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Abstract: Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a
serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable,
especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of
aflatoxins and the interaction of the resulting toxic compound with food components, it could cause
chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable
detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety.
Recently, new biosensor technologies have become a research hotspot due to their characteristics
of speed and accuracy. This review describes various technologies such as chromatographic and
spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages
and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for
future work. Although compared with other technologies, biosensor technology involves the cross
integration of multiple technologies, such as spectral technology and new nano materials, and has
great potential, some challenges regarding their stability, cost, etc., need further studies.

Keywords: aflatoxin B1; edible oil; chromatographic technology; spectroscopic technology; biosensor
technology; recognition elements

1. Introduction

Food security has always been an issue of concern in the international community,
and, in recent years, food contamination has become a major factor affecting food security.
Contaminated food can not only adversely influence human health (poisoning events,
chronic diseases, etc.) but also affect and slow down the economy. When people consume
contaminated food, they need to spend a lot of money and time on treatment. There are
many factors causing food contamination, such as biological, chemical, and physical factors.
Among these, microbial contamination is common and mainly includes contamination
by bacteria, fungi, molds, viruses, or their toxins and by-products [1,2]. Mycotoxins are
common food contaminants, which can cause changes in the appearance, flavor, smell,
and other characteristics of food [3–7]. Mycotoxins are secondary metabolites produced
by fungi (e.g., Fusarium, Aspergillus, and Penicillium) that have multiple toxic effects on
organisms and contaminate agricultural products (cereals, milk, etc.). More than 400 kinds
of mycotoxins have been identified. Among them, aflatoxins (AFs) have become one of the
major concerns due to their high toxicity and carcinogenicity, causing approximately 25%
of animal deaths [8–12].

Edible vegetable oil plays an irreplaceable role in the human diet. The world oil
crop output has increased year by year and had reached 635.5 million tons by 2021 [13].
From the growth of oil crops to the final product, i.e., oil, each link may be affected by
external factors (such as mycotoxins), which may affect the quality and safety of edible
vegetable oil [14]. This is because most oil crops, such as corn, peanut, soybean, rapeseed,
sunflower seeds, olives, and nuts, are seasonal. During the growth process, they will be
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affected by climate, pests, and other factors and can be easily be infected by Aspergillus
flavus. After harvest, the oil may deteriorate or be affected by mildew due to storage
conditions (such as temperature and humidity, etc.) and storage methods [15]. At the
same time, during the production of edible oil, fresh-pressed edible oil is vulnerable to
contamination of raw materials infected with Aspergillus by aflatoxin B1 (AFB1) [16–22].
Therefore, contamination of edible vegetable oil products by AFB1 is a serious food safety
problem (Figure 1) [20,23–25].
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The presence of aflatoxin is usually detected by using precision instruments, such as
high-performance liquid chromatography–mass spectrometry (HPLC–MS), high-performance
liquid chromatography–fluorescence detection (HPLC–FD), or other molecular techniques,
while rapid detection is mainly realized by enzymatic immunoassay ELISA [26,27]. Al-
though different methods are available for the detection of AFB1 toxicity, these methods
require expensive equipment and complex sample pretreatment or can only be performed
at relatively high concentrations [28]. Therefore, simple, sensitive, efficient, economical,
rapid, and stable AFB1 detection methods are required. Recently, new technologies, such
as biosensors, have been applied in many fields, such as health care and food detection.
Because of their key advantages, such as convenient operation, rapid response, and excel-
lent portability, these technologies can detect harmful substances in food sensitively and
accurately, helping effectively avoid their harmful effects. They have attracted increasing
attention of researchers and also promoted the rapid development of biosensors. With
progress in nanotechnology, scientists are paying special attention to biosensors based on
nanomaterials. These new biosensors or detection systems are sensitive, rapid, consistent,
and cost-effective and can be used to detect AFB1 in food [29–33].

Regarding the increased importance of biosensors for accurate detection of AFB1
in edible oil, we have summarized the recent advances in biosensors for AFB1 analysis,
specifically from the points of view of the development of novel bioinspired recognition
elements and nanomaterials-based electrochemical biosensors.

Therefore, we searched PubMed and web of science for publications describing the
detection technology of aflatoxin B1 in edible oil. Search terms were as follows: aflatoxin
B1 OR AFB1 OR Aspergillus OR mycotoxins OR AFB2 OR AFG1 OR AFG2 OR AFM1 OR
AFM2 OR AFs OR AFBO OR CYP450 OR edible oil OR vegetable oil OR corn oil OR
peanut oil OR soybean oil OR sesame oil OR rapeseed oil OR sunflower seeds oil OR
olives oil OR nuts oil OR maize oil OR canola oil OR blend oil OR coconut oil OR almond
oil OR rice oil OR palm oil OR tea oil OR chromatographic technology OR spectroscopic
technology OR immunological technology OR biosensor technology OR QuEChERS OR
Fluorescence spectrophotometry OR Infrared spectroscopy OR Terahertz spectroscopy OR
surface-enhanced raman spectroscopy (SERS) OR enzyme-linked immunosorbent assay
(ELISA) OR amperometric OR impedometric OR electrochemical impedance spectroscopy
(EIS) OR voltammetry (potentiometric) OR Conductometric OR LOD OR chromogenic OR
Luminogenic OR Chemiluminescence OR Gravimetric OR Piezoelectric OR Magnetoelastic
OR Acoustic OR electrodes (SPEs)OR SRP OR biosensors OR Nanomaterial-based biosen-
sors OR electrochemical biosensors OR bioinspired recognition elements OR antibodies OR
aptamers OR molecularly imprinted polymers OR Phylogenetic Evolution of Ligands for
Exponential Enrichment (SELEX) OR fluorescence resonance energy transfer (FRET).

Publications until 29 August 2022 were included. This review only had the detection
technology targeted at aflatoxin B1 in edible oil, and that had not included other types of
toxins or other food carriers. After 4692 publications were searched, 596 full-text articles
were reviewed and 132 articles were finally identified to meet our requirements.

2. Importance of Aflatoxins

Aflatoxins are a type of mycotoxins. They are highly toxic metabolites of fungi,
produced in food and agricultural products. They have severe toxic effects, such as im-
munosuppressive, nephrotoxic, teratogenic, carcinogenic, and mutagenic, on human and
animal health [34–38].

Aflatoxins can be divided into aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1
(AFG1), and aflatoxin G2 (AFG2) according to their fluorescence properties and chromato-
graphic mobility (Figure 1) [39–41]. Aflatoxin M1 (AFM1) and aflatoxin M2 (AFM2) are
hydroxylated metabolites of AFB1 and AFB2, respectively. AFB1 is the most toxic among
all AF species, with a high incidence rate and the most complex detection mechanism
(Figure 2) [42].
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Figure 2. Main mechanisms of toxicity of aflatoxin B1 for humans.

AFB1 is a powerful carcinogenic, teratogenic, mutagenic, immunotoxic, hepatotoxic,
and reproducible poison. Previous studies have shown that the toxicity of AFB1 is 10, 68,
and 416 times that of KCN, arsenic and melamine, respectively [43,44] (Figure 2). Therefore,
AFB1 has been classified as a class 1 carcinogen by many international authoritative organi-
zations or institutions [45,46]. Due to the structural double bonds in the furan ring, AFB1
has high carcinogenicity and toxicity [17,47]. The lipophilic structure of atrial fibrillation
promotes its entry into the blood through gastrointestinal and respiratory tracts [48,49].
Once AFB1 enters blood, it is distributed in various tissues and accumulates in the liver
or other organs, resulting in liver cancer (Figure 3). In the liver, AFB1 produces a vari-
ety of metabolites through the hydroxylation and demethylation of the first-stage drug
metabolism enzymes (for example, cytochrome P450 oxidase and CYP450 superfamily
members, such as CYP1A2, CYP3A4, and CYP2A6) [50]. Metabolic reaction (internal and
external) activates the final carcinogen AFB1 -8,9-epoxy metabolite, which covalently binds
to cellular macromolecules (DNA, RNA, or protein) and plays a key role in acute and
chronic poisoning. AFB1 residues also destroy the function of tumor suppressor genes
(p53 and Rb) in the liver, which affects normal cells and leads to liver injury, increasing
the probability of tumor and liver cirrhosis [51–55]. It is estimated that about 30% of liver
cancers in the world are caused by AFB1. Its toxicity increases the infection rate of hepatitis
B virus (HBV) and the risk of liver cancer [56]. A recent study found that the synergistic
effect of AFB1 and HBV leads to liver cancer [50]. The reason is that HBV infection directly
or indirectly exposes hepatocytes to AFB1 sensitive to tumors. The toxic effect of AFB1 is
also related to dose, age, sex, nutrition, exposure time, and type [57]. In addition, AFB1 can
be transmitted to the fetus through the placenta and affect the health of infants [58]. AFB1
exposure also inhibits immunity, thereby increasing the susceptibility to immunodeficiency
virus attack and the probability of infection with other infectious diseases [59–63].
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3. AFB1 Regulations on Edible Oil

Because AFB1 poses many hazards to the human body, many governments and inter-
national research institutions have made many efforts to control AFB1 pollution in different
foods. For example, the FAO and the European Commission and Codex Alimentarius
Commission have formulated regulations regarding the content of AFB1 in various foods
to ensure consumer safety [64–69].

