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radiotherapy has extensively been employed as a curative 
or palliative intervention against cancer throughout the last 
century, with a varying degree of success. For a long time, 
the antineoplastic activity of X- and γ-rays was entirely 
ascribed to their capacity of damaging macromolecules, 
in particular DNA, and hence triggering the (apoptotic) 
demise of malignant cells. However, accumulating evidence 
indicates that (at least part of) the clinical potential of 
radiotherapy stems from cancer cell-extrinsic mechanisms, 
including the normalization of tumor vasculature as well as 
short- and long-range bystander effects. Local bystander 
effects involve either the direct transmission of lethal signals 
between cells connected by gap junctions or the production 
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of diffusible cytotoxic mediators, including reactive oxygen 
species, nitric oxide and cytokines. Conversely, long-range 
bystander effects, also known as out-of-field or abscopal 
effects, presumably reflect the elicitation of tumor-specific 
adaptive immune responses. Ionizing rays have indeed been 
shown to promote the immunogenic demise of malignant 
cells, a process that relies on the spatiotemporally defined 
emanation of specific damage-associated molecular patterns 
(DAMPs). Thus, irradiation reportedly improves the clinical 
efficacy of other treatment modalities such as surgery (both 
in neo-adjuvant and adjuvant settings) or chemotherapy. 
Moreover, at least under some circumstances, radiotherapy 
may potentiate anticancer immune responses as elicited 
by various immunotherapeutic agents, including (but 
presumably not limited to) immunomodulatory monoclonal 
antibodies, cancer-specific vaccines, dendritic cell-based 
interventions and Toll-like receptor agonists. Here, we review 
the rationale of using radiotherapy, alone or combined with 
immunomodulatory agents, as a means to elicit or boost 
anticancer immune responses, and present recent clinical 
trials investigating the therapeutic potential of this approach 
in cancer patients.
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brachytherapy relies on the seeding of tiny radioactive pellets 
within the tumor mass (interstitial brachytherapy), in a adja-
cent cavity—be it surgical or natural—via needles or catheters 
(intracavitary brachytherapy), while systemic radiation therapy is 
based on the oral or intravenous administration of a radionuclide, 
frequently coupled to a tumor-targeting monoclonal antibody.7,8 
A peculiar type of intracavitary brachytherapy is represented by 
plaque radiotherapy, which is frequently employed for the man-
agement of uveal and choroidal melanoma.9-11 This approach 
involves a thin, concave metal plate containing radioactive seeds 
(often of 125I) that is sewn to the outer surface of the ocular globe. 
For how it is constructed (with radioactive seeds facing inward), 
this medical device allows for the relatively focused delivery of 
ionizing radiation to the eye (and hence the tumor) while pro-
tecting other tissues from exposure.9-11

Common types of EBRT include (1) 3D-conformal radia-
tion therapy (3D-CRT), which relies on a sophisticated com-
puter software to deliver X- or γ-rays to precisely defined target 
areas;12,13 (2) intensity-modulated radiation therapy (IMRT), 
using hundreds of (stationary or mobile) collimators to treat 
different zones of the malignant lesions or nearby tissues (see 
below) with different beam intensities;14,15 (3) image-guided 
radiation therapy (IGRT), during which repeated scans by 
computed tomography (CT), positron emission tomography 
(PET), or magnetic resonance imaging (MRI) are performed to 
monitor changes in the size and precise location of the tumor, 
allowing to adjust dose and patient’s position if required;16-18 
(4) tomotherapy, a peculiar type of image-guided IMRT based 
on a machine that can completely rotate around the patient, thus 
resembling a normal CT scanner;19 (5) stereotactic radiosurgery 
(SRS), which uses an extremely accurate image-guided tumor 
targeting and patient positioning to deliver high doses of X- or 
γ-rays to small neoplastic lesions;20-22 (6) stereotactic body radia-
tion therapy (SBRT), delivering X- or γ-rays to small, isolated 
tumors, often in fewer sessions while using smaller radiation fields 
and higher doses than 3D-CRT;23,24 (7) involved-field radiation 
therapy (IFRT), which specifically targets tumor-affected tissues 
(a radiotherapeutic mode frequently employed for the treatment 
of lymphoma patients);25,26 and (8) proton or electron therapy, in 
which neoplastic lesions are treated with charged particles (pho-
tons) instead of a purely electromagnetic wave.27,28 Along similar 
lines, brachytherapy can be performed in various modalities, for 
instance as a low vs. high dose-rate treatment, or based on tem-
porary vs. permanent sources of radioactivity. The MammoSite® 
system (commercialized by Hologic, Inc.) is a well-known device 
for the delivery of high dose-rate, temporary brachytherapy to 
breast carcinoma patients.29 Finally, systemic radiotherapy can be 
based on naked radionuclides such as 131I, which is specifically 
taken up by thyrocytes and hence can be used for the treatment 
of thyroid carcinoma,30 or on radionuclides coupled to tumor-
targeting monoclonal antibodies. Two prominent examples of 
this approach—which is also known as selective internal radia-
tion therapy (SIRT)—are provided by 90Y-ibritumomab tiuxetan 
and 131I-tositumomab, 2 radionuclide-coupled anti-CD20 mono-
clonal antibodies that are currently approved for the treatment of 
lymphoma patients.31,32 Each of these radiotherapeutic modalities 

