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Abstract: Cells possess membraneless ribonucleoprotein (RNP) granules, including stress granules,
processing bodies, Cajal bodies, or paraspeckles, that play physiological or pathological roles. RNP
granules contain RNA and numerous RNA-binding proteins, transiently formed through the liquid–
liquid phase separation. The assembly or disassembly of numerous RNP granules is strongly
controlled to maintain their homeostasis and perform their cellular functions properly. Normal RNA
granules are reversibly assembled, whereas abnormal RNP granules accumulate and associate with
various neurodegenerative diseases. This review summarizes current studies on the physiological or
pathological roles of post-translational modifications of various cellular RNP granules and discusses
the therapeutic methods in curing diseases related to abnormal RNP granules by autophagy.

Keywords: RNP granules; stress granules; P-bodies; Cajal bodies; paraspeckles; autophagy; post-
translational modification; neurodegenerative disease

1. Introduction

Cells comprise membrane-bound organelles, including mitochondria, the Golgi ap-
paratus, and the endoplasmic reticulum, and membraneless organelles, such as stress
granules (SGs), processing bodies (P-bodies), Cajal bodies, and paraspeckles [1]. Many
membraneless organelles contain RNAs and RNA-binding proteins (RBPs) (Figure 1),
which are transiently formed through the liquid–liquid phase separation (LLPS), similar
to oil droplet formation in water. The LLPS occurs due to the forces that weaken the elec-
trostatic, hydrophobic, protein–protein, protein–RNA, and RNA–RNA interactions [2,3].
Notably, intrinsically disordered regions (IDRs) on RBPs are the key drivers of LLPS [4,5].
Generally, post-translational modifications (PTMs) of proteins in the various RNA granules,
via phosphorylation, glycosylation, or methylation, impact the associations of RNP granule
proteins, enzymatic activities, the stability of modified proteins, or intracellular locations.
Remarkably, current accruing evidence proposes that PTMs altering the phase separation of
these RBPs might play a crucial role in forming pathological RBP inclusions in neurodegen-
erative diseases [6]. Additionally, autophagy, a lysosomal degradation pathway, controls
ribonucleoprotein (RNP) granules and pathological RBP aggregates.

This review summarizes several RNP granules and discusses the pathophysiological
roles of PTMs of RNP granules that autophagy can regulate.
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Figure 1. Cellular ribonucleoprotein (RNP) granules. (a,b) Schematic structural representation of 
cytoplasmic RNP granules. (a) Stress granules (SGs) containing untranslated mRNA, ribosomes, 
translational initiation factors, and RBPs. (b) P-bodies containing untranslated mRNAs and RBPs. 
(c and d) Schematic structure of nuclear RNP granules. (c) Paraspeckles containing lncRNA NEAT1 
and nuclear-localized RBPs. (d) Cajal bodies containing snRNPs, snoRNPs, and nuclear RNPs. 

2. RNP Granules 
2.1. Cytosolic RNP Granules 
2.1.1. SGs 

SGs are dynamic cytoplasmic RNP granules formed during cellular stress, such as 
heat shock, oxidative stress, viral infection, osmotic stress, ultraviolet irradiation, or long-
term starvation [7]. The major function of SGs is protection from the RNA damage and 
abnormal protein synthesis from stress conditions and to increase cell viability [8]. 

Notably, these SGs rapidly disassemble when stress is relieved. They generally con-
tain RNAs, RBPs, and 40S ribosomal subunits and comprise cell-type- or stress-specific 
components [9]; however, SGs strictly require translation machinery and they are dis-
rupted by translation inhibitors [10]. 

Many signaling molecules tightly regulate the assembly or disassembly of SGs. SG 
formation is mostly dependent on eukaryotic translation initiation factor 2α (eIF2α) phos-
phorylation using protein kinase RNA (PKR), heme-regulated inhibitor, general control 
nonrepressed 2 (GCN2), or PKR-like endoplasmic reticulum kinase. Most stress increases 
eIF2α (S51) phosphorylation, a component of the eIF2-GTP-tRNAiMet ternary complex, 
leading to the inhibition of protein translation [11]. SG assembly is enhanced by mTORC1 
activation, which is regulated by PI3K and p38 [12]. SG formation is also affected by the 
mTORC1 effector kinases S6K1 and S6K2 via eIF2α phosphorylation regulation and per-
sistence, respectively [13,14]. However, eIF4A activity or cap-dependent ribosome recruit-
ment inhibition induces SG formation in an eIF2α phosphorylation-independent manner 
[15]. Intriguingly, various proteins are essential for SG formation, such as G3BP1/2 [16], 
TIA-1 [17], histone deacetylase 6 (HDAC6) [18], and UBAP2L [19]. These proteins gener-
ally possess IDRs, which regulate LLPS [17,20,21]. Many mutations in the IDRs of RBPs, 

Figure 1. Cellular ribonucleoprotein (RNP) granules. (a,b) Schematic structural representation of
cytoplasmic RNP granules. (a) Stress granules (SGs) containing untranslated mRNA, ribosomes,
translational initiation factors, and RBPs. (b) P-bodies containing untranslated mRNAs and RBPs.
(c and d) Schematic structure of nuclear RNP granules. (c) Paraspeckles containing lncRNA NEAT1
and nuclear-localized RBPs. (d) Cajal bodies containing snRNPs, snoRNPs, and nuclear RNPs.

2. RNP Granules
2.1. Cytosolic RNP Granules
2.1.1. SGs

SGs are dynamic cytoplasmic RNP granules formed during cellular stress, such as heat
shock, oxidative stress, viral infection, osmotic stress, ultraviolet irradiation, or long-term
starvation [7]. The major function of SGs is protection from the RNA damage and abