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Many Newcastle disease virus (NDV) strains have been developed as vectors to express
a foreign gene (FG) for vaccine and cancer therapy purposes. The non-coding region
between the phosphoprotein (P) and matrix protein (M) genes and the non-coding region
behind the NP gene open reading frame (ORF) in the NDV genome have been identified
as the optimal insertion sites for efficient FG expression through the independent
transcription unit (ITU) and the internal ribosomal entry site (IRES) dependent expression
approaches, respectively. To date, however, the majority of these NDV vectors express
only a single or two FGs from suboptimal insertion sites in the NDV genome, obtaining
various levels of FG expression. To improve the FG expression, we generated NDV
LaSota vaccine strain-based recombinant viruses expressing two FGs, GFP, and RFP,
from the identified optimal insertion sites through a combination of the ITU and IRES-
dependent approaches. Biological assessments of the recombinant viruses indicated
that the recombinants expressing two FGs were slightly attenuated with approximately
one order of magnitude lower in virus titers when compared to the viruses containing
a single FG. The FG expression efficiencies from the two-FG viruses were also lower
than those from the single-FG viruses. However, the expression of two FGs from the
optimal insertion sites was significantly (p < 0.05) higher than those from the suboptimal
insertion sites. The expressions of FGs as monocistronic ITU were approximately 4-fold
more efficient than those expressed by the bicistronic IRES-dependent approach. These
results suggest that the NDV LaSota vector could efficiently express two FGs from
the identified optimal insertions sites. The ITU strategy could be used for “vectoring”
FGs in circumstances where high expression of gene products (e.g., antigens) is
warranted, whereas, the IRES-dependent tactic might be useful when lower amounts of
IRES-directed FG products are needed.
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INTRODUCTION

Avian orthoavulavirus 1, commonly known as Newcastle disease
virus (NDV, used hereafter), is a member of the genus
orthoavulavirus within the subfamily Avulavirinae of the family
Paramyxoviridae1 (Amarasinghe et al., 2019). Virulent strains
of NDV cause Newcastle disease (ND), a highly contagious
viral disease of domestic and wild birds, threatening the poultry
industry worldwide2 (Miller and Koch, 2013). Vaccination,
combined with strict biosecurity measures, has been the
recommended strategy to control ND for 60 years (Dimitrov
et al., 2017). Human infection with NDV is uncommon, but
people exposed to infected birds may experience headaches, flu-
like symptoms, and conjunctivitis for 1–2 days (Swayne and King,
2003). However, there is no data to suggest that the infection can
be transmitted human-to-human.

NDV contains a single-stranded, non-segmented, negative-
sense RNA of approximately 15.2 kb in length that consists
of six genes flanked by a 3′ Leader and 5′ Trailer in
the order 3′-nucleocapsid protein (NP)-phosphoprotein
(P)-matrix protein (M)-fusion protein (F)-hemagglutinin-
neuraminidase (HN)-large polymerase (L)-5′ (de Leeuw
and Peeters, 1999; Peeters et al., 1999; Samal, 2011). Two
accessory proteins (V and W) are produced through the
editing of the phosphoprotein messenger RNA (mRNA)
(Steward et al., 1993). Unlike positive-stranded RNA viruses,
the naked genomic RNA of NDV is not infectious. It must
be encapsidated with the NP protein and associated with
the P and L proteins, forming a ribonucleocapsid, to
act as a template for RNA transcription and replication
(Peeters et al., 1999).

Since the first reverse genetics system for NDV was
established in the late 1990s (Peeters et al., 1999; Romer-
Oberdorfer et al., 1999), the genomes of several NDV strains
have been developed as vectors to express foreign genes
(FGs) for vaccine and cancer therapy purposes. (Schirrmacher
and Fournier, 2009; Kim and Samal, 2018). Most of these
NDV vectors express only a single FG from an additional
independent transcription unit (ITU), which is inserted into
a non-coding region between native viral transcription units
within the NDV genome (Yu, 2015). The level of FG expression
can vary depending on the size of the insert, and more
importantly, the location of the insert in the NDV genome.
The optimal insertion site in the NDV genome for efficient
expression of an FG through the ITU approach has been
identified as the non-coding region between the P and M genes
(Zhao et al., 2015). Besides the ITU approach, a bicistronic
approach was developed using a second ORF downstream
from an internal ribosomal entry site (IRES) to facilitate cap-
independent translation (Zhang et al., 2015). The level of
FG expression through this approach correlates well with the
transcriptional gradient across the ordered NDV genes, being 3′
NP > P > M > F > HN > L 5′. Therefore, the optimal insertion