Introduction

Origins and use of radiation oncology. In 1895, the German 
physicist Wilhelm Conrad Röntgen was the first to produce and 
detect an electromagnetic radiation with a wavelength corre-
sponding to modern X-rays, marking the beginning of a decade 
that witnessed several pioneering discoveries in the same field, 
including that of natural radioactivity by the French physicist 
Antoine Henri Becquerel (in the same year) and that of radium 
as a natural source of γ-rays by the Polish physicist and chemist 
Marie Curie (in 1898).1 As soon as in 1903, the Royal Swedish 
Academy of Sciences awarded Henri Becquerel, Marie Curie 
and her French husband Pierre the Nobel Prize in Physics, “in 
recognition of the extraordinary services they have rendered by 
their joint researches on the radiation phenomena.”1 Incredibly, 
no more than 60 d after Röntgen’s discovery, the American phy-
sician Emil Grubbe employed X-rays to treat a woman bearing 
recurrent breast carcinoma, de facto establishing the field of radi-
ation oncology.1

Throughout the last century, along with huge technological 
advances that allowed for the increasingly more accurate (in both 
anatomical and quantitative terms) delivery of X and γ-rays, 
or charged particles (i.e., protons and electrons) to malignant 
lesions, irradiation has been extensively employed as an antineo-
plastic intervention, either alone or in combination with other 
therapeutic modalities, with a variable degree of success.1,2 Thus, 
according to current estimates, approximately 50% of all cancer 
patients have already received or will receive some form of radia-
tion therapy, either as a curative intervention (i.e., aimed at eradi-
cating a tumor and/or preventing recurrence) or as a palliative 
maneuver (i.e., intended to relieve the pain/discomfort caused by 
neoplastic lesions at specific anatomical locations, such as bones 
as well as peri-esophageal, peri-spinal, and cerebral areas).3,4 
Nowadays, ionizing irradiation is frequently administered in the 
context of chemotherapeutic regimens and/or surgery, either as a 
neo-adjuvant, an intraoperative, or an adjuvant intervention. In 
particular, radiotherapy is employed prior to surgery as a means 
to reduce tumor size, hence (1) allowing for, or minimizing the 
anatomical/esthetic impact of, the procedure; and (2) reducing 
the likelihood of disease recurrence owing to residual neoplastic 
cells. Intraoperative radiation therapy is advantageous (1) since it 
sometimes allow for the treatment of neoplastic lesions that are 
anatomically too close to healthy tissue/organs; and (2) as nearby 
normal tissues can be properly shielded from irradiation. Finally, 
adjuvant radiotherapy frequently represents an efficient means of 
reducing the risk of recurrence, for instance among breast carci-
noma patients subjected to lumpectomy of radical mastectomy.5,6

Types of radiotherapy. Depending on how the source of 
radioactivity is employed to specifically target malignant lesions, 
radiotherapy can be roughly sub-divided into 2 large groups: 
(1) external-beam radiation therapy (EBRT), including a wide 
range of technical variants; and (2) internal radiotherapy, which 
can be further discriminated into brachytherapy and systemic 
radiation therapy.2,7 EBRT most often involves a linear accel-
erator, i.e., a machine that generates X- or γ-rays that are col-
limated on malignant lesions across the intact skin. Conversely, 
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the (local) administration of radical scavengers (which mini-
mize radiotherapy-induced damage at the molecular level, see 
below),48-51 apoptosis inhibitors (to arrest the cellular demise of 
irradiated normal cells),52-54 growth factors (which stimulate tis-
sue reconstitution),55-58 and immunomodulatory agents (to pre-
vent the establishment of a cytotoxic inflammatory milieu).59-63 
This said, amifostine (a radical scavenger also known as Ethyol®) 
is the only drug currently approved by FDA for use in humans as 
a radioprotector.64-66

How radiation therapy works. Irradiated cells (be they malig-
nant or normal) absorb high amounts of energy in the form of 
photons or charged particles, promoting some extent of direct 
macromolecular damage as well as the generation of highly dif-
fusible reactive oxygen and nitrogen species (ROS and RNS, 
respectively), which de facto underpin the cytotoxic potential of 
radiation therapy.43,67 Indeed, both free radicals and molecular 
oxygen appear to be required for the stabilization of DNA dam-
age, a concept known as the “oxygen fixation” hypothesis.68-70 
Thus, a good level of oxygenation is a conditio sine qua non 
for neoplastic cells to respond to radiotherapy, in vitro and in 
vivo.71-75 Oxygen concentrations less than 0.02% (0.15 mmHg) 
decrease the vulnerability of cancer cells to ionizing radiation 
by 2- to 3-fold,76 and even milder degrees of hypoxia (oxygen 
concentration 1%, 8 mmHg)—which are commonly found in 
human tumors—produce an appreciable level of radio- (and 
chemo-) resistance.77 In line with this notion, various strategies 
have been developed in the attempt to radiosensitize neoplastic 
lesions by means of an increased supply of oxygen, including the 
ventilation of irradiated patients with hyperbaric oxygen (most 
often a 95% O