As for edible oil, most countries have no legislative restrictions and only a few coun-
tries, such as China, have effective regulations, laws, and standards for the highest level of
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AFB1 in different edible oils (Table 1). Due to some adverse conditions in the traditional
oil processing process, AFB1 is usually degraded to the normal level in the extraction and
refining process [17,70]. The EU has strict regulatory norms. The total amount of AFB1
and AF allowed in oilseeds is restricted to 2 and 4 µg kg−1, respectively. However, the
maximum limit of AFs in oils has not been determined. The corresponding regulations in
China, the United States, Kenya, and Thailand clearly stipulate the maximum level of total
AFs in all edible oils, but the maximum level required is different. It is worth mentioning
that in China, the AFB1 limit in corn and peanut oil is stipulated to be 20 µg kg−1, which
may be because corn and peanut are most vulnerable to aflatoxin pollution [71,72]. See
Table 1 for specific differences.

Table 1. The maximum limits (µg kg−1) established for major AFB1 in some countries/regions for
edible oils.

Countries/Agencies Food Products Edible Vegetable Oil Total of AFs
(µg kg−1)

AFB1
(µg kg−1) Refs.

EU Oil seeds - 15 8 [32,69]

EU - Peanut oil
Others oil 4 2 [32,69]

China -
Maize oil
Peanut oil
Others oils

-
-
-

20
20
10

[73]

Greece - Olive oil - - [69]
Russia - Vegetable oil - - [64]
France - Vegetable oil - 5 [64]
Kenya - Vegetable oil 20 - [64,71]
Taiwan - Edible oil 10 - [65]

Morocco - Vegetable oil - 5 [72]
Thailand All foods Oil and fats 20 - [64,65,74]

USA All foods - 20 - [64,71,75]
Brazil All foods - - 15 [76]
India All foods - - 30 [65]
Chile All foods - - - [76]

Indonesia All foods - 35 20 [65]
Singapore
Australia All foods - 5 - [64,65]

Malaysia All foods - 35 - [65]
Japan

Vietnam All foods - 10 - [65]

Sri Lanka All foods - 30 - [65]

4. Methods for Detecting AFB1 in Edible Oil

The matrix is too complex for edible oil, and the mycotoxin content is relatively low,
making it difficult to detect AFB1. Therefore, researchers have developed various traditional
and modern methods to detect AFB1 in oil. AFB1 detection technology is mainly divided
into chromatographic technology, spectroscopic technology, immunological technology,
and biosensor technology [16,77].

Figure 4 briefly summarizes the LOD timelines for AFB1 detection in edible oils
published from 2007 to 2022 mentioned in this review. It can be seen from the figure that
with the advancement of time, no matter what type of detection technology or which specific
detection method is used, the LOD of AFB1 in edible oil tends to be lower. This shows that
people have a great interest in the detection of AFB1 in edible oil. At the same time, the
wide use of new materials represented by nanomaterials highlights the interdisciplinary
characteristics of new sensors. Next is a brief introduction of the identification method of
AFB1, including its advantages and disadvantages, combined with actual cases.
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4.1. Chromatographic Technology
4.1.1. High Performance Liquid Chromatography (HPLC)

High-performance liquid chromatography is a common official detection method.
Many countries and institutions have used it, such as China’s national standard, the Euro-
pean Committee for Standardization (CEN), and the association of analytical organizations
(AOAC). One characteristic of the HPLC method is that it can measure multiple targets with
high sensitivity [78]. In recent years, researchers have developed new detection strategies
combining HPLC with other sensors, such as fluorescence detection (FLD), ultraviolet (UV)
detection, diode array detection, and mass spectrometry (MS) [79,80]. Compared to tradi-
tional HPLC, this further improves the reliability, sensitivity, and accuracy of target analytes
and is widely used to detect harmful substances in food. For example, HPLC combined with
FLD is the standard method for detecting AFB1 in edible vegetable oil [81–86]. HPLC–FLD
was able to detect AFB1 levels as low as 0.01–0.04 µg kg−1 [81] and 0.005–0.03 µg L−1 [82].

Recently, liquid chromatography–tandem mass spectrometry (LC–MS–MS) methods
are being increasingly used for the analysis of mycotoxins [85]. They have the advantages
of not having a sample purification limitation during extraction, high resolution, high
sensitivity, and suitability for various edible vegetable oils [19,87–99]. GC analysis is
mostly used for volatile substances, and most mycotoxins are non-volatile, further limiting
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the application of GC in mycotoxin detection. A similar procedure to HPLC, UHPLC or
UPLC is also used on the column to improve the resolution of AFB1. Hidalgo et al. [100]
developed a new analytical method by coupling UHPLC to a triple quadrupole analyzer
(UHPLC–QqQ–MS/MS), which was well validated and applied to monitor mycotoxins,
including AFB1, in 194 samples of edible vegetable oil.

Many commonly used methods require sample preparation due to the different ma-
trices of edible oil. Currently, a variety of methods are available for the extraction and
isolation of mycotoxins from oil, such as liquid–liquid extraction or partitioning (LLE),
frequently reported in the literature [101–105]; solid–phase extraction (SPE) [105–109];
immune affinity columns (IACs) [81,94]; IAC combined with dispersive liquid–liquid
microextraction (DLLME) [91]; multifunctional cleanup columns [110]; the QuEChERS
system [90]; gel permeation chromatography (GPC) [111]; immune assay extraction; and
low-temperature cleanup (LTC) [112–115]. However, each method has its advantages
and limitations. Thus, which method to choose still depends on the type of food matrix,
mycotoxin characterization, and detection techniques [116].

4.1.2. Thin-Layer Chromatography (TLC)

Thin-layer chromatography (TLC) is an adsorption thin-layer chromatographic sepa-
ration method suitable for complex mixed samples [117,118]. Since its development in the
1950s, thin-layer chromatography has been widely used in, for example, biology, medicine,
and the chemical industry. It has recently been used in food analysis and quality control
and has become a conventional technology in laboratories. Many reports have shown
that TLC can be applied to all stages of the food industry, such as the stage of traditional
substances, represented by food raw materials, ingredients, and additives, and the stage
of unconventional substances, represented by harmful substances and pollutants. The
detection and determination of compounds cover almost all substance categories [119–122].

Thin-layer chromatography uses the different adsorption capacities of each component
to the same adsorbent so that when the mobile phase (the solvent) is flowing through the
stationary phase (the adsorbent), there is continuous adsorption, desorption, readsorption,
and redesorption to achieve the mutual separation of each component [123].

Although the TLC method has matured, it still has shortcomings, such as a low
detection accuracy, volatility during the experiment being harmful to the experimental
operators and the environment, and complex sample pretreatment [124,125]. In recent years,
an interdisciplinary approach, such as the combination of TLC with image analysis and
with new technologies, such as surface-enhanced Raman spectroscopy, mass spectrometry,
and nuclear magnetic resonance, has further promoted the development of thin-layer
chromatography and enhanced the practicability of this method in food analysis [126–129].
TLC is used to detect harmful substances in various foods, such as AF in edible oil, making
it an effective analytical tool in food science methods [124,130].

4.2. Spectroscopic Technology
4.2.1. Fluorescence Spectrophotometry

Spectrum-based sensing technology has been developed and used to assess AFs
contamination in food [131]. Among many spectral techniques, fluorescence spectrometry
shows certain potential in determining AFs in a variety of agricultural products and
foods [125,132,133]. Fluorescence spectrometry uses the target molecules in the sample
to absorb ultraviolet or visible light to produce fluorescence and determine its molecular
structure. It has excellent detection sensitivity and specificity in the study of AFs and other
chemical components [134,135]. The study found that the fluorescence phenomenon is
conducive to the characterization and monitoring of target detection objects. For example,
AFB1 can emit a specific range of fluorescence (425–500 nm) under the excitation of UV light
source (340–400 nm), which provides the possibility of using fluorescence spectroscopy to
analyze AFB1 in different foods [135,136]. In recent years, laser-induced fluorescence (LIF)
technology has developed rapidly and attracted more attention because it uses a certain
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wavelength of laser light source and has better specificity and detection sensitivity. The
advantage of LIF is that it can realize online, rapid and nondestructive direct detection
according to the characteristic fluorescence peak of AFB1. Researchers have developed a
detection model based on LIF, which can quickly and accurately screen AFB1 in different
edible oils. The information and conclusions obtained in the study further show that LIF
technology can be used for rapid and nondestructive detection of AFB1 in different edible
oils [19,137]. However, LIF is also vulnerable to the interference of external factors, such as
the power and accuracy of the instrument, the environmental factors of temperature and
humidity, and the physical and chemical index factors of the detected object. Although this
limits the wide application of LIF technology, researchers are still trying and exploring.

4.2.2. Infrared (IR) Spectroscopy

Infrared spectroscopy (IRs) has the characteristics of rapid detection, simple sample
preparation process and strong adaptability. It has been widely proven to be an effective
food safety detection and control technology. Because IR covers a wide range of electro-
magnetic spectra (780 to 2500 nm), IR can be applied to the detection of a variety of foods
including edible oil, meat, aquatic products, fruits and vegetables [138–144]. When IRs
radiation penetrates the sample, the radiation is reflected, absorbed or transmitted by
molecular bonds, resulting in the energy change of light, which can reflect some character-
istic chemical bonds, thus reflecting the characteristics of the tested product [145,146]. In
the application of edible oil, IR shows many abilities, such as distinguishing different kinds
of oil, grading the quality of oil, detecting harmful substances in oil, etc. [138,143,147–150].
Using near infrared (NIR) technology to detect mold in edible oil has also been a research
hotspot in recent years. Researchers have promoted the further application and develop-
ment of IR technology by establishing qualitative and quantitative analysis models for
AFB1 pollution in edible oil [151–153].

4.2.3. Terahertz (THz) Spectroscopy

With the development of optical and electronic technology, terahertz spectroscopy
(THz) has been a revolutionary development, and shows great potential as a new tech-
nology tool for nondestructive food testing [154–157]. As a technical information link
between microwave spectroscopy and infrared spectroscopy, THz has the characteristics
of both, making it widely used in basic research and industrial practice [158,159]. Like
other spectral technologies, thanks to the development of chemometrics methods, THz
has become a powerful technical tool in the food industry, due to its strong detection and
quantification capabilities [156,157,160]. Through the combination of THz and chemomet-
rics methods, researchers have constructed a rapid nondestructive detection model for
AFB1 in edible oil. Although the accuracy is slightly lower than other conventional analysis
methods, it provides a possibility for THz in food safety detection [161]. In a recent study,
researchers further improved the accuracy of THz in detecting AFB1 in edible oil by adding
pretreatment and other methods on the basis of predecessors, and reduced the LOD of
AFB1 to 1 µg kg−1, and the accuracy is improved to more than 90% [161,162]. The cross
integration of THz and chemometrics and other disciplines is conducive to promoting
its application and development in the detection of AFS in the edible oil industry. At the
same time, the limitations of THz should also be clear, such as the low detection limit and
sensitivity advantage are not obvious, the penetration of the detected object is limited, there
is scattering effect, the technology is expensive, the database is lack, etc. [163].

4.2.4. Surface-Enhanced Raman Spectroscopy (SERS)

As a complementary analysis technology of IR, the Raman spectroscopy (RS) tech-
nology is sensitive to the symmetrical vibration of covalent bonds of non-polar groups
(such as C=O, C-C and S-S) [164–166]. Therefore, RS has the advantages of being fast,
sensitive and simple in the detection and evaluation system of food [165,167,168]. However,
traditional RS has some limitations, such as Raman scattering. Therefore, researchers
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have developed SERS signal enhancement technology represented by electromagnetic
field enhancement and chemical enhancement [165]. At present, the application of SERS
technology in the detection of AFs is still challenging, and the intersection of technology
development and multidisciplinarity (such as materials science, stoichiometry, etc.) is the
focus of researchers [165]. In recent years, researchers have reported a variety of SERS
schemes for AFB1 detection in edible oil, such as SERS tag detection using antibodies and
aptamers, sandwich immunoassay based on SERS, etc. [169–174]. The growing research
results show that SERS technology is becoming a powerful tool to ensure the safety de-
velopment of the food industry, especially in the safety supervision of AFs. However, it
cannot be denied that challenges still exist, such as the development of targeted new mate-
rials, the optimization of key core technologies, and the practical application of research
results [175–177].

4.3. Immunological Technology
Enzyme-Linked Immunosorbent Assay (ELISA)

In recent years, researchers have often used immunochemical methods to determine
mycotoxins in food, in addition to traditional chromatographic techniques. The core of
immunochemistry is the specific interaction between immunoglobulin (Igs) and antigen
(Ag). Several immunochemical methods have been applied to detect mycotoxins in edible
vegetable oils, such as enzyme-linked immunosorbent assay (ELISA) and biosensors based
on immunoassay.

ELISA is one of the most commonly used methods for detecting mycotoxins [24].
It has been designed and developed on the basis of the principle of specific immune
responses between Igs and Ags. The specificity of this immunoassay is due to the use
of enzyme-labeled Igs or Ags and solid-matrix-restricted immunoglobulins to capture
unlabeled silver in the analyte and detect it with labeled immunoglobulins. Although
ELISA is well developed and widely used in food analysis, clinical practice, biotechnology,
environmental, chemical, and other industries, it still has several deficiencies, such as
excessive dependence on the matrix caused by the interaction between the target antigen
and matrix components. The standard ELISA is composed of four main parts (immune-
recognition element, sorbent substrate, enzyme label, and chromogenic reagent), and the
deficiency of the central part is the root cause of the limitation of ELISA. In recent years,
researchers have used the cross-fusion of multiple technologies to drive the performance of
one of the components or the whole ELISA, especially in terms of sensitivity, accuracy, and
stability [27].

For mycotoxins, due to the high singularity of ELISA, the developed kit has specific
recognition ability and has been widely used in the detection of mycotoxins [70]. For
example, Qi et al. [20] used ELISA and UPLC–MS/MS to detect AFB1 in peanut oil, although
the LOD was only 1.08 µg kg−1, much higher than the LOD of UPLC–MS/MS (the LOD
is 0.01 µg kg−1) [20]. It has been affirmed because of its accuracy, rapidity, and other
advantages. For the actual detection of other harmful substances, such as AFB1, AFB2,
AFG1 and AFG2, in different edible oils (oils of soybean, coconut, peanut, fennel, melon, and
palm kernel), ELISA showed satisfactory results and the concentration was lower than the
legislative limit [178–180]. On this basis, the researchers developed a commercial ELISA kit
that can detect AFB1, which can be applied to a variety of samples including edible oil, and
the detection limit can be as low as 3 ppb. Although the current ELISA technology or kit still
has problems such being as time-consuming, high cost, and cumbersome operation, with
the advancement of technology, ELISA technology shows strong application potential [27].

4.4. Electrochemical Biosensing Technology

Due to rapidity, small footprint, economy, sensitivity, and unique capabilities, electro-
chemical biosensing devices have received particular attention in assessing food quality,
mainly reflecting AFB1 levels in food samples [181]. The AFB1 electrochemical biosensor can
produce various types of analytical signals, such as voltage, current, and impedance [182,183].
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The standard transduction methods are amperometric, electrochemical impedance spec-
troscopy (EIS), and voltammetry (potentiometry).

4.4.1. Amperometric Biosensors

The amperometric biosensor is an electrochemical device with high selectivity and
sensitivity that takes the change in the measuring current as the analysis signal. Because
the change in the current is closely related to the concentration of AFB1 in food samples and
the change can be achieved by maintaining a stable potential, an amperometric biosensor
is relatively perfect. A typical amperometric biosensor consists of two- or three-electrode
systems (containing a functional electrode, a reference electrode, and an auxiliary elec-
trode), and the analytical performance of the latter is significantly higher than that of
the former (Figure 5) [181]. This is because the additional auxiliary electrode not only
increases the area of the detection surface but also increases the current between it and the
functional electrode, as well as the operating potential between the functional electrode
and the reference electrode, thereby enhancing the changes in the detection process of
AFB1 in food in electronic dynamics. On the contrary, the dual-electrode system does not
include auxiliary electrodes, which may lose their function at high temperatures. Therefore,
amperometric biosensors with dual-electrode systems are not used to analyze the quality
of food samples [181].
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Figure 5. Scheme of the two or three-electrode setup used in electrochemical methods.

Even functional electrodes are usually made of inert metal materials (such as plat-
inum, gold) or carbon (graphite, glassy carbon). The main drawback is reproducibility of
measurements. Currently, printed electrodes have become a good substitute because their
cost and mass production can be controlled [70,78].