1https://talk.ictvonline.org/taxonomy/
2https://www.oie.int/en/animal-health-in-the-world/animal-diseases/Newcastle-
disease/

site for efficient expression of an FG through the bicistronic IRES-
dependent approach would be the non-coding region behind the
3′ proximal NP gene of NDV.

Efforts to express two FGs from a single NDV vector have
involved the use of either two additional ITUs or a bicistronic
ITU containing an IRES (Puhler et al., 2008; Ramp et al.,
2011; Khattar et al., 2015; Hu et al., 2017, 2018). In most of
these cases, the FGs were expressed from suboptimal insertion
sites with various levels of FG expression. To improve the FG
expression, in the present study, we expressed two FGs, the
green fluorescent protein (GFP) and red fluorescent protein
(RFP) genes as reporters, from the identified optimal insertion
sites in the NDV genome through a combination of the ITU
and IRES-dependent approaches. The data obtained from this
study suggest that the NDV LS strain could efficiently express
two FGs simultaneously from the optimal insertion sites for the
development of multivalent vaccines and cancer therapeutics.

MATERIALS AND METHODS

Cells, Viruses, and Nucleic Acid Isolation
HEp-2 (CCL-81; ATCC) and DF-1 (CRL-12203; ATCC) cell
lines were maintained at 37◦C, and 5% CO2 in Dulbecco’s
Modified Eagle Medium (DMEM, Thermo Fisher Scientific,
Carlsbad, CA, United States) supplemented with 10% heat-
inactivated fetal bovine serum (FBS, Thermo Fisher Scientific),
and antibiotics (100 U/ml Penicillin, 100 µg/ml Streptomycin,
0.25 µg/mL Amphotericin B, Thermo Fisher Scientific, Suwanee,
GA, United States). The DF-1 cells were cultured in DMEM
containing 10% allantoic fluid (AF) from 10-day-old specific-
pathogen-free (SPF) chicken embryos for all subsequent infection
experiments unless otherwise indicated. The NDV LaSota strain-
based recombinant viruses, rLS, rLS-GFP, rLS-NP-I-RFP, and
rLS/IRES-RFP/GFP, were generated previously (Hu et al., 2011;
Zhao et al., 2014; Zhang et al., 2015; Hu et al., 2018). The modified
vaccinia Ankara/T7 recombinant virus (MVA/T7) used during
virus rescue to provide the bacteriophage T7 RNA polymerase
was a kind gift from B. Moss, National Institutes of Health
(Wyatt et al., 1995).

Viral RNA was isolated from the AF of NDV-infected chicken
embryos and infected DF-1 cells using a QIAamp Viral RNA
Mini Kit according to the manufacturer’s instructions (Qiagen,
Valencia, CA, United States).

Construction of rLS-Based cDNA Clones
Containing the RFP and GFP Genes
All experiments in this study were carried out following the
guidelines and protocols approved by the Institutional Biosafety
Committee (IBC), US National Poultry Research Center,
United States Department of Agriculture, Agriculture Research
Service (USNPRC, USDA-ARS, Athens, GA, United States).