2
, 5% CO

2
 mix)78,79 and the administration of 

drugs that reduce the binding of oxygen to hemoglobin, such 
as efaproxiral.80,81 Both these approaches exert radiosensitiz-
ing effects as they reduce the so-called “hypoxic fraction,” i.e., 
the percentage of tumor cells exposed to subphysiological oxy-
gen tensions. Alternatively, radiosensitization has been achieved 
with compounds that selectively target hypoxic cells, such as the 
5-nitroimidazole nimorazole and tirapazamine analogs.82-84

The damage inflicted by radiation therapy to macromolecules, 
in particular DNA and lipids, generally activates the intrinsic 
pathway of apoptosis, which executes cell death upon the irre-
versible permeabilization of mitochondrial membranes.85,86 As an 
alternative, irradiated cells enter senescence, a permanent prolif-
erative arrest manifesting with a series of stereotyped phenotypic 
and biochemical traits.87-89 Both these processes can be under the 
control of p5390-92 and often, but not always, ensue the activation 
of mitotic catastrophe, an oncosuppressive mechanism ensur-
ing the elimination of mitosis-incompetent cells.93,94 In addi-
tion, both DNA damaging agents and oxidative stress have been 
shown to induce instances of programmed necrosis,95-97 includ-
ing the receptor-interacting protein kinase 1 (RIPK1)-dependent 
necrotic modality known as necroptosis.98-100

It is therefore not surprising that for decades the therapeutic 
effects of ionizing radiation have been entirely (but incorrectly) 
ascribed to the direct cytotoxic or cytostatic activity of X- and 
γ-rays.1 However, robust preclinical and clinical evidence indi-
cates that (at least part of) the therapeutic efficacy of irradiation 

is associated with specific advantages and drawbacks that render 
it particularly suitable for the treatment of a specific subset of 
tumors. A detailed discussion of these aspects largely exceeds the 
scope of the present Trial Watch and can be found in refs. 2 and 7.

Side effects of radiotherapy. As all other antineoplastic 
agents, radiotherapy is associated with both acute and chronic 
side effects, stemming from the inevitable (though increasingly 
more controlled) irradiation of healthy tissues.33-36 Acute side 
effects mainly reflect the damage of highly proliferating cells that 
reside in anatomical regions exposed to irradiation, in a majority 
of cases including the skin. In addition, irradiated patients often 
experience fatigue, regardless of the exposed part of the body, 
and nausea/vomiting, especially when the abdomen and brain 
are treated.7,37 All these side effects generally resolve within a few 
days/weeks upon the interruption of radiation therapy. In some 
cases, however, the damage to highly proliferating cell compart-
ments is permanent, potentially resulting in chronic diarrhea, 
intestinal bleeding, and infertility. Moreover, radiotherapy is 
associated with a quantifiable increase in the risk of developing a 
secondary, treatment-induced cancer later in life.38-40 Such a risk 
is generally highest among patients who have been exposed to 
radiation therapy as children or adolescents.41,42 Of note, a small 
rim of normal tissue immediately surrounding neoplastic lesions 
is always irradiated on purpose, for 2 reasons: first, to accommo-
date for some degree of displacement of the tumor mass that may 
normally result from breathing or from the physiological move-
ment of internal organs; and second, to reduce the likelihood of 
disease recurrence owing to malignant cells that have invaded 
adjacent tissues.1,43

Throughout the last 50 y, several approaches have been devel-
oped to minimize the acute and chronic side effects of radiation 
therapy, including technical/strategic improvements as well as 
chemicals that operate as “radiosensitizers,” thus exacerbating 
the propensity of malignant cells to succumb to irradiation, or 
“radioprotectors,” shielding non-transformed cells side from the 
cytotoxic effects of radiotherapy.2,44-46 The common aim of all 
these strategies is to minimize the amount of damage experienced 
by normal tissues (to limit side effects), while maximizing that 
experienced by malignant cells (to improve efficacy), i.e., to widen 
the therapeutic window of radiation therapy.46,47 By far the most 
commonly employed means to achieve this goal is fractionation, 
i.e., the delivery of radiotherapy in multiple sessions (spaced by 
at least 6 h) over several weeks, which is advantageous mainly as 
(1) it increases the likelihood of malignant cells to be exposed to 
irradiation when they are more vulnerable to it (i.e., not in the S 
phase of the cell cycle, see below); (2) it efficiently compensates 
for accelerated repopulation, i.e., the propensity of the neoplastic 
cells that survive radiotherapy to proliferate at increased rates; 
and (3) it allows time to normal cells for repairing irradiation-
induced damage.1 In addition, several distinct molecules have 
been demonstrated (in preclinical models) to efficiently sensitize 
cancer cells to the cytotoxic effects of radiation therapy, includ-
ing DNA-damaging agents, cell cycle checkpoint inhibitors, and 
chemicals that increase oxygenation (see below). Along similar 
lines, a consistent experimental effort has been dedicated to the 
development of distinct strategies for radioprotection, including 
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X- and γ-rays, but rather involves local and/or distant bystander 
effects.67,101,112,144,145 Thus, therapeutic (as opposed to unwar-
ranted) abscopal reactions have been documented in patients 
bearing a wide variety of neoplasms, including (but presumably 
not limited to) lymphoma,146-150 melanoma,151-154 primary and 
metastatic breast carcinoma,155-158 adenocarcinoma,159,160 sar-
coma161 hepatocellular carcinoma,162,163 Merkel cell carcinoma,164 
renal cell carcinoma (RCC),165 and uterine cancer.166