Researchers used two kinds of nanomaterials with different charges to deposit on
the electrode alternately, obtaining a multilayer electrode with a sandwich structure with
excellent conductivity and rich electrochemical active sites [184]. Such a biosensor has
good selectivity, reproducibility, and stability. In the subsequent optimization test, the
optimized electrochemical biosensor was found to have significant stability and even after
being placed for a period of time, it showed good LOD (0.002 ng mL−1). This sensor is
believed to be one of the best biosensors for detecting mycotoxins. Researchers applied the
electrochemical biosensor to detect AFB1 in real oil samples and found that it has a good
recovery rate (98.11–103.36%).

Xuan et al. [185] developed an integrated AFB1 detection platform that uses disposable
screen-printed electrodes (SPEs), allowing routine detection without electrode modification.
According to the SPE used, the platform can simplify the tedious sample processing process
through high-throughput processing, reduce operating errors, and improve experimental
reproducibility, which can benefit large-scale sample processing. The detectable concen-
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tration range of AFB1 was 0.08–800 µg kg−1 with a LOD of 0.05 µg kg−1. Analysis of
real samples and verification of the method showed the results of the new sensor to be
consistent with those of the classical method (LC–MS/MS), indicating that the developed
method has the potential to monitor AFB1 in peanut oil.

Another study reported a new aflatoxin biosensor based on the AFB1 inhibition of
acetylcholinesterase (AChE) [186]. The core of this method is to immobilize choline oxidase
on a screen-printed electrode modified with Prussian blue (PB). The electrode used in the
biosensor can detect H2O2 at low potential. As per the results, the linear operating range of
the biosensor is estimated to be 10–60 ppb and the LOD is 2 ppb. On using real olive oil
samples to evaluate the sensor, the recovery rate was found to be 78 ± 9% at 10 ppb.

4.4.2. Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) technology is an effective monitoring
tool for identifying and monitoring changes in mycotoxins at the interface between elec-
trode surface modifications. When the target analyte is combined with a biometric element,
it generates an electrochemical response by changing conductivity and capacitance through
an impedance biosensor [187]. These biosensors monitor the impedance changes caused by
the interaction between the target detection object, such as AFB1, and the biometric element
fixed on the working electrode, and display the detection results in the form changed
electron flow on the working electrode [188,189]. Typical potentiometric sensors are also
suitable for the three-electrode system.

The main parameter of the EIS is the charge transfer resistance value (RCT), which is
closely related to the reaction between immobilized mycotoxins and the antibody antigen
and is also proportional to the target detector/concentration of the target [65,66]. For
determining AFB1, Yu et al. [190] reported a sensitive and convenient EIS method involving
MWCNT/RTIL/Ab-modified electrodes coated in bare GCE. The experimental results
show that the resistance of the MWCNT/RTIL/Ab-modified electrode (605.6 Ω) is higher
than that of bare GCE (151.9 Ω). When AFB1 was immobilized on MWCNT/RTIL/Ab-
modified electrodes, the increase in the electron transfer resistance (Ret) value was found
to be directly related to the AFB1 amount. The specific interaction between AFB1 and Ab
causes an increase in the Ret value, which leads to the production of electrically insulating
biological conjugates, which will prevent the electron transfer process of redox probes.
Therefore, the EIS measurement results are consistent with the above cyclic voltammetry
results. Because of its simple characteristics, this method can be widely used to detect
various agricultural products and edible oils.

For many researchers exploring mycotoxin detection methods, aptamer-based EIS
has become a hot research topic. Aptamer-based impedance biosensors have achieved
satisfactory results in detecting mycotoxins in food and have great potential for practical
application in edible oils.

4.4.3. Voltammetry Biosensors

Voltammetric biosensors solve the problem of obtaining analytical data using ion-
selective electrodes. Similar to amperometric biosensors, voltammetry also requires a two-
or three-electrode system. When the current is constant, it can detect target analytes, such as
AFB1, in food samples by evaluating the change in circuit potential between the functional
electrode and the reference electrode [60,191].

Biosensors have also shown promising results in detecting the AFB1 content in edible
oils. For example, Wang et al. [192] developed a new disposable electrochemical biosensor
based on stripping voltammetry to detect copper ions released from copper apatite. The
biosensor uses copper ions as a signal label to immobilize AFB1 antibody on a screen-printed
carbon electrode (SPCE) modified by gold nanoparticles. The detection is performed by
the voltammetric signal of the dissolution of copper ions released from acid hydrolysis
of copper apatite, and copper apatite increases the number of loaded copper ions. The
electrochemical signal is further amplified. Peanut oil was used to evaluate the reliability
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and application potential of biosensors. Researchers believe that this new method will be
applied to many fields in the near future because of its many excellent characteristics (low
cost, rapidity, accuracy, and high sensitivity).

4.4.4. Nanomaterial-Based Biosensors

Recently, different nanomaterials, such as carbon and metal, have been used to mod-
ify the active surfaces of macroelectrodes and microelectrodes to design electrochemical
biosensors for the detection of AFB1 [193–195]. This is because new biosensors directly use
nanomaterials or other materials containing nanoparticles that show significant characteris-
tics, such as high sensitivity and specificity for detecting targets, reliability, and consistency
of products [181,196,197]. Nanomaterials significantly increase the effective surface area
of biosensors and further improve the analytical performance [60,194]. Nanomaterials
also enhance some characteristics of biometric elements in biosensor devices in terms of
electrical, catalytic, optical, and thermal properties [198]. According to previous studies,
some of the key functional enhancements are the enhanced immobilization of biomolecules,
generation and expansion of analytical signals, and enhanced usability of fluorescent labels.

Characteristic of Nanomaterials Based Electrochemical Biosensors

The role of nanomaterials in biosensors is mainly reflected in the immobilization of
biomolecules, signal generator, fluorescent labeling, and signal amplification.

Nanomaterials not only immobilize biomolecules but also increase the interaction
between different molecular materials. In addition, nanomaterials enhance the stability
of biomolecular immobilization, thereby increasing the signal strength of the immunoas-
say [31]. Metal nanomaterial particles, such as AgNPs and MOFs, can increase the surface
area and biocompatibility of biomolecules bound to the detection target. However, non-
metallic nanomaterials show negatively charged functional groups, which can be used as
an effective carrier to bind and fix with positively charged targets.

Signal Generator

Xue et al. [31] reported that, when the photoelectric signal changes, nanoparticles
such as gold and silver can act as a signal generator. By adjusting the fluorescence signal
generated by nanomaterials, a new AFB1 nanoprobe can be constructed. In addition,
because these nanoparticles can be prepared in different sizes according to need, they have
good functionality, stability, and scalability [133,199].

Fluorescent Label

Nanomaterials have unique optical properties that enable them to be widely used
in a variety of disciplines, especially in the detection of hazardous substances in food.
Nanomaterials can detect AFB1 by sensing optical signals (absorbance, chemiluminescence,
fluorescence, etc.) [31]. Some nanomaterials, such as metal nano-ions and quantum dots,
have been used as fluorescence quenching agents because of the ability of AFB1 to directly
quench or reduce the fluorescence intensity. In addition, quantum dots have transformed
fluorescein into a marker element that binds to aptamers or antibodies.

Signal Amplification

Nanomaterials can also be used as functional materials for various electrodes, signal
components, etc., to amplify signals in various ways. For example, on the electrode surface
of electrochemical sensors, nanomaterials such as gold and silver can amplify the analytical
signal by enhancing the redox reaction. Some metal nanoparticles, such as gold, can amplify
signals related to their characteristics, such as unique catalytic activity, biocompatibility,
and multiple absorption sites. Carbon, graphene, and other non-metallic nanomaterials
improve the analytical performance by increasing the surface area.
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4.5. Bioinspired Recognition Elements for Biosensors

A biosensor is independent quantitative analysis equipment used to study the analytes
required in different types of food samples. A biosensor consists of many parts [29,30]
(Figure 6). Biometric elements are the core components of biosensors and can detect spe-
cific target analytes. The quality of biometric elements usually determines the specificity
and sensitivity of analysis [200,201]. Biorecognition elements, including antibodies, ap-
tamers, molecularly imprinted polymers, and enzymes, have been used to manufacture
biosensors [34,64,202]. These elements show increased sensitivity and selectivity for target
analytes. Critical biometric elements for developing biosensors to detect AFB1 in edible
vegetable oil are elaborated below.
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4.5.1. Antibody

Antibodies have been used as recognition elements for developing biosensors because
of their specificity and sensitivity [200]. Biosensors that use antibodies as recognition
elements are called immunosensors, and their mechanism relies on the specific recognition
of aflatoxin epitopes by antibodies.

The first batch of polyclonal antibodies, developed in 1976, became the basis for most
mycotoxin detection methods. In the following decades, polyclonal and monoclonal an-
tibodies were the basis for most mycotoxin detection methods [192,200,203]. Today, in
addition to monoclonal and polyclonal antibodies, various other types of antibodies are
being used to detect target analytes. Researchers have developed an antibody-based im-
munosensor that can directly recognize AFB1 and is used in peanut oil with a concentration
range of 0.001 to 100 ng mL−1, with a detection limit of 0.2 pg mL−1 [192].

However, the production of monoclonal antibodies and polyclonal antibodies is com-
plex and the antibodies degrade, denature, and aggregate easily [204,205]. In recent years,
with the development of protein- and DNA-based new engineering technology, it has
become possible to develop modified and recombinant antibodies (RAbs). RAbs integrate
many advantages of biosensors, such as simple operation and a high degree of automation,
high throughput screening, low requirements for configuration attributes, and the trend of
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more miniaturization [200]. Zhao et al. [206] developed a novel method of MB-dcELISA for
AFB1 based on the mimotope of an RAb and nanobody. This study effectively proved that
compared with monoclonal antibodies, an RAb is more economical and easier to prepare.
Compared with chemically synthesized toxic antigens, immunoassay is safer and performs
better in validation studies. In real samples (corn germ oil and peanut oil), the LOD of
AFB1 is as low as 0.13 ng mL−1. Other researchers also designed an RAb with increased
sensitivity to low-molecular-weight haptens, and this RAb was validated in olive oil with a
lower LOD (0.03 ng mL−1) for AFB1 [190].

Researchers recently found that, by increasing the immobilization of antibodies and
giving full play to the characteristics of specific antibodies, the performance of the sensor
can be effectively improved, and on this basis, some immunosensors have been developed
for detecting AFB1 in edible oil [133,196]. For example, to determine AFB1, Shi et al. [207]
proposed a novel immobilized immunosensor based on graphene supported with hybrid
gold nanoparti-cles-poly4-aminobenzoic acid. In the study, after the reduction in graphene
oxide by PABA via an epoxy ring opening reaction, the nanocomposite PABA-r-GO was
obtained. Then, gold nanoparticles (AuNPs) were prepared on this basis to form a Au-
PPABA-r-GO nanohybrid. The final sensor was obtained by the covalent binding of the
COOH group of functional nanocomposites with an AFB1-specific antibody. The sensor has
good performance (linear range 0.01–25 ng mL−1 and LOD 0.001 ng mL−1) and has been
successfully applied to detect real vegetable oil. This sensor also has good reproducibility
and selectivity, especially stability, and can be stored at a low temperature for a long time.

4.5.2. Aptamers

Aptamers are single-stranded RNA or DNA (20–90 oligonucleotide sequences with
specific sequences) that can bind to various targets, such as ions, antibodies, proteins,
cells, and organic molecules [208]. The particular recognition ability of aptamers relies on
the three-dimensional structure of a high-affinity target-induced DNA three-dimensional
structure. The researcher procured specific targets for aptamers by screening oligonu-
cleotides using the Phylogenetic Evolution of Ligands for Exponential Enrichment (SELEX)
program. Aptamer sensors are biosensors integrated with aptamers developed in the
1990s [200,208–211].

Recently, aptamers have attracted significant attention in food contamination analysis
and are used for various sensing applications due to their inherent benefits: (1) aptamers
are obtained from in vitro synthesis, so animals are not necessary; (2) aptamers have lower
toxicity, immuno-genicity, and production cost; (3) aptamers have enhanced chemical and
thermal stability; (4) aptamers have excellent batch-to-batch reproducibility; (5) aptamers
have a smaller size and show a remarkable ability to penetrate the tissue and adhere to
target molecules; and (6) it is possible to change their structure [193,212,213].

Notably, the immobilization of aptamers is a critical step in biosensor design be-
cause it can affect the affinity of aptamers for their targets and their long-term stability in
fundamental sample analysis.

Therefore, researchers have developed many strategies to immobilize aptamers: (1) ad-
sorption or π–π stacking interactions between DNA bases and modified graphene oxide
(GO) interface [214], (2) aptamers with carboxylic acids on surfaces or nanomaterial covalent
bonding of groups [184,215], (3) binding of sulfide aptamer with CdTe quantum dots (QDs)
or gold-based materials [216], (4) binding with avidin or other affinity interactions based
on biotin streptomycin affinity [200,217,218], and (5) hybridization with partially comple-
mentary single-stranded DNA previously fixed on the surface of nanoparticles [219–222].

Table 2 describes some examples of aptasensors recently reported for the detection
of AFB1 in edible oils. About half of the previous reports have been based on fluorescent
mycotoxin aptamer sensors. Some of them use metal or nanostructured materials, such as
gold nanoparticles (AuNPs), GO, single-walled carbon nanotubes, or TiO2 tubes, and are
used to prepare aptamer sensors.
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Nanometer material has always been the focus of research, and its applications in
biosensors are also diverse. Black phosphorus nanosheets (BPNSs) have great application
prospects in biosensors due to their unique characteristics [223]. Wu et al. [224] developed a
highly specific and sensitive aptamer sensor (UCNPs-BPNSs) based on the team’s research
on upconversion nanoparticles (UCNPs) [196]. The research team attached UCNPs to the
surface of BPNSs at a very small space distance (less than 10 nm) through glutaraldehyde
crosslinking method and π-π stacking effect method, and then constructed the fluorescence
resonance energy transfer (FRET) system. This aptamer sensor can effectively detect AFB1
in peanut oil and other foods quantitatively with good linear range (0.2–500 ng mL−1) and
LOD (0.028 ng mL−1).

Xia et al. [225] proposed a label-free, single-tube, homogeneous, and inexpensive
assay for AFB1 based on fine-tunable double-ended stem aptamer beacons (DS) and the
effect of aggregation-induced emission (AIE). The structure of the DS aptamer beacon can
provide end protection against exonuclease I (EXO I) to the aptamer probe and endow it
with specificity and a rapid response to the target AFB1. Compared with the traditional
molecular beacon structure, the stability of the DS aptamer beacon can be adjusted by
adjusting its two terminal stems so that the affinity and selectivity of the probe can be
precisely optimized. Using an AIE-active fluorophore, which is illuminated by the aggre-
gation of negatively charged DNA, AFB1 can be measured label-free. The method has
been successfully applied to the analysis of AFB1 in peanut oil, with a total recovery of
93.59–109.30%. Therefore, beacon-based DS assays may help in real-time monitoring and
control of AFB1 contamination.

Yang et al. [226] first devised a selection method based on rational truncation and post-
splicing and developed a bivalent anti-AFB1 chimeric aptamer (B72) that was measured by
micro-thermophoresis (MST) compared to the initial selection. The affinity of the anti-AFB1
aptamer (B50) increased by 188-fold, and the study also found that B72 has a dual binding
site for AFB1, which is consistent with the experimental results obtained by isothermal
titration calorimetry (ITC) and molecular docking simulations. Therefore, on the basis of
the peroxidase-like activity of gold nanoparticles catalyzing 3,3,5,5-tetramethylbenzidine
(TMB), an aptamer sensor of gold nanoparticles (AuNPs) was developed by the colorimetric
detection of AFB1. The assay further validates the practical applicability of the chimeric
aptamers. The aptasensor could identify AFB1 with an excellent linear range (5–5120 nM)
and detection limit (1.88 nM) in the corn oil environmental test of H2O2. Therefore, this
study can be called a general selection method for designing high-affinity aptamers and
constructing novel aptamer-based biosensing platforms for high-sensitivity and specificity
analysis of other targets.

Zhong et al. [227] manufactured an electrochemical aptamer sensor in a similar way
for the sensitive detection of AFB1. The researchers used electrodeposited AuNPs to
prepare AuNPs/ZIF-8 nanocomposites on glassy carbon electrodes (GCEs) decorated with
the eight zeolite imidazolate framework (ZIF-8), which increased the surface area of the
electro desorption molecular load. Compared with other previously reported sensors, the
aptasensor developed under optimized conditions shows a more comprehensive linear
range (10.0–1.0 × 105 pg mL−1) and a lower detection limit (1.82 pg mL−1). In addition,
the constructed aptasensor possesses excellent selectivity, reproducibility, and stability.
Moreover, the aptamer sensor has been successfully used to detect AFB1 in corn oil and
peanut oil samples, and the recovery was between 93.49% and 106.9%, which proves the
potential application value of this method. Researchers are very interested in this kind of
electrochemical aptamer sensor. Wang et al. [228] also developed an AFB1 electrochemical
aptamer sensor for detecting peanut oil in a similar way. The difference lies in the use of
different composite materials (zinc and nickel bimetallic organic skeleton materials).