The previously generated infectious clones, pLS-GFP
(containing the GFP insert between the P and M genes) (Zhao
et al., 2014) and pLS-NP-I-RFP (containing the IRES and RFP
insert as a 2nd ORF in the NP gene) (Zhang et al., 2015), were
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used as backbones to construct new cDNA clones, pLS-I-RFP-
GFP, pLS-RFP, pLS-I-GFP, and pLS-I-GFP-RFP, as illustrated
in Figure 1. Construction of these new clones was carried
out by using an In-Fusion R© PCR Cloning Kit following the
manufacturer’s instruction (Clontech, Mountain View, CA,

United States). Primer sets used to amplify the GFP or RFP
fragments and the linearized vector backbone were designed to
contain a 15-nucleotide (nt) overlapping region of homology at
their 5′ end (Table 1). All PCR amplifications were carried out
by using pfuUltraTM II Fusion HS DNA polymerase (Agilent

FIGURE 1 | Schematic representation of NDV LaSota strain-based recombinant cDNA clones vectoring GFP and RFP (not to scale). The previously generated
infectious clones, pLS-GFP (Zhao et al., 2014) and pLS-NP-I-RFP (Zhang et al., 2015; Zhao et al., 2014) were used as backbones to construct cDNA clones
containing two FGs, GFP and RFP, in the identified optimal insertion sites using the In-Fusion R© PCR Cloning Kit following the manufacturer’s instruction (Clontech).
(A) The IRES (I) sequence, together with the RFP gene amplified from pLS-NP-I-RFP, was inserted into the NP gene as a second ORF in pLS-GFP to create
pLS-I-RFP-GFP. (B) The GFP gene in the pLS-GFP clone was replaced with the RFP gene amplified from pLS-NP-I-RFP, resulting in pLS-RFP. (C) The RFP gene in
pLS-NP-I-RFP was replaced with the GFP gene amplified from the pLS-GFP clone, generating pLS-I-GFP. (D) The IRES sequence, along with the GFP gene, was
amplified from pLS-I-GFP and inserted into pLS-RFP, resulting in pLS-I-GFP-RFP. A bold black arrow indicates the direction of the T7 promoter. Letters I, HDVRz,
and T78 represent the IRES, Hepatitis delta virus ribozyme, and the T7 terminator sequences, respectively.
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TABLE 1 | Primer sequences used in the study.

Primer Primer sequencedc Primer name

1a gactgggggtattgaGCAAATTCCGCCCCTCTCC F1 F

2a gggttttgtccactaCTACAGGAACAGGTGGTG F1 R

3a atagttgtagccaccATGGCCTCCTCCGAGGACG F2 F

4a acggtagttacacacCTACAGGAACAGGTGGTGGCG F2 R

5a aaacacgatgataatATGGTGAGCAAGCAGATCCTGAAG F3 F

6a gctgggttttgtccaCTATCACACCCACTCGTGCAGGC F3 R

7b tagtggacaaaacccAGCCTGCTTCC F1 Vec F

8b tcaatacccccagtcGGTGTCG F1 Vec F

9b gtgtgtaactaccgtGTACTAAGCC F2 Vec F

10b ggtggctacaactatCAACTAAACTC F2 Vec R

11b attatcatcgtgtttTTCAAAGG F3 Vec R

aPrimers 1-6 were used to PCR amplify the RFP, IRES-RFP, GFP, and IRES-GFP
genes from the plasmid. bPrimers 7-11 were used to amplify or linearize the
subclone vectors. cNucleotides shown in lower-case letters represent homology
sequences with a vector backbone, which were used to facilitate the RE
independent cloning using the In-Fusion R© PCR Cloning Kit (Clontech).

Technologies, La Jolla, CA, United States) and the paired
gene-specific primers (Table 1) according to the manufacturer’s
instruction. Briefly, the IRES sequence and RFP gene were
amplified by PCR with a pair of specific primers (F1 F and
F1 R, Table 1) from the pLS-NP-I-RFP clone, and inserted
into the NP gene as a 2nd ORF in a linearized vector that was
amplified from the pLS-GFP with one pair of specific primers
(F1 Vec F and F1 Vec R, Table 1), creating pLS-I-RFP-GFP
(Figure 1A). The GFP gene in the pLS-GFP clone was replaced
with the RFP gene amplified from pLS-NP-I-RFP with two
pairs of specific primers separately (F2 F and F2 R for RFP
gene, F2 Vec F and F2 Vec R for the linearized vector, Table 1),
resulting in pLS-RFP (Figure 1B). Similarly, the RFP gene
in pLS-NP-I-RFP was replaced with the GFP gene amplified
from the pLS-GFP clone with two pairs of specific primers
(F3 F and F3 R for GFP gene, F1 Vec F and F3 Vec R for the
linearized vector, Table 1), generating pLS-I-GFP (Figure 1C).
The IRES sequence, along with the GFP gene in the pLS-I-GFP
clone, was amplified and inserted into the NP gene as a 2nd
ORF in the pLS-RFP clone with two pairs of specific primers
(F1 F and F3 R for GFP gene, F1 Vec F and F1 Vec R for
the linearized vector, Table 1), generating pLS-I-GFP-RFP
(Figure 1D). All resulting cDNA clones were amplified with
Stbl2 cells at 30◦C for 24 h and purified by using a QIAprep Spin
Miniprep kit (Qiagen).