Initially, clinicians tended to consider the abscopal effect as 
a straightforward systemic consequence of the local release of 
immunostimulatory and cytotoxic cytokines, mainly TNFα163 
and IL-18,162 by irradiated (malignant and immune) cells. 
However, it is now clear that—at least under specific circum-
stances—radiation therapy elicits an adaptive immune response 
against malignant cells that is capable of mediating robust anti-
neoplastic effects on non-irradiated lesions.167-170 At least 3 distinct 
lines of evidence support this interpretation. First, an elevation in 
the circulating levels of immunomodulatory cytokines including 
TNFα and IL-18 would be expected to cause a rather unspe-
cific activation of the immune system, and hence to have a very 
limited (if any) impact on neoplasms other than melanoma and 
RCC, which are per se extremely immunogenic and immuno-
sensitive.127,139,171-173 In line with this notion, the administration 
of recombinant cytokines (notably IL-2) as standalone thera-
peutic interventions has been associated with considerable rates 
of objective clinical responses only among melanoma and RCC 
patients,127,139 while abscopal effects have been documents in indi-
viduals bearing several other neoplasms (see above). Second, the 
abscopal effect can be boosted by various immunostimulatory 
preparations, including (but presumably not limited to) bone 
marrow-derived dendritic cells (DCs),174 IL-2,175,176 an active 
variant of macrophage inflammatory protein 1α (MIP-1α),177 
Toll-like receptor (TLR) agonists,157,178,179 TGFβ1-blocking strat-
egies,180 and monoclonal antibodies specific for immunological 
checkpoint regulators such as cytotoxic T lymphocyte-associated 
protein 4 (CTLA4).154,181-184 Third, abscopal effects have been 
correlated with the induction of interferon γ (IFNγ)-producing 
CD8+ T lymphocytes181,185 and have been shown to rely on the 
presence of both CD4+ and CD8+ T cells.177

The mechanisms whereby radiotherapy elicits tumor-specific 
immune responses have just begun to emerge. Indeed, the (most 
often) apoptotic demise of irradiated cancer cells has long been 
viewed as an immunologically silent—if not tolerogenic—event, 
reflecting the textbook notion that apoptotic corpses are rapidly 
taken up by professional phagocytes while delivering robust anti-
inflammatory signals.186-188 Rather, it is now clear that—in response 
to specific stimuli—malignant cells can undergo apoptosis while 
emitting a spatiotemporally-defined sequence of danger signals 
that the immune system translates into a tumor-specific adaptive 
immune response.115,119 Importantly, together with anthracyclines 
(e.g., doxorubicin, mitoxantrone), oxaliplatin, cyclophosphamide, 
and hypericin-based photodynamic therapy, ionizing irradiation 
constitutes a bona fide inducer of immunogenic cell death (ICD), 
i.e., is capable of killing neoplastic cells while transforming them 
into a vaccine that efficiently protects syngeneic mice against a 
subsequent challenge with cancer cells of the same type.114,189-191

results from local and long-range bystander effects.67,101 The 
former can originate from the transmission of lethal signals via 
gap junctions,102 multimeric pores that allow for the exchange of 
1000–1500 kDa molecules, including nucleotides, Ca2+ ions and 
ROS, between adjacent cells.103,104 In addition, local bystander 
effects can ensue the release by irradiated (neoplastic and immune) 
cells of soluble mediators that exert a direct or indirect cytotoxic 
activity on non-irradiated neighboring cells, including ROS,105 
RNS,106,107 and several cytokines such as interleukin (IL)-6,108 
IL-8,109 transforming growth factor β1 (TGFβ1),110 and tumor 
necrosis factor α (TNFα).111 Conversely, long-range bystander 
effects, also known as out-of-field or abscopal effects, are thought 
to reflect the elicitation of an adaptive immune response against 
malignant cells.112,113 Similar to some chemotherapeutic and pho-
todynamic therapy,114,115 ionizing irradiation promotes indeed  
the immunogenic demise of malignant cells,85,115-117 a process that 
relies on the spatiotemporally-defined emission of specific dam-
age-associated molecular patterns (DAMPs).115,118,119

