed DNA repair genes [39]. An induction of
senescence was, so far, shown for copper sulfate in HeLa cells and for Cu NP in Enchytraeus
crypticus [40,41]; a potential induction of senescence by CuO NP in mammalian cells
remains to be elucidated.

Regarding xenobiotic metabolism, within the present study, AHR was down-regulated
while CYP1A1 was up-regulated. The latter is mainly regulated by aryl hydrocarbon recep-
tor (AhR). Concerning literature data, the activation of AhR by Cu2+ has been described
so far for rat cells at low copper ion concentrations (30 µM), while at higher concentra-
tions, both CYP1A1 and AHR expression was down-regulated, possibly due to increased
oxidative stress [42]. This aspect needs to be further investigated.

Considering the differences between the two cell culture models within the gene clus-
ters described above and identified previously contributing to CuO NP transcriptional tox-
icity profiles, some statistically significant results were apparent. However, these changes
were only slight and/or only apparent at single doses and therefore not considered relevant.
This concerns the expression of ATM, BAX, COX2, FN1, GPX1, GSR, HMOX1, KEAP1,
NFE2L2, NFKB1, PMAIP1, PRDX1, PPM1D, SOD1, SIRT2, and TGFB1. In contrast, changes
in the expression of ATR, BRCA2, and SOD2 were more distinct between the two cell
culture systems. While BRCA2 and ATR were more pronouncedly down-regulated in A549
cells when compared to the co-culture system, SOD2 was up-regulated in the co-culture,
and no induction was obvious in A549 cells alone. SOD2 up-regulation is linked to a NF-κB
activation [43]; however, other target NF-κB genes such as BAX, BCL2, COX2, NFKBIA,
and NFKB1 [44–47] were down-regulated. Therefore, no distinct conclusion regarding
NF-κB activation in the co-culture system can be made.

As already stated, the previously applied gene set [22,23] was complemented by fi-
brotic and inflammatory markers within this study. Considering fibrosis, a down-regulation
of respective marker genes was generally apparent. ACTA2, coding for the epithelial–
mesenchymal transition (EMT) marker α-SMA [48], and PDGFA, coding for the fibrosis
marker protein platelet-derived growth factor subunit A [49], were most affected by CuO
NP. The only difference between the two cell systems within the fibrotic gene cluster was
the up-regulation of COL1A1, coding for the mesenchymal marker collagen type 1A1 [50].
This observation was rather surprising, as CuO NP provoke oxidative stress, and ROS has
been suggested to cause EMT, and thus the onset of fibrosis [51].

However, the most distinct differences in the transcriptional toxicity profile of CuO
NP between the cell systems were observed in the gene cluster of inflammatory markers.
Besides the induction of IL6 and IL-1a, a down-regulation of CCL22 and IL-1b was apparent
only in the co-culture. In contrast, both cell systems revealed an increased IL-8 expression,
in contrast to the observation of Wand and colleagues, who observed a cell-system-specific
IL-8 response [26]. All of these genes are cellular markers for a pro-inflammatory re-
sponse [52–54]; therefore, the up-regulation of these genes indicates an inflammatory
potential of CuO NP. However, the dose-dependent down-regulation of CCL22 and IL-1b
does not match this scenario. The reason behind this observation might be the increased
cytotoxicity of CuO NP in dTHP-1 cells in the co-culture such that less dTHP-1 originated
mRNA in the gene expression analyses. This is supported by the observation of a strong
induction of these two genes in the untreated co-culture compared to the A549 monocul-
ture. In addition, this could also explain the repression of IL-1a and IL-6 at the highest
applied dose that was investigated. Regarding the proteins encoded by IL-1a and IL-1b
(IL-1α, IL-1β), both are part of the NLRP3 inflammasome response, which is induced by
ROS [53,55]. Moreover, the respective proteins of IL-6 and IL-8 are induced by several
transcription factors such as AP-1, NF-κB, STAT3, and C/EBPβ [56–58]. All of these genes
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have been implicated in particle toxicity [53,56,59]. Therefore, the increased expressions
of IL-1a, IL-6, and IL-8 within the present study indicate a pro-inflammatory response
involving both NLRP3 inflammasome and pro-inflammatory transcription factor activation
by CuO NP. This response is more pronounced in the co-culture since IL-1a and IL-6 were
only induced in this cell model, consistent with elevated IL-6 protein levels after treatment
of a co-culture with A549 and dTHP-1 cells with quartz and silica particles [11,14].

4. Materials and Methods

All chemicals (p.a. grade), cell culture medium, and supplements were obtained
either from Carl Roth GmbH (Karlsruhe, Germany) or Sigma-Aldrich Chemie GmbH
(Taufkirchen, Germany) with the exception of fetal bovine serum (FBS), which was bought
at Thermo Fisher Scientific GmbH (Dreieich, Germany). Cell culture dishes and flasks,
reaction tubes, PCR tubes, and other consumables were purchased from Sarstedt (Nuem-
brecht, Germany). CuO NP were kindly provided by Dr. Wendel Wohlleben (BASF SE,
Germany) in the course of the BMBF-funded project MetalSafety and originally synthesized
and obtained from by PlasmaChem (Berlin, Germany). This particle species was also
previously examined in the EU FP7-Project SUN, including oral and inhalation in vivo
studies [28,60]. Primer pairs were synthesized by Eurofins (Ebersberg, Germany). DNA sus-
pension buffer, PCR certified water, and TE buffer were obtained from Teknova (Hollister,
USA). The 2× Assay Loading Reagent, 20× DNA Binding Dye, and IFCs were purchased
from Fluidigm (San Francisco, USA). The 2× SsoFast EvaGreen Supermix was provided
by Bio-Rad (Munich, Germany), and the 2× TaqMan PreAmp Master Mix was bought
from Applied Biosystems (Darmstadt, Germany). Exonuclease I was obtained from New
England Biolabs (Frankfurt am Main, Germany).

4.1. Cell Culture

Human adenocacinoma cell line A549 (ATCC CCL-185) was kindly provided by
Dr. Roel Schins (Leibniz Research Institute for Environmental Medicine, Düsseldorf,
Germany). A549 cells were cultured as monolayer in RPMI-1640 supplemented with
10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in a humidified
atmosphere of 5% CO2 in air (HeraSafe, Thermo Scientific, Langenselbold, Germany).
For monoculture experiments, 172,000 cells/cm2 were seeded in 24-well plates and grown
to confluency for 24 h prior to NP incubation.

THP-1 cells (human peripheral blood monocytes, ATCC TIB-202) were kindly pro-
vided by Dr. Richard Gminski (Albert-Ludwig-University Freiburg, Department of Envi-
ronmental Health Sciences and Hygiene, Freiburg, Germany). THP-1 cells were cultured in
suspensions with cell densities below 1 × 106 cells/mL in supplemented RPMI-1640 (see
above). Prior to seeding for co-culture experiments, 0.93 × 105 cells/cm2 were seeded in
cell culture dishes and differentiated for four days with 30 ng/mL phorbol 12-myristate
13-acetate (PMA, diluted in DMSO). After four days, cell culture medium was changed
to supplemented RPMI-1640 without PMA, and the differentiated THP-1 cells (dTHP-1)
were cultured for further 3–5 days [61]. For co-culture experiments, 172,000 A549 cells/cm2

were seeded and incubated for four hours before fresh cell culture medium containing
35,000 dTHP-1 cells/cm2 was added. Co-culture was grown to confluency for a further
20 h. These cell numbers were selected to ensure a ratio of 1 macrophage per 10 epithelial
cells at the time of exposure (24 h after seeding) to simulate in vivo conditions [29,62].
For all experiments with dTHP-1 cells, accutase instead of trypsine was used to detach
adherent cells.

4.2. Nanoparticle Preparation and Characterization

The nanoparticles were dispersed freshly according to the latest NANOGENTOX
protocol at a concentration of 2.56 mg/mL in 0.05% BSA in bidest H2O [63]. Briefly, 15.36 mg
were pre-wetted with 30 µL 97% ethanol before adding 5.970 mL 0.05% BSA in bidest. H2O
generating a stock solution of 2.56 mg/mL. Subsequent sonification was performed using a
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Branson Analog Sonifier 450 (Brookfield, CT, USA) for 13:25 min at 10% amplitude (7179 J).
After sonification, the stock solution was diluted in supplemented RPMI-1640 to achieve
the respective incubation concentrations.

Hydrodynamic particle diameter and ζ-potential were determined by dynamic light
scattering (DLS) using a Zetasizer NANO ZS (Malvern, Herrenberg, Germany) equipped
with a 532 nm laser. Analysis was performed with a 100 µg/mL dispersion in supplemented
RPMI-1640. Hydrodynamic diameter was obtained as Z-average in 10 replicates of three
independent experiments. Measurement conditions were optimized automatically by the
Zetasizer Nano ZS Dispersion Technology Software (v6.20). Dispersant properties were
considered equal to pure water (Ri = 1.33, viscosity = 0.8872 cP) for CuO Ri = 2.58 [18]
was used.

For transmission electron microscopy (TEM), the dispersion was applied on a TEM
Grid (Plano GmbH, Germany) and subsequently analyzed using a Philips CM200 at the
Laboratory for Electron Microscopy at Karlsruhe Institute of Technology. Primary particle
size was determined as means of 2179 particles using the software ImageJ.

CuO NP were analyzed for endotoxins using Pierce LAL Chromogenic Endotoxin
Quantification Kit (Thermo Fisher Scientific, Dreieich, Germany) using the supernatant of
a 2.56 mg/mL stock solution in water. Detection limit of the applied kit was given in the
manufacturer’s instructions as 0.1 EU/mL.