Virus Rescue and Propagation
Rescue of the recombinant viruses was performed by transfection
of the recombinant cDNA clones and ancillary plasmids that
express the NDV NP, P, and L proteins into MVA/T7 virus-
infected HEp-2 cells as described previously (Estevez et al.,
2007). Briefly, the HEp-2 cells were seeded on a six-well plate at
1 × 106 cells/well and infected with MVA/T7 at a multiplicity of
infection (MOI) of 1 to provide the T7 polymerase. A mixture
of 2 µg of one of these four cDNA clones (pLS-RFP, pLS-I-
GFP, pLS-I-RFP-GFP, and pLS-I-GFP-RFP), 1 µg of pTM-NP,
0.5 µg of pTM-P, and 0.1 µg of pTM-L was transfected into

the MVA/T7 virus-infected HEp-2 cells using LipofectamineTM

3000 (Thermo Fisher Scientific) according to manufacturer’s
instruction. At 72 h post-transfection, the rescued viruses were
harvested by freeze-thawing the transfected cells for two times.
The rescued viruses were amplified by inoculating 300 µl of
the transfected cell lysate into the allantoic cavity of 10-day-
old SPF chicken embryos and incubating the embryos at 37◦C.
After four days of incubation, the AF was harvested, and the
presence of the rescued virus was detected by hemagglutination
(HA) assay (Alexander, 1998). HA-positive AF was filtered
through a 0.22 µm Nalgene Syringe Filter (Thermo Fisher
Scientific) and amplified in chicken embryos for two more times.
The AF was harvested from the infected embryos, aliquoted,
and stored at −80◦C as a stock. These rescued viruses were
designated as rLS-RFP, rLS-I-GFP, rLS-I-RFP-GFP, and rLS-I-
GFP-RFP, respectively.

Pathogenicity Assessment, Virus
Titration, Growth Kinetics, and Sequence
Analysis
This pathogenicity study involving SPF chickens was carried
out following the principles and recommendations of the Guide
for the Care and Use of Agricultural Animals in Research and
Teaching. The protocol was approved by the USDA-ARS, US
National Poultry Research Center’s Institutional Animal Care,
and Use Committee. Pathogenicity of the recombinant viruses
was determined using the standard mean death time (MDT)
and intracerebral pathogenicity index (ICPI) assays (Alexander,
1998). Titers of the recombinant viruses were measured by the
standard HA test in a 96-well microplate, the 50% tissue culture
infective dose (TCID50) assay on DF-1 cells, and the 50% egg
infective dose (EID50) assay in 9-day-old SPF chicken embryos
(Alexander, 1998). The growth kinetics of the recombinant
viruses in vitro was determined using DF-1 cells. Monolayers
of DF-1 cells were infected with the recombinant viruses at
0.01 MOI, respectively. Every 12 h post-infection, the infected
DF-1 cells were harvested by freezing and thawing for two
times and stored at −80◦C until being tested. Viral titers were
determined by the TCID50 assay on DF-1 cells for each time
point in triplicate (Alexander, 1998). The mean titer of each
time point of the viruses is expressed in Log10 TCID50/ml. The
parental rLS, rLS-GFP, and rLS-NP-I-RFP viruses were included
in the growth kinetics assay as controls. The nucleotide sequences
of the rescued viruses were determined by sequencing the RT-
PCR products amplified from the viral genome, as described
previously, to confirm the sequence fidelity of the rescued viruses
(Hu et al., 2011).

Examination of GFP and RFP Expression
DF-1 cells were grown in 12-well plates and infected with
the recombinant viruses at 0.01 MOI, respectively. Every 24 h
post-infection, the appearance of GFP (green) and RFP (red)
fluorescence in the infected cells was examined and digitally
photographed using an inverted fluorescence microscope at
100× magnifications (AMG, EVOS fl, Grand Island, NY) with
GFP and RFP specific filters, respectively.
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Quantification and Comparison of GFP
and RFP Fluorescence Intensities
Monolayers of DF-1 cells in 96-well plates were infected
with the recombinant viruses at 0.01 MOI, respectively, and
incubated at 37◦C in 5% CO2. The expressions of GFP and
RFP were quantitated by measuring the green (GFP) and red
(RFP) fluorescence intensities every 24 h post-infection using
a Fluorescence Microplate Reader (BioTek, FLx800, Winooski,
VT, United States) with a 485/20 excitation filter and a 528/20
emission filter for GFP, and a 540/35 excitation filter and a 600/40
emission filter for RFP. For comparison, the relative GFP and
RFP fluorescence intensities measured from triplicate wells in
two independent experiments were normalized to the highest
intensity detected in the same experiment, which was set as
100%. The percentages of the GFP or RFP fluorescence intensities
expressed by the recombinant viruses at different time points
were plotted. The differences in the percentages of fluorescence
intensities expressed by the two-FG viruses from the optimal
and suboptimal insertion sites relative to those expressed by the
single-FG viruses were compared and analyzed using the student
t-test with a 5% level of significance (Microsoft Excel).

RESULTS

Generation of the rLS Viruses Containing
the RFP and GFP Genes
Based on the NDV infectious clones, pLS-NP-I-RFP and pLS-
GFP, four full-length cDNA clones, pLS-I-RFP-GFP, pLS-I-GFP-
RFP, pLS-I-GFP, and pLS-RFP, were constructed as illustrated
in Figure 1. These clones contained the complete antisense
genome of the NDV LaSota vaccine strain containing the
GFP or RFP gene in the non-coding region between the P
and M genes as an additional ITU and the IRES-RFP or
IRES-GFP in the non-coding region in the NP gene as a
2nd ORF. The total length of cDNA clone in the pLS-I-
RFP-GFP, pLS-I-GFP-RFP, pLS-I-GFP, and pLS-RFP plasmids
is 17,370, 17,370, 16,494, and 16,062 bps, respectively, and all
are divisible by six abiding by the “Rule of Six” (Kolakofsky
et al., 2005). After co-transfection of the full-length cDNA
clones and supporting plasmids into HEp-2 cells and subsequent
propagation in SPF chicken embryonated eggs, the LaSota strain-
based recombinant viruses containing either a single FG (GFP
or RFP) or two FGs (GFP and RFP) in the optimal insertion
sites were successfully generated. These rescued recombinant
viruses were designated as rLS-I-RFP-GFP, rLS-I-GFP-RFP, rLS-
I-GFP, and rLS-RFP, respectively. The nucleotide sequence
fidelities of these recombinant viruses were confirmed by using
sanger-based sequence analysis of the RT-PCR products of
the viral genomes.

Biological Characteristics of the rLS
Viruses Containing the RFP and GFP
Genes
The rLS-I-RFP-GFP, rLS-I-GFP-RFP, rLS-I-GFP, and rLS-RFP
viruses were examined in vitro and in vivo by performing the

virus titration and the MDT and ICPI assays (Alexander, 1998)
to evaluate the influence of the addition of the GFP and RFP
genes on viral pathogenicity and growth ability. As shown in
Table 2, the recombinant viruses containing either a single FG
(GFP or RFP) or two FGs (GFP and RFP) were slightly attenuated
with a longer MDT (>140 h) and a lower ICPI (0.0) compared
to the parental rLS strain. In embryonated eggs, the titers of
the recombinant viruses containing two FGs were approximately
one order of magnitude lower relative to those of the parental
LaSota strain and, more importantly, those containing one
FG. Although the insertion of an additional FG did decrease
viral yields, the recombinant viruses displayed comparative
replication kinetics (Figure 2), suggesting that the insertion
of either one FG (GFP or RFP) or two FGs (GFP and RFP)
did not markedly influence the viral growth dynamics in DF-
1 cells.