Radiotherapy has also been shown to favor the normaliza-
tion of the tumor vasculature,120 hence (1) facilitating the deliv-
ery of chemotherapeutic agents administered via the systemic 
route and (2) promoting the infiltration of malignant lesions by 
effector (as opposed to regulatory) immune cells.121,122 At least 
in part, the ability of ionizing radiation to stimulate the recruit-
ment of immune cells to the tumor microenvironment reflects 
the fact that irradiated endothelial cells express increased levels 
of intercellular adhesion molecule 1 (ICAM1) and vascular cell 
adhesion molecule 1 (VCAM1) on their surface.123 Whether 
the upregulation of adhesion molecules on the surface of irradi-
ated endothelial cells results from a strictly cell-intrinsic mecha-
nism or involves the secretion of autocrine/paracrine mediators 
remains to be elucidated. Thus, the local (and perhaps also the 
long-range) therapeutic effects of radiotherapy appear to involve 
a prominent vascular component.122

Following the tradition of our monthly Trial Watch series,124-140 
here we discuss the rationale of using radiotherapy, alone or com-
bined with immunomodulatory interventions, as a means to elicit 
or boost anticancer immune responses, and review recent clinical 
trials investigating the therapeutic potential of this approach in 
cancer patients. Besides being used as an antineoplastic interven-
tion, high-dose radiotherapy—most often in the form of total 
body irradiation (TBI)—is routinely employed as a condition-
ing regimen in patients bearing hematological malignancies allo-
cated to receive hematopoietic stem cell transplantation.141,142 The 
therapeutic value of radiation therapy in this settings stems from 
the ability of TBI to directly kill neoplastic progenitors in the 
bone marrow and promote a severe state of immunodeficiency 
(rather than immunostimulatory effects), which is required for 
engraftment.141-143 Thus, the use of TBI as a pre-transplantation 
conditioning regimen will not be further discussed here.

Immunogenic Effects of Radiotherapy

As mentioned above, an increasing amount of preclinical and 
clinical evidence indicates that the therapeutic potential of ion-
izing irradiation does not simply reflect the cytotoxic activity of 
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June 13, 2013, returned a total of 3698 entries, of which more than 
15% were published after January 1, 2011. In the same period, 
i.e., during the last 30 mo, no less than 400 distinct clinical trials 
have been launched to investigate the safety and antineoplastic 
potential of radioimmunotherapy, all types confounded (source 
www.clinicaltrials.gov). Of note, (1) the vast majority of these 
trials also relies on one or more chemotherapeutic agents and/
or surgery; and (2) a consistent fraction of these studies does not 
specifically aim at evaluating the clinical potential of radiother-
apy, but rather involves (most often external-beam) irradiation as 
part of conventional therapeutic regimens. In this setting, radia-
tion therapy is administered only to the active comparator arm of 
the trial or to both arms (at least in one of which combined with 
the immunotherapeutic agent that is under investigation).

As it stands, official sources list no less than 177 ongoing (not 
withdrawn, suspended, terminated or completed on the day of 
submission) clinical trials initiated during the last 30 mo (that is, 
after, January 1, 2011) to assess the safety profile and antineoplas-
tic activity of radioimmunotherapeutic regimens (source www.
clinicaltrials.gov). Of these, 77 involve tumor-targeting or immu-
nostimulatory monoclonal antibodies, such as the epidermal-
growth factor receptor (EGFR)-specific agent cetuximab213,214 
and the anti-CTLA4 antibody ipilimumab;215-217 51 immuno-
genic chemotherapeutics (i.e., cyclophosphamide, anthracy-
clines, oxaliplatin);114,115 5 DC-based approaches, including the 
FDA-approved cell preparation known as sipuleucel-T®;130,218-220 
3 immunostimulatory cytokines (e.g., IL-2, IFN-α2b);127,139 4 
FDA-approved or experimental TLR agonists, such as imiqui-
mod and SD-101,128,129,140,221 4 adoptive cell transfer (ACT) proto-
cols;126,137 1 peptide vaccines;132,222-224 1 oncolytic viruses,138,225,226 
and 31 combinatorial strategies comprising at least 2 distinct 
types of immunotherapy (Table S1).