Solubility studies were performed by diluting the previously described CuO NP
stock solution to a concentration of 100 µg/mL in RPMI (10% FBS) and incubating the
solution for 24 h at 37 ◦C while shaking at 150 rpm in a centrifuge tube. After incubation,
the solution was centrifuged at 3000× g for 1 h followed by a second centrifugation step of
the supernatants at 16,000× g for 1 h. Subsequently, 2 mL of each supernatant was collected
and centrifuged again at 16,000× g for 1 h. Residues of particles in the supernatant were
precluded using dynamic light scattering. One milliliter of the supernatant was heated
stepwise to 95 ◦C until full dryness and subsequently oxidized with a 1:1 mixture of HNO3
(69%)/H2O2 (31%) (v/v) by stepwise heating to 95 ◦C. The residue was solubilized in 1 mL
HNO3 (0.2%) and copper content was measured by GF-AAS (Pinaccle 900 T, Perkin Elmer,
Rodgau, Germany).

4.3. Cytotoxicity Assays

For relative cell count (RCC), cells were incubated with CuO NP for 24 h in 24-well
plates and subsequently either trypsinized for 2 min at 37 ◦C (A549) or detached using
accutase for 15 min at 37 ◦C (A549+dTHP-1, dTHP-1). After detachment, cells were
suspended in supplemented RPMI-1640 and counted using a CASY Cell Counter (OLS
OMNI Life Science GmbH, Bremen, Germany).

For analyzing the ATP content, CellTiter-Glo® Luminescent Cell Viability Assay
Kit (Promega GmbH, Walldorf, Germany) was applied. Cell cultivation and incubation
were performed in 96-well plates. Briefly, 6.4 × 104 A549 cells per well were seeded for
monoculture. For co-culture 9,600 dTHP-1 cells were added per well following the protocol
stated above. The cells were incubated with CuO NP or 500 nM staurosporine (positive
control) for 24 h. After removing the incubation medium, 100 µL of fresh medium were
added to the wells, the plate was equilibrated for 30 min at room temperature, and 100 µL
of CellTiter-Glo® reagent was added. Chemiluminescence was measured on the Infinite®

200 Pro microplate reader (Tecan Group Ltd., Männedorf, Switzerland) after short-term
orbital shaking and a further 10 min to stabilize the signal.

4.4. High-Throughput RT-qPCR

Transcriptional toxicity profiles were obtained using quantitative high-throughput RT-
qPCR with Fluidigm dynamic arrays on the BioMark system as described previously [25],
but applying a gene set supplemented with genes coding for fibrosis and inflammatory
markers as described above. Data were processed using Fluidigm Real-Time PCR Analysis
as well as Genex software. Five reference genes (ACT, B2M, GAPDH, GUSB, and HPRT1)
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were used for normalization. Expression changes of the respective genes were displayed as
fold change compared to untreated controls by calculating relative quantities corresponding
to the ∆∆Cq method [64].

4.5. Statistics

Within this study, the means of at least three independently performed experiments are
displayed, if not stated otherwise. Differences between untreated controls and nanoparticle
treatments were analyzed by one-way ANOVA followed by Dunnet’s post-hoc test for
multiple comparisons. When comparing one dose in between the cell culture models,
unpaired t-test was used. Results were considered statistically significant at p ≤ 0.05.

5. Conclusions

In summary, no pronounced differences in CuO NP-induced cytotoxicity between
the two cell models were observed. Furthermore, both cell cultures revealed transcrip-
tional toxicity profiles upon CuO NP treatment, which is consistent with previous studies.
However, a cell culture-dependent difference was observed regarding the inflammatory
response after CuO NP incubation. While mono-cultured A549 cells were limited to a
transcriptionally activated IL-8, the co-culture system revealed an involvement of NLRP3
inflammasome by IL-1a up-regulation and extended the transcriptional activated pro-
inflammatory response by enhanced IL-6 expression. This supports the use of co-culture
models to obtain comprehensive toxicity profiles of nanomaterials and indicates the ad-
vantage and suitability of a simple advanced in vitro model of A549 + dTHP-1 cells for
high-throughput toxicity screening of nanomaterials. Nevertheless, as is the case with all
in vitro systems, one has to be aware of potential limitations in the cell lines applied, and in
the case of A549 cells, the deregulated Nrf2 response, resulting in a limited antioxidant
defense. Here, the application of Beas-2B cells could possibly improve the prediction
towards in vivo studies.
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Abbreviations

BSA Bovine serum albumin
DLS Dynamic light scattering
dTHP-1 Differentiated monocytic THP-1 cells to macrophage-like cells
EMT Epithelial–mesenchymal transition
FBS Fetal bovin serum
GF-AAS Graphite Furnace Atomic Absorption Spectrometry
HT RT qPCR High-throughput RT-qPCR
MoA Mode of Action
NP Nanoparticle
PDI Polydispersity Index
RCC Relative Cell Count
ROS Reactive oxygen species
TEM Transmission electron microscopy
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
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