Co-expression of FGs by rLS-I-RFP-GFP
and rLS-I-GFP-RFP
Expression of the FGs, GFP, and RFP, from the recombinant
virus-infected DF-1 cells, was observed using an inverted
fluorescence microscope. As shown in Figure 3, very few cells
fluoresced at 24 h post-infection. As the infection progress, more
and more fluorescent cells or fusion foci were observed, and the
number of fluorescent cells or fusion foci and the brightness
of the GFP and RFP fluorescence reached the peak around
72–96 h post-infection. As expected, rLS-GFP and rLS-I-GFP
infected cells emitted only green fluorescence, whereas, the rLS-
RFP and rLS-NP-I-RFP infected cells produced red fluorescence
only. Both of green (GFP) and red (RFP) fluorescence were
observed in the rLS-I-RFP-GFP and rLS-I-GFP-RFP infected
cells. It appeared that the GFP and RFP fluorescence expressed
from the additional ITU was much brighter than that expressed
from the 2nd ORF in the NP gene. Whereas, the GFP or RFP
fluorescence brightness expressed from the two-FG viruses (rLS-
I-RFP-GFP and rLS-I-GFP-RFP) was slightly weaker than that
expressed from the single-FG viruses (rLS-GFP, rLS-RFP, rLS-
I-GFP, and rLS-NP-I-RFP). These observations indicated that
the ITU approach was more efficient than the IRES-dependent
method for FG expression, and the insertion of a 2nd FG
adversely affected the 1st FG expression.

TABLE 2 | Biological assessments of the NDV recombinant viruses.

Viruses MDTa (h) ICPIb HAc EID50
d TCID50

e

rLS 134 0.15 2048 3.16 × 109 5.62 × 108

rLS-GFP 140 0.0 2048 3.16 × 109 1.78 × 107

rLS-I-GFP >150 0.0 512 6.81 × 109 3.16 × 108

rLS-I-RFP-GFP >150 0.0 256 5.62 × 108 1.78 × 107

rLS-RFP >150 0.0 512 4.22 × 109 5.62 × 108

rLS-NP-I-RFP >150 0.0 2048 6.81 × 109 3.16 × 108

rLS-I-GFP-RFP >150 0.0 256 5.62 × 108 1.78 × 107

aMean death time assay in embryonating eggs. b Intracerebral pathogenicity index
assay in day-old chickens. cHemagglutination assay. dThe 50% egg infective dose
assay in embryonated eggs. eThe 50% tissue culture infective dose assay on DF-1
cells.
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FIGURE 2 | Growth kinetics of the recombinant viruses. DF-1 cells were
infected with the indicated NDV viruses at 0.01 MOI. Every 12h post-infection,
virus lysates were harvested. Virus titers were measured by TCID50 titration on
DF-1 cells for each time point in triplicates from two independent experiments
and expressed in mean log10 TCID50/mL with a deviation.

Comparison of FG Expression
Efficiencies
The fluorescence intensities of GFP and RFP were quantitated
in the virus-infected DF-1 cells to compare the expression
efficiencies of the FGs by the recombinant viruses through the
different expression approaches. As shown in Figure 4A, the
GFP and RFP fluorescence intensities were low during the first
48 h of infection; however, afterward, the fluorescence intensities
increased rapidly and reached to the highest level (deemed as
100%) at 96–120 h post-infection. As a group, the GFP and
RFP fluorescence intensities expressed by NDV recombinants
through the ITU approach were approximately 4-fold more than
those through the IRES-dependent method. The two-FG viruses
(rLS-I-RFP-GFP and rLS-I-GFP-RFP) expressed 10-48% less GFP
or RFP when compared to the single-FG viruses (rLS-GFP,
rLS-I-GFP, rLS-RFP, and rLS-NP-I-RFP). However, as shown
in Figure 4B, the rLS-I-RFP-GFP virus expressed significantly
higher levels of GFP (p = 0.027) and RFP (p = 0.007) than the
rLS/IRES-RFP/GFP, in which the I-RFP was inserted in the F
gene as a 2nd ORF, and the GFP gene was inserted between
the F and HN genes in the NDV genome (Hu et al., 2018).
These results demonstrated that the ITU expression approach
was more efficient than the IRES-dependent method for the
FG expression. The expression efficiency of two-FGs by the
NDV vector from the optimal insertion sites was significantly
improved when compared to that from the suboptimal insertion
sites, although the additional FG insertion adversely affected the
overall FG expression.

DISCUSSION

Vaccinations have been proved to be the most cost-effective
way of preventing and controlling animal infectious diseases,

especially those caused by viruses. However, immunization
strategies are facing many new challenges. Some of the vaccines
used by the livestock farms had been developed several decades
ago, while the vaccine targeted viral pathogens have evolved in
farmed animals (Roohani et al., 2015; Nan et al., 2017; Yang
et al., 2017). The mismatch of the antigenicity between the “old”
vaccines and the currently circulating pathogens has frankly
compromised the vaccine protective efficacy. To overcome
the problem associated with this mismatch, researchers have
developed viral vectors such as turkey herpesvirus, NDV, and
fowlpox virus (Bublot et al., 2006; Esaki et al., 2013; Townsend
et al., 2017; Kim and Samal, 2018) to deliver antigens that
can match with the variants of currently circulating pathogens.
Among these vectors, NDV has been demonstrated to be one
of the most promising candidates for developing multivalent
poultry vaccines (Dimitrov et al., 2017; Kim and Samal, 2018).

During the last decade, several NDV vaccine strain-based
recombinants containing two antigenic components from a
human or avian pathogen have been generated as vaccine
candidates (Ramp et al., 2011; Khattar et al., 2015; Hu et al., 2017).
Clinical trials with these vaccine candidates obtained various
levels of protection against the targeted pathogens. Among these
vaccine candidates, most of the antigens were expressed from
suboptimal insertion sites in the NDV vectors through either two
additional monocistronic ITUs or a bicistronic IRES-dependent
expression approach. Although many factors could influence
the protective immunity induced by the vectored vaccines,
the expression efficiency of the FGs is undoubtedly the most
important one. To improve the FG expression efficiency, in this
study, we expressed two FGs from the identified optimal insertion
sites in the NDV LaSota genome through the combination
of the monocistronic ITU and the bicistronic IRES-dependent
approaches. The data obtained here demonstrated that the
levels of GFP and RFP expressed by the two-FG viruses from
the optimal insertion sites were significantly higher than those
expressed from the suboptimal insertion sites between the F and
HN genes of the NDV genome. This finding proves that the
LaSota vaccine is a promising vector that can efficiently express
two FGs from the identified optimal insertion sites, which could
potentially improve vaccine and cancer therapy efficacies.

In this study, we noticed that the titers of the NDV
recombinant viruses containing two FGs were slightly lower
(about 1 log lower) than those of the viruses containing a
single FG. Obviously, the insertion of a 2nd FG into the NDV
genome would increase the numbers of transcription units or
the total length of the viral genome. It has been approved that
the increase of the gene numbers and the length of the NDV
genome would attenuate the virus replication, and reduce virus
titers in the infected chicken embryonated eggs (Yu et al., 2013;
Zhang et al., 2015; Zhao et al., 2015; Hu et al., 2018). The lower
titers of the two-FG viruses may account for the decrease of the
overall FG expression when compared to the recombinant viruses
containing a single FG.