Neoadjuvant or adjuvant irradiation is routinely employed 
in the clinics to treat patients affected by multiple variants of 
head and neck carcinoma (HNC), alone or in combination 
with chemotherapeutic regimens based on platinum deriva-
tives, most often cisplatin.227-231 In line with this notion, no less 
than 35 clinical trials initiated in the last 30 mo are currently 
evaluating the clinical potential of various radioimmunothera-
peutic approaches in HNC patients. With 3 notable exceptions, 
namely NCT01821495 (in which radiotherapy is combined 
with the administration of DCs and cytokine-induced killer 
cells), NCT01584284 (testing EBRT coupled to the intrave-
nous administration of an oncolytic virus) and NCT01728480 
(investigating the radioprotective potential of a TLR5 agonist), 
all these studies involve EGFR-targeting antibodies, most often 
the FDA-approved drug cetuximab or the hitherto experimental 
agent nimotuzumab (Table 1; Table S1). Irradiation is a frequent 
therapeutic choice also for anal and colorectal carcinoma (CRC) 
patients, especially when primary lesions have already metasta-
sized or are attached to internal organs, rendering their com-
plete removal by surgery virtually impossible.232-234 Accordingly, 
official sources list 29 ongoing clinical trials initiated after 
January 1, 2011, to test the safety profile and efficacy of radio-
immunotherapy in subjects bearing anal, colorectal, or rectal 
carcinoma. In this setting, the immunotherapeutic component 

ICD has been shown to rely on (at least) 3 main determi-
nants: (1) the pre-apoptotic exposure of the endoplasmic reticu-
lum (ER) chaperone calreticulin (CRT) on the outer leaflet of 
the plasma membrane, constituting a prominent “eat-me sig-
nal” for professional antigen-presenting cells (APCs), includ-
ing DCs;189,192-194 (2) the autophagy-dependent and pannexin 
1 (PANX1)-mediated secretion of ATP in the blebbing phase 
of apoptosis, operating both as a “find-me signal” for APCs 
and as a potent pro-inflammatory cue;195-202 and (3) the post-
apoptotic release of the non-histone chromatin-binding protein 
high mobility group box 1 (HMGB1), which—in its oxidized 
form—reportedly conveys pro-inflammatory stimuli upon liga-
tion of TLR4 and/or advanced glycosylation end product-specific 
receptor (AGER).203-206 In addition, dying cells expose or release 
several other DAMPs that per se are not immunogenic, yet oper-
ate as potent adjuvants, such as various mitochondrial prod-
ucts.118 In conditions in which CRT, ATP, and HGMB1 (and 
perhaps other DAMPs) cannot be properly emitted by dying can-
cer cells, cannot be sensed by APCs, or cannot be translated into 
an adaptive immune response, the therapeutic efficacy of various 
ICD inducers is significantly reduced.115,197,202 Intriguingly, this 
holds true in some, but not all, preclinical and clinical settings,207 
implying that some tumors may be more susceptible than oth-
ers to immune responses, be them natural or elicited by therapy, 
and hence to the abscopal effect. The precise impact of specific 
DAMPs in the therapeutic efficacy of radiation therapy in vivo, 
however, has not yet been systematically investigated.

Irrespective of this hitherto poorly characterized aspect of the 
immunogenic demise of cancer cells as induced by X- and γ-rays, 
these observations indicate that (a large fraction of) the thera-
peutic efficacy of ionizing irradiation stems from its ability to 
provoke ICD coupled to the release of potent pro-inflammatory 
mediators, de facto eliciting a robust tumor-specific immune 
response.

Clinical Development of Radioimmunotherapy

For a long time, the term “radioimmunotherapy” has been 
used to specifically denote SIRT, i.e., the use of radionuclides 
coupled to (tumor-targeting) monoclonal antibodies, such as 
the FDA-approved agents 90Y-ibritumomab tiuxetan (Zevalin®; 
Cell Therapeutics Inc.) and 131I-tositumomab (Bexxar®; 
GlaxoSmithKline LLC).208-211 Along with the recent expansion 
of anticancer immunotherapy, which embraces a large (and 
incessantly growing) panel of approaches, this expression has 
gained an ampler meaning and is nowadays employed to refer 
to the combinatorial or sequential administration of virtually 
any immunotherapeutic agent plus irradiation.212 As EBRT 
is licensed by FDA and other international regulatory agen-
cies as a neoadjuvant, intraoperative or adjuvant intervention 
against a majority of neoplasms, the number of clinical stud-
ies that de facto rely on an radioimmunotherapeutic approach, 
irrespective of whether this was explicitly envisioned a priori 
or not, is exponentially growing. Thus, interrogating PubMed 
(http://www.ncbi.nlm.nih.gov/pubmed/) with the string “cancer 
AND radiotherapy AND patients AND immunotherapy,” on 
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the last 30 mo to test radioimmunotherapeutic approaches in 
patients with gastric or esophageal carcinoma relies on EBRT 
in combination with a tumor-targeting monoclonal antibody, 
most often cetuximab or panitumumab (another FDA-approved 
EGFR-specific agent). Alternatively, the immunotherapeutic 
component of such combinatorial approaches is represented 
by oxaliplatin (Table 1; Table S1). Sixteen clinical trials initi-
ated in the same period aim at investigating the antineoplas-
tic activity of radioimmunotherapy in individuals affected by 
pancreatic carcinoma. With a few notable exceptions such as 
NCT01342224 (which involves a telomerase-targeting peptide 
vaccine given in combination with the granulocyte macrophage 
colony-stimulating factor [GM-CSF])235,236 and NCT01298401 
(testing the safety and efficacy of 3D-CRT combined with con-
ventional chemotherapy and ganitumab, an experimental mono-
clonal antibody specific for the insulin-like growth factor 1 
receptor), all these studies involve an oxaliplatin-containing che-
motherapeutic cocktail. Of particular interest in this setting is 
NCT01581307, testing the clinical activity of small glass micro-
spheres (20–30 μm in diameter) containing 90Y (TheraSphere®, 
a preparation that is partially approved by FDA for the treat-
ment of hepatocellular carcinoma)237,238 administered (via 
radioembolization)239 in the context of second line FOLFOX 
(5-flurouracil, folinic acid, and oxaliplatin) to patients bearing 
gemcitabine-refractory pancreatic carcinoma with liver metasta-
ses (Table 1; Table S1).