The hybridization chain reaction (HCR) is a commonly used isothermal nucleic acid
amplification technique, and due to the characteristics such as no enzyme, high amplifi-
cation efficiency etc., HCR is usually used as a new synthetic material technology and is
widely used in various sensors. Researchers have fully combined the characteristics of HCR
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to build a signal amplification strategy, which has been successfully applied to the sensitive
detection of AFB1 [229–235]. Wang et al. [236] proposed a fluorescent aptamer sensor based
on DNA walker, DNA tetrahedral nanostructures (DTNs) and network HCR. Among them,
DNA walker was used as the signal amplifier induced by AFB1 target, and combined with
self-assembled DTNs. Finally, based on network HCR, signal amplification is realized and
sensitive detection of AFB1 in peanut oil was realized with with LOD of 0.492 pg mL−1

and the linear range of 1–1000 pg mL−1. In the other report, Zuo et al. [237] combined
DNAzyme with substrate chain (Zn-Sub) and enzyme chain (Zn-Enz) with HCR products
to form a Y-shaped structure, which can significantly enhance the fluorescence intensity
of the detection target. The fluorescent aptamer sensor proposed by researchers shows
excellent performance with LOD of 0.22 nmol L−1 and the linear range of 0.4–16 nmol L−1.

The emerging quantum dots (QDs), represented by carbon quantum dots (CQDS),
graphene quantum dots (GODS) etc., have attracted great attention and are widely used
in various sensor fields since their discovery because of their excellent optical properties,
low toxicity, stability and low cost etc. [238–240]. QDs-based sensors can adopt different
working mechanisms and be applied to detect different substances, including AFS in edible
oil [51,173,238]. According to the characteristics of QDs, Xuan et al. [185] and Ye et al. [241]
developed and constructed different magnetic control pretreatment platforms, which were
actually applied to the detection of AFB1 in peanut oil and agricultural products, and
both showed good detection characteristics. Other researchers used a quencher system
composed of quantum dots and graphene oxide to detect AFB1 in peanut oil, which also
showed good detection characteristics [242].

SERS

As mentioned above, SERS is a promising analytical tool with many advantages over
traditional AFB1 detection methods, including high sensitivity, easy sample preprocessing,
and non-destructive testing [166,174,243]. Compared with antibodies, aptamers have
the advantages of low cost, easy synthesis, good stability and strong specificity to target
molecules. With the mature development of aptamer manufacturing technology, they have
gradually become one of the most potential recognition elements in SERS labeling detection.

Recently, several authors have combined advanced composite materials with SERS
aptamer sensors to develop new procedures for AFB1 detection. For example, on the
basis of the combination of a multifunctional capture probe (Fe3O4@Au report the strong
Raman signal of probe 1 (AU)-4MBA@AgNSs-Apt), an ultrasensitive assay was successfully
developed for a high-performance SERS aptamer sensor of AFB1. He et al. [174] reported
that, in the presence of AFB1, the probe was released from the capture probe, resulting in a
decrease in SERS intensity, possibly due to the specific binding affinity between the aptamer
and AFB1. For AFB1 detection, a wide linear range, from 0.0001 to 100 ng mL−1, was
obtained, with an R2 of 0.9911, and the LOD was calculated as 0.40 pg mL−1. Finally, after
extracting AFB1 from peanut oil samples, the SERS aptamer sensor was successfully applied
to the analysis of AFB1, and the recovery was between 96.6% and 115%. Therefore, the novel
SERS aptamer sensor is a promising analytical tool for detecting AFB1 in actual samples.

In the report by Yang et al. [169], with the help of the specific interaction between AFB1
and aptamer, a novel SERS-based universal aptamer sensor platform was constructed to
detect AFB1. First, gold nanotriangle (GNT)-DTNB@Ag-DTNB nanotriangles (GDADNTs)
were synthesized and used as SERS active substrates. These magnetic beads and amino-
terminal-aptamer-conjugated magnetic beads (CS-Fe3O4) were then used as capturer and
reporter of AFB1, respectively. Finally, the platform showed excellent sensitivity under
optimized assay conditions, with a lower LOD (0.54 pg mL−1) and a more comprehensive
linear range (0.001–10 ng mL−1). In addition, the high stability of SERS substrate activity
was maintained for at least three months, with an RSD of ~5%, which has good selectivity
for general coexistence interference. The excellent sensitivity and selectivity of micro-AFB1
detection are mainly due to the substantial Raman-enhancing effect of GNTs as the core
of GDADNTs, which results from the bilayer of reporter molecules, aptamer specificity,
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and the super-paramagnetic CS-Fe3O4, respectively. The researchers also evaluated and
confirmed that the established SERS aptamer sensor can be used to detect AFB1 in peanut
oil samples.

In a subsequent study, on the basis of previous research, another simple and sensitive
SERS aptamer sensor was developed for detecting AFB1 in peanut oil [170]. In this study,
the researchers used an aminoterminal AFB1 aptamer (NH2-DNA1) as a SERS aptamer
sensor, magnetic beads conjugated to a thiol-terminal-complementary AFB1 aptamer (SH-
DNA2) (CS-Fe3O4) as enrichment nanoparticle probes, and AuNR@DNTB@Ag nanorods
(ADANR) as reporter nanoprobes. 5,5′-Dithiobis (2-nitrobenzoic acid) (DNTB) is embedded
in gold and silver core/shell nanorods as a Raman reporter molecule, which has a large
Raman scattering cross section and no fluorescence interference. Furthermore, CS-Fe3O4
has good biocompatibility and superparamagnetism, which can quickly enrich signals.
Therefore, NH2-DNA1-CS-Fe3O4 and SH-DNA2-ADANRs were prepared by a mixed reac-
tion between aptamers and complementary aptamers. When present, AFB1 will compete
with NH2-DNA1-CS-Fe3O4 to induce SH-DNA2-ADANRs to dissociate from CS-Fe3O4,
further reducing SERS signals. According to the SERS aptamer sensor, the lower detection
limit of AFB1 is 0.0036 ng mL−1 and the correlation coefficient is as high as 0.986. The
effective linear detection range is 0.01–100 ng mL−1, obtained with a correlation coefficient
as high as 0.986. Finally, the specificity and accuracy of the SERS aptasensor were proved
by detecting AFB1 in natural peanut oil.

Similar research strategies are reflected in other reports. Jiao et al. [244] developed
a gold-silver core-shell nanoparticles (Au@Ag CSNPs) SERS sensor decorated with 5-
aminotetramethylrhodamine (NH2-Rh). Based on the optimization of experimental condi-
tions, the sensor can be combined with solid phase extracts of peanut oil, hazelnut, and
other samples to achieve a quantitative analysis of AFB1 with detection range and LOD
0.1–5.0 ng·mL−1 and 0.03 ng·mL−1, respectively.

Various AFB1 sensors are also identified in edible vegetable oil by electrochemical
detection, which has some unique advantages, such as low cost, high sensitivity, and the
possibility of micromachining. For example, Xiong et al. [245] revealed a highly innovative
method based on dual-DNA-tweezer nanomachines to detect AFB1 in olive and peanut
oils. Wu et al. [246] presented a method based on ferrocene and β-cyclodextrin (β-simple
electrochemical aptamer sensor for host–guest recognition between CD) to detect AFB1 in
peanut oil, with a low LOD (0.049 pg mL−1).

4.5.3. Molecularly Imprinted Polymers (MIPs)

MIPs have been used as recognition elements to develop biosensors, and synthetic
polymers have displayed precise target recognition [133,202,247]. These artificial mate-
rials can recognize specific targets in complex mixtures because of specific recognition
sites for binding or catalysis and functional groups with shapes and geometries com-
plementary to those of the template molecule. These polymers self-assemble with tem-
plate molecules and active/functional monomers through the polymerization of cross-
linking agents. Therefore, when the template molecule is removed, pores with multiple
active sites appear in the polymer, which match the spatial configuration of the template
molecule [248,249]. In recent years, traditional MIPs have been applied in many cross fields,
such as chromatography, drug delivery, solid-phase extraction, controlled release, biore-
mediation, and sensors [200,250–256]. In AFB1 detection studies, MIP-based biosensors
have shown many advantages, such as unique selectivity, sensitivity, user-friendliness, and
cost-effectiveness [32,42,200,202]. For instance, Li et al. [173] exploited MIPs by preparing
an electrochemiluminescence (ECL) platform for AFB1 detection with an ultra-low LOD, of
8.5 fg mL−1, and a wide linear range (10−5 to 10 ng mL−1). While the MIP–ECL platform
was used, the recovery rate of corn oil samples was close to that obtained by HPLC, indi-
cating the reliability of the sensor and its potential in food safety evaluation. It is worth
mentioning that, as of the publication of this review, this is the lowest LOD of AFB1 in
edible oil.
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However, MIP-based biosensors also have some disadvantages, such as generally
poorer affinity and specificity than antibodies, slower binding kinetics than biological recep-
tors, incomplete template elimination, and lower utilization of binding sites [133,200,202].
Therefore, there is increasing interest in developing improved MIPs [257–259]. The key
to the success of the sensor of an MIP is whether the MIP is effectively attached to the
transducer. Three commonly used immobilization methods are in situ polymerization,
electropolymerization, and physical coating. Additionally, the number of applications of
MIP sensors for detecting AFB1 in edible vegetable oil is limited [200,202,260].

Table 2. Techniques used for the detection of AFB1 in different types of edible oil.

Matrix Analytical
Method

Sample Preparation
Method Linear Range Recovery LOD Ref.

Peanut oil ELISA Immunoaffinity
column cleanup - 84.40–92.60% 1.08 µg kg−1 [20]

Coconut oil HPLC-FLD Immunoaffinity
chromatography - - 0.01–0.04 µg kg−1 [81]

Peanut oil
Corn oil

Soybean oil
HPLC-FLD DLLME with in situ

derivatization 0.1–100 ng mL−1 106.90–121.50% 0.03 ng mL−1 [82]

Sunflower oil
Olive oil

Canola oil
Frying oil
Blend oil

HPLC-FLD Immunoaffinity
column cleanup 0.04–0.16 ng g−1 95.56–102.13% 0.16 ng g−1 [83]

Vegetable oil HPLC-FLD

Immunoaffinity
chromatography

- Solid phase
extraction

- 95.20–99.00% 0.25 µg kg−1 [84]

Coconut oil
Almond oil
Soybean oil

Olive oil

HPLC -FLD

Immuno Affinity
chromatography
combined with

DLLME

0.005–10.00 ng mL−1 96.00–109.90% 830 ng mL−1 [85]

Sesame oil
Sunflower oil

Peanut oil
Mixed oil

HPLC-FLD Liquid-Liquid
Extraction 0.34–109.2 µg kg−1 83.00–96.00% 0.09–1.5 µg kg−1 [86]

Canola oil
Corn oil
Olive oil

Peanut oil
Soybean oil

LC-MS/MS Liquid-Partitioning - 101.00–111.00% 0.030 µg kg−1 [87]

Soybean oil
Corn oil

Rice bran oil
LC-MS/MS QuEChERS ×

DLLME - 70.70–76.00% – [88]

Blend oil
Peanut oil
Maize oil

LC-MS/MS Hollow fiber liquid
phase microextraction 0.1–500 µg kg−1 78.59–80.61% 0.02 µg kg−1 [89]

Sunflower oil
Palm oil
Corn oil

LC-ESI-MS/MS QuEChERS 0.04–2000 ng g−1 87.90–106.60% 0.01 ng kg−1 [90]

Soybean oil
Corn oil

Peanut oil
Blended oil

LC–MS/MS Immunoaffinity
chromatography 0.16 µg kg−1 87.40–97.30% 0.05 µg kg−1 [96]

Olive oil
Peanut oil
Sesame oil

LC-MS/MS Immunoaffinity
column cleanup 2–20 mg kg−1 87.70–102.20% 0.1 µg kg−1 [97]

Olive oil LC/ESI-MS/MS Matrix Solid Phase
Dispersion 0.2–0.4 (pg inj) 95.00–98.00% 0.2 pg inj [261]

Olive oil
Sunflower oil
Soybean oil

Corn oil

UHPLC-QqQ-
MS/MS QuEChERS 0.5–25 µg kg−1 96.00–107.90% 0.5 µg kg−1 [100]

Sesame oil
Groundnut oil
Cottonseed oil

HPLC Liquid-Liquid
extraction 0.2–0.8 µg kg−1 - 0.1 µg kg−1 [102]
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Table 2. Cont.

Matrix Analytical
Method

Sample Preparation
Method Linear Range Recovery LOD Ref.

Vegetable oils GPC-HPLC-FLD Liquid-Liquid
Extraction 1.0–30.0 µg kg−1 82.60–90.60% 1.0 µg kg−1 [104]

Peanut oil
Sunflower oil

Olive oil

IAC-LC-ESI–
MS/MS

Liquid-Liquid
Extraction 0.02–10 µg kg−1 84.00–99.00% 0.02 µg kg−1 [105]

Virgin olive oil HPLC-FLD Solid Phase
Extraction 65.50–87.50% 0.25 ng g−1 [110]

Canola oil
Soybean oil

Corn oil
Olive oil

Peanut oil

FL LTC-IMSPE 0.0048–0.0126 ng·g−1 79.60–117.90% 0.0048 ng·g−1 [115]

Rapeseed oil
Peanut oil

Blended oil
Blended olive oil

Sunflower oil
Tea oil
Rice oil
Corn oil

Sesame oil
Soybean oil

HPLC-MS/MS QuEChERS 0.2–20 ng mL−1 87.80–98.60% 0.05 ng g−1 [116]

Soya bean oil
Groundnut oil

Beniseed oil
Palm kernel oil

Melon oil
Coconut oil

ELISA

Immunoaffinity
column cleanup
(226 Aflatoxin

clean-up Column)

- - ≤0.8352 µg L−1 [179]

Peanut oil
Virgin olive oil

ELISA&
TSA-ELISA

Liquid-Liquid
Extraction - 81.40–118.80% 0.004 ng mL−1 [180]

Olive oil

Amperometric
biosensor

coupled with
AChE enzyme

Liquid-Liquid
Extraction 10–60 ppb 76.00–78.00% 2 ppb [186]

Olive oil
EIS based on

MWCNTs/RTIL
composite films

Liquid-partitioning 0.1–10 ng mL−1 96.00–116.00% 0.03 ng mL−1 [190]

Peanut oil

Disposable
electrochemical
immunosensor
with Au NPs

modified SPCE

- 0.001–100 ng mL−1 90.00–102.00% 0.2 pg mL−1 [192]

Peanut oil

Fluorescence
spectroscopy

based on UCNPs
upconversion
nanoparticles

(UCNPs)

Liquid-partitioning 0.2–100 ng mL−1 92.80–113.40% 0.2 ng mL−1 [196]

Oil

Chemiluminescence
immunoassay

combined with
the magnetic

particles
(MPCLIA)

Liquid-partitioning 0.1–100 ng mL−1 85.67–108.67% 0.05 ng mL−1 [197]

Corn germ oil
Peanut oil

An immunoassay
based on both
recombinant

antibody and its
mimotope

Liquid-Liquid
extraction 0.242.21 ng mL−1 86.70–116.20% 0.13 ng mL−1 [206]
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Table 2. Cont.

Matrix Analytical
Method

Sample Preparation
Method Linear Range Recovery LOD Ref.

Vegetable oil

Immobilized
immunosensor

based on the
hybrid gold

nanoparticles-
poly

4-aminobenzoic
acid supported

graphene

- 0.01–25 ng mL−1 - 0.001 ng mL−1 [207]

Peanut oil UCNPs-BPNSs
aptamer - 0.2–500 ng mL−1 92.89–99.24% 0.028 ng mL−1 [224]

Peanut oil

Dual-terminal
stemmed aptamer

beacon,
aggregation-

induced
emission

Liquid-Liquid
Extraction 40–300 ng mL−1 93.59–109.30% 27.3 ng mL−1 [225]

Corn oil

A chimeric
aptamer-based

gold
nanoparticles

aptasensor

- 5–5120 nM 91.50–117.60% 1.88 nM [226]

Corn oil
Peanut oil

An
electrochemical
aptasensor base

on an
AuNPs/ZIF-8
nanocomposite

- 10.0–1.0 × 105 pg
mL−1 93.49–106.90% 1.82 pg mL−1 [227]

Peanut oil

An
electrochemical
aptasensor base

on an
AuNPs/Zn/Ni-

ZIF-8–800@
graphene

nanocomposite

- 0.18–100 ng mL−1 80.26–109.60% 0.18 ng mL−1 [228]

Oil

An aptasensor of
hybridization
chain reaction

and
Zn2+-dependent

DNAzyme
catalyzed
cleavage

- 0.4–16 nmol L−1 92.20–107.80% 0.22 nmol L−1 [237]

Oil
Fabricating

electrochemical
aptasensors

- 0.04–0.10 ng m L-1 94.5–103.3% 0.002 ng m L−1 [184]

Peanut oil

Electrochemical
immunosensor

base on
AFB1-BSA-QDs

- 0.08–80 µg kg−1 102.70–113.30% 0.05 µg kg−1 [185]

Peanut oil SERS aptasensor - 0.0001–100 ng·mL−1 96.60–115.00% 0.40 pg·mL−1 [174]
Peanut oil SERS aptasensor - 0.001–10 ng mL−1 94.70–109.00% 0.54 pg mL−1 [169]

Peanut oil
Q-dots-aptamer-
GO fluorescence

quenching system
- 1.6–160 µM - 1.4 nM [242]

Peanut oil
Atomic

absorption
spectroscopy

- 2.5–240 µg kg−1 - 0.04 µg kg−1 [241]

Peanut oil SERS aptasensor – 0.01–100 ng mL−1 91.09–105.73% 0.0036 ng mL−1 [170]

Peanut oil

SERS aptasensor
with

NH2-Rh-Au@Ag
CSNPs

Solid Phase
Extraction 0.1–5.0 ng mL−1 - 0.03 ng mL−1 [244]
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Table 2. Cont.

Matrix Analytical
Method

Sample Preparation
Method Linear Range Recovery LOD Ref.

Olive oil
Peanut oil

Dual DNA
tweezers

nanomachine
- 0.08–10 ppb 90.00–110.00% 0.035 ppb [245]

Peanut oil

Electrochemical
aptasensor based

on smart
host-guest

recognition of
β-cyclodextrin

polymer

- 0.1× 10−4–10 ng mL−1 94.50–106.70% 0.049 pg mL−1 [246]

Peanut oil

A dual signal
amplified

aptasensor based
on

DNA walker,
(DTNs) and

network (HCR)

- 1−1000 pg mL−1 87.56–105.28% 0.492 pg mL−1 [236]

Corn oil

A novel
fluorescence

aptasensor based
on mesoporous

silica
nanoparticles

- 0.5–50 ng mL−1 90.30–92.40% 0.13 ng mL−1 [262]

Peanut oil
Dual-terminal

proximity
aptamer probes

- 1.0–200 ng mL−1 90.30–102.91% 0.9 ng mL−1 [263]

Sesame oil
Olive oil

Peanut oil
Soybean oil

An
aptamer-based

MCE-LIF
- 0.05–5.0 ng mL−1 95.29–109.19% 0.026 ng mL−1 [264]

Peanut oil

A simple
fluorescent AFB1
sensor based on a

humic
acid/carbon dots

system

- 0.1–0.8 ng mL−1 103.80–108.00% 70 pg mL−1 [171]

Peanut oil SERS aptasensor - 0.01–100 ng mL−1 90.40–113.10% 5.0 ng mL−1 [172]

Edible oil
Immunoaffinity
chromatography

fluorometer

Immunoaffinity
column clean-up 1.0–32.2 µg kg−1 - 1 µg kg−1 [265]

Corn oil

An MIP-ECP-ECL
sensing platform

based on
CH3NH3PbBr3
quantum dots

(MAPB
QDs)@SiO2

- 10−5–10 ng mL−1 102.00–110.00% 8.5 fg mL−1 [173]

Soybean oil

Terahertz
spectroscopy
(photoelectric

techniques)

- - - 2 µg kg−1 [162]

Peanut oil
Corn oil

ELC based on
Escherichia coli - 0.01–0.3 µg mL−1 90.00–112.00% 1 µg mL−1 [266]

5. Conclusions and Perspectives

Mycotoxin contamination, especially AFB1 contamination in edible oil, is usually
unavoidable. A more sensitive and rapid sensor-based early warning tool for AFB1 detec-
tion would help to reduce risk. Various traditional, modern, and biosensing technologies
have been used to detect toxins in contaminated food. Spectroscopic techniques, chro-
matographic techniques are general methods for the detection of AFB1 in edible oils. In
recent years, based on the cross-integration of multiple disciplines, the innovation, progress
and development of general methods have also been promoted. Although traditional
chromatographic techniques can effectively detect mycotoxins, their performance in all
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aspects cannot achieve satisfactory results. Combined use with other sensor equipment can
effectively improve reliability, sensitivity and accuracy. However, due to the high cost of
equipment, on-site inspection cannot be performed, and sample pretreatment is required,
which limits the use of chromatography technology in the detection of AFB1 in edible oil.
The development of spectroscopic techniques has become increasingly diverse and can
effectively detect mycotoxins, especially AFB1 in edible oils. However, these methods are
not suitable for on-site detection, because they still have many shortcomings, such as low
sensitivity and reliability, and the need for professional personnel to operate.

Unlike conventional detection techniques, novel biosensors show high accuracy, sensi-
tivity, and specificity; better cost controllability and portability; and reliability and simplicity
in operation.

This review also discusses the development of important recognition elements in
sensors. The recognition element of the sensor should have sensitivity and specificity
sufficient enough to detect small amounts of target toxins, even in samples with complex
matrix systems. The development and use of nanomaterials further improve the efficiency
of biosensor conversion systems, but these require further improvements in their sensitivity,
selectivity, and reproducibility. Of course, the stability and cost will also affect the selection
of identification elements, which can improve the practicability.

Despite significant progress in biosensors for the detection of AFB1, there are some
problems and challenges in the future. (1) The recognition elements of biosensors (such
as metal nanoparticles, quantum dots, and graphene) improve the efficiency of sensing
systems, but all these require further improvements in terms of sensitivity, selectivity, and
reproducibility. (2) Future studies can perform AFB1 toxicity measurements and develop
advanced nanomaterial-integrated biosensors to improve the overall detection of harmful
substances, such as AFB1, in contaminated food samples. (3) When detecting AFB1 in
contaminated food samples, researchers can focus on combining biosensing systems with
microarray technology to fabricate more portable devices. (4) Reagent-free, clean-free,
calibration-free, or nonbiological contamination biosensors for aflatoxin analysis require
more effort and will reduce the possible future hazards.
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Abbreviations

AChE Acetylcholinesterase
Adanrs Aunr@DNTB@Ag Nanorods
AFB1 Aflatoxin B1
AFB2 Aflatoxin B2
AFBO Aflatoxin B1–8,9-Epoxide
AFG1 Aflatoxin G1
AFG2 Aflatoxin G2
AFM1 Aflatoxin M1
AFM2 Aflatoxin M2
Afs Aflatoxins
AIE Induced Emission
AOAC Association of Analytical Communities
AuNPs Gold Nanoparticles
BPNSs Black phosphorus nanosheets
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CBNs Carbon-Based Nanomaterials
CEN European Committee for Standardization
CODEX European Commission and The Codex Alimentarius Commission
CV Cyclic Voltammetry
CQDS Carbon Quantum Dots
CSNPs Core-Shell Nanoparticles
CYP Cytochrome P
DLLME Dispersive Liquid-Liquid Microextraction
DNTB 5,5′-Dithiobis (2-Nitrobenzoic Acid)
DS dual-terminal stemmed
DTNs DNA tetrahedral nanostructures
ECL Electrochemiluminescence
EIS Electrochemical Impedance Spectroscopy
ELISA Enzyme-Linked Immunoassay
EU European Union
EXO I Exonuclease I
FAO Food and Agriculture Organization
FRET Fluorescence Resonance Energy Transfer
GCEs Glassy Carbon Electrodes
Gdadnts Gold Nanotriangles (Gnts)-DTNB@Ag-DTNB Nanotriangles
GO Graphene Oxide
GOD Graphene Quantum Dots
GPC Gel Permeation Chromatography
GST Glutathione-S-Transferase
HCR Hybridization Chain Reaction
HBV Hepatitis B Virus

HPLC-FD
High-Performance Liquid Chromatography Coupled with A
Fluorescence Detector

HPLC-MS
High-Performance Liquid Chromatography Coupled with
Mass Spectrometry

Iacs Immunoaffinity Columns
IMSPE Immuno magnetic solid phase extraction
IRs Infrared spectroscopy
ITC Isothermal Titration Calorimetry
KCN Editpotassium Cyanide
LC-MS-MS Liquid Chromatography-Tandem Mass Spectrometry
LIF Laser-Induced Fluorescence
LLE Liquid-Liquid Extraction or Partitioning
LOD Limits of Detection
LTC Immune Assay Extraction and Low Temperature Cleanup
MIPs Molecularly Imprinted Polymers
MNPs Metal Nanoparticles
MST Microthermophoresis
NH2-DNA1 Amino-Terminal AFB1 Aptamer
NH2-Rh 5-aminotetramethylrhodamine
NIR Near Infrared
PABA-R-GO Hybrid 4-Aminobenzoic Acid-Reduced Graphene Oxide
PB Prussian Blue
QDs Quantum Dots
QuEChERS Quick, Easy, Cheap, Effective, Rugged, and Safe
RAbs Recombinant Antibodies
RS Raman spectroscopy
SELEX Systematic Evolution of Ligand by the Exponential Enrichment Process
SERS Surface-Enhanced Raman Spectroscopy
SH-DNA2 Complementary Aptamer
SPCE Screen-Printed Carbon Electrode
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SPE Solid Phase Extraction
THz Terahertz
TLC Thin-Layer Chromatography
TMB 3,3,5,5-Tetramethylbenzidine
UCNPs Upconversion Nanoparticles
UHPLC/UPLC Ultra-High Performance Liquid Chromatography

UHPLC-Qqq-MS/MS
Ultra-High Performance Liquid Chromatography Coupled to A Triple
Quadrupole Analyzer

US-FDA US Food and Drugs Administration
WHO The World Health Organization
β-CD β-cyclodextrin
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