The data obtained in this study demonstrated that the
monocistronic ITU expression approach was more efficient
(about 4-fold) than the bicistronic IRES-dependent approach
regardless of which of these two FGs to be expressed. This finding
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FIGURE 3 | Detection of GFP and RFP expression from the recombinant virus-infected cells by fluorescence microscopy. DF-1 cells were infected with the indicated
recombinant viruses at 0.01 MOI. Every 24h post-infection, infected cells were examined under an inverted fluorescence microscope at 100 × magnifications (AMG,
EVOS fl, Grand Island, NY). GFP (green) and RFP (red) fluorescence from the same field of the infected cells was digitally photographed. The white bar represents
400 µm in size.

is in agreement with the previous report that the efficiency of
the cap-dependent expression of 5′ proximal gene is significantly
higher than that of IRES-dependent expression (Mizuguchi et al.,
2000). Thus, it would be the first choice to express a higher
amount of an FG product through the ITU approach. However,
we would not recommend to express multiple FGs using multiple
ITUs, because the insertion of ITUs in the NDV genome
could attenuate their down-stream viral gene transcription and
consequently decrease virus titers and the overall FG expression
(Zhao et al., 2015; Hu et al., 2018).

In addition to the ITU and IRES approaches, a third method
for the co-expression of FGs by an NDV vector was developed
using the viral 2A self-cleavage peptides (Wen et al., 2015; Xu
et al., 2018). Xu et al. (2018) generated a recombinant NDV
co-expressing IL-15 and IL-7 through the incorporation of a
2A self-processing peptide into an IL-15/IL-7 fusion polypeptide
and demonstrated that the modified NDV is a promising agent

for cancer immunotherapy. The self-cleavage 2A strategy has a
higher expression efficiency than the IRES method (Wen et al.,
2015; Zhang et al., 2015), and can be used to express a similar
or equal molar amounts of monomeric proteins for therapeutic
purposes. However, there is a concern that after a self-cleavage
of the expressed polypeptide, the upstream protein includes an
extra short 2A peptide on its C-terminus (17–21 amino acids,
depending upon the 2A sequence used), and the downstream
protein contains a single proline residue on its N-terminus (Wen
et al., 2015; Xu et al., 2018). There is a possibility that these extra
amino acids may alter the antigenicity or biological functions of
these foreign proteins, which might potentially affect the vaccine
and cancer therapy efficacies.

In summary, the NDV LaSota vaccine strain-based
recombinant viruses containing two FGs, GFP, and RFP, in
the identified optimal insertion sites were slightly attenuated
with about one order of magnitude lower in virus titers when
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FIGURE 4 | Comparisons of GFP and RFP expressed from different recombinant virus-infected DF-1 cells. DF-1 cells were grown in 96-well plates and infected with
the indicated NDV recombinants at 0.01 MOI. Every 24h post-infection, GFP and RFP fluorescence intensities were measured by using Fluorescence Microplate
Reader (BioTek, FLx800, Winooski, VT) in triplicate wells from two independent experiments. The highest GFP or RFP fluorescence intensity is deemed as 100%. (A)
The percentages of the mean GFP and RFP fluorescence intensities respectively relative to their highest intensity at different time points post-infection were plotted.
ITU and IRES denote the GFP and RFP expressed through the ITU and IRES-dependent approaches, respectively. Error bars indicate the standard deviation (SD) of
GFP or RFP fluorescence intensity. (B) The percentages of the mean GFP or RFP fluorescence intensities respectively relative to their highest intensity were
compared using the student t-Test with a 5% level of significance (Microsoft Excel). The lower-case letters (a, b, and c) indicate the significant difference (p < 0.05) of
GFP fluorescence intensities and the capital letters (A, B, and C) denote the significant difference (p < 0.05) of RFP fluorescence intensities, between the indicated
NDV recombinant virus-infected DF-1 cells, respectively. Error bars indicate the SD of GFP or RFP fluorescence intensity.

compared to the viruses with a single FG and their parental
rLS virus. The FG expression from the two-FG viruses was less
efficient than those from the single-FG viruses. However, the
expression of two FGs from the optimal insertion sites was
significantly higher than those from the suboptimal insertion
sites. The expression of FGs through the ITU approach was more
efficient (about 4-fold) than that through the IRES approach.
The results suggest that the NDV LaSota vaccine strain could
efficiently express two FGs from the optimal insertion sites
through the combination of the ITU and IRES expression

approaches. The ITU tactic could be used for the expression of a
higher amount of FG products, whereas, the IRES strategy might
be useful to express a lower amount of FG products to meet the
requirement for vaccine development or cancer therapy.
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