During the last 30 mo, additional 36 clinical trials have been 
launched to test the safety and anticancer activity of several 
radioimmunotherapeutic protocols in cohorts of patients bearing 
breast carcinoma (9 studies), melanoma (8 studies), sarcoma (6 
studies), prostate carcinoma (4 studies), or other solid tumors (9 
studies). The immunotherapeutic component of clinical studies 

of the combinatorial regimen is frequently represented by oxali-
platin (a bona fide ICD inducer) and/or by the vascular endo-
thelial growth factor (VEGF)-blocking antibody bevacizumab, 
both of which are approved by FDA for use in CRC patients. 
NCT01839539 (in which radiotherapy is combined with con-
ventional chemotherapeutic agents, DCs, and cytokine-induced 
killer cells), NCT01539824 (investigating the immunostimula-
tory potential of SBRT given in combination with IMM-101, 
a TLR2/TLR4 mixed agonist), and NCT01320683 (involving 
an 90Y-conjugated monoclonal antibody specific for the carci-
noembryonic antigen) constitute prominent exceptions to this 
trend (Table 1; Table S1). No less than 24 ongoing clinical trials 
have been launched during the last 30 mo to assess the safety 
and efficacy of radioimmunotherapy in individuals affected 
by hematological neoplasms (mainly lymphoma). In this case, 
EBRT is often employed as a consolidative treatment upon the 
administration of a chemotherapeutic regimen involving, among 
other drugs, cyclophosphamide and doxorubicin (2 ICD induc-
ers). Alternatively, lymphoma patients are frequently allocated 
to receive 90Y-ibritumomab tiuxetan (which specifically targets 
CD45) or EBRT in combination with various chemotherapeu-
tic regimens involving the FDA-approved anti-CD20 antibody 
rituximab (Table 1; Table S1).

Most among the 18 clinical trials initiated after January 1, 2011, 
to assess the safety profile and efficacy of radioimmunotherapy 
in subjects affected by neuroectodermal and central nervous 
system tumors involve EBRT given in combination with temo-
zolomide (an alkylating agent) and/or bevacizumab. Only a few 
among these studies, such as NCT01798004, NCT01526603, 
and NCT01857934, were initiated to test EBRT as a consolida-
tive therapy upon autologous stem cell transplantation. Along 
similar lines, a majority of the 19 clinical studies launched during 

Table 1. Current trends of anticancer radioimmunotherapy*

Cancer type Phase N° Notes

Breast carcinoma I–III 9 A heterogeneous panel of radioimmunotherapeutic strategies is being tested in this clinical scenario

CrC I–III 29
In a majority of cases, eBrT is administered in the context  

of the FOLFOX regimen or together with bevacizumab

Gastresophageal 
carcinoma

I–III 19
eBrT is often employed in combination with anti-eGFr monoclonal  

antibodies or oxaliplatin-based chemotherapy

Hematological 
tumors

I–III 24
eBrT is frequently administered as a consolidation therapy, in combination  

with immunogenic chemotherapeutics or the CD20-targeting monoclonal antibody rituximab

HNC I–Iv 35 Most studies combine IMrT with monoclonal antibodies specific for eGFr, such as cetuximab or nimotuzumab.

Melanoma I–II 8 The most prominent approach involves one form of eBrT, often SBrT, combined with ipilimumab

Neuroectodermal 
and CNS tumors

I–III 18 Many of these studies involve the combination of eBrT with conventional chemotherapy plus bevacizumab

Pancreatic carcinoma I–III 16 Patients are often allocated to receive one form of eBrT combined with oxaliplatin-based chemotherapy.

Prostate cancer II 4 eBrT is often given in combination with sipuleucel-T®

Sarcoma I–II 6 Most often, one variant of eBrT is combined with cyclophosphamide- or oxaliplatin-based chemotherapy

Others I–Iv 9
90Y-based radioembolization is frequently investigated  

for the treatment of HCC and cholangiocarcinoma patients

CNS, central nervous system; CrC, colorectal carcinoma; eBrT, external-beam radiation therapy; eGFr, epidermal growth factor receptor; FOLFOX, 
5-flurouracil, folinic acid and oxaliplatin; HCC, hepatocellular carcinoma; HNC, head and neck carcinoma; IMrT, intensity-modulated radiation therapy; 
SBrT, stereotactic body radiation therapy. *Based on clinical trials started after January 1, 2011, and not withdrawn, terminated, or suspended at the 
day of submission (source www.clinicaltrials.gov). See also Table S1.
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3. Delaney G, Jacob S, Featherstone C, Barton M. The 
role of radiotherapy in cancer treatment: estimat-
ing optimal utilization from a review of evidence-
based clinical guidelines. Cancer 2005; 104:1129-
37; PMID:16080176; http://dx.doi.org/10.1002/
cncr.21324

cytostatic effects on malignant cells.1,2 Preclinical and clinical 
evidence, however, indicates that the antineoplastic activity of 
irradiation exceeds that of a merely cytotoxic/cytostatic inter-
vention and rather involves the (re)activation of tumor-specific 
cellular immune responses.143 Thus, radiotherapy may per se con-
stitute a combinatorial anticancer regimen, de facto inducing the 
death of cancer cells while exerting robust immunostimulatory 
effects. It is therefore tempting to speculate that combining radi-
ation therapy with specific immunostimulatory interventions, 
such as immunological checkpoint inhibitors or TLR agonists, 
may result in superior antineoplastic effects, at least in a subset 
of cancer patients. Well-designed clinical trials are required to 
formally address this hypothesis.

Some studies indicate that immunosuppressive cells, includ-
ing CD4+CD25+FOXP3+ regulatory T cells (which potently 
antagonize antitumor immune responses), may be highly resis-
tant to the cytotoxic effects of ionizing radiation, favoring their 
preferential increase in the course of therapy.253 In line with 
notion, experimental approaches aimed at specifically depleting 
regulatory T cells appear to greatly potentiate the antineoplas-
tic potential of radiation therapy in murine tumor models.253,254 
Several chemotherapeutic agents have been shown to specifically 
subvert the immunosuppressive functions of regulatory T cells, 
including gemcitabine and cyclophosphamide (especially when 
administered according to a metronomic schedule).213,255 Thus, 
it will be particularly interesting to see the results of multiple 
clinical trials that are currently underway to evaluate the safety 
and antineoplastic profile of cyclophosphamide-based radioim-
munotherapeutic regimens in cancer patients.
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involving breast carcinoma patients is relatively heterogeneous, 
including the FDA-approved ERBB2-specific monoclonal anti-
body trastuzumab,240-243 the TLR7 agonist imiquimod,129,244,245 
and ICD inducers such as cyclophosphamide and doxorubicin. 
Conversely, in this setting melanoma patients are near to invari-
ably allocated to receive one variant of EBRT in combination with 
ipilimumab. A standalone exception to this trend is represented 
by NCT01416831, testing whether SBRT can improve the anti-
neoplastic potential of high-dose IL-2. The radioimmunothera-
peutic approach is also relatively homogeneous among prostate 
cancer-related clinical trials, with a majority of studies involving 
sipuleucel-T®. In addition, a rather heterogeneous panel of radio-
therapeutic and immunotherapeutic regimens is currently under 
investigation for the treatment of patients with sarcoma, non-small 
cell lung carcinoma, pleuropulmonary blastoma, Merkel cell carci-
noma, hepatocellular carcinoma, cholangiocarcinoma, and other 
solid tumors. In this context, some interest appears to be spurred 
by the use of 90Y-based transarterial radioembolization as an alter-
native to transarterial chemoembolization for the treatment of 
hepatocellular carcinoma (NCT01381211; NCT01798160) and 
cholangiocarcinoma (NCT01798147) (Table 1; Table S1).

Concluding Remarks

Nowadays, combinatorial anticancer therapy is an affirmed clini-
cal practice, reflecting the fact that—perhaps with a few notable 
exceptions—standalone chemo- or radiotherapeutic regimens 
are generally unable to control neoplastic lesions. As combining 
therapeutic agents with dissimilar mechanisms of action poten-
tially results in synergistic antineoplastic effects, this approach 
presents several advantages over the use of monotherapeutic regi-
mens, including (1) a decrease in the incidence and severity of 
adverse effects (as in this setting drugs as generally employed at 
reduced dosages); and (2) a lowered propensity of malignant cells 
to become chemo- or radioresistant.246

Along with the realization that most (if not all) clinically suc-
cessful anticancer agents operate—at least in part—by eliciting 
or boosting tumor-specific immune responses,213,247 and with the 
development of efficient means to (re)instate anticancer immu-
nity, great interest has been spurred by the possibility to combine 
chemo-, radio-, and immunotherapeutic regimens.213,248,249 Thus, 
several preclinical and clinical studies are underway to investi-
gate whether and under which conditions various immunostim-
ulatory agents can be used in combination with each other or 
with conventional antineoplastic regimens to achieve improved 
response rates and/or to minimize side effects.250-252

Radioimmunotherapy constitutes a rather peculiar case of this 
general approach. Indeed, radiation therapy has been extensively 
used as a conventional anticancer regimen throughout the last 
century, mostly as it was thought to mediate direct cytotoxic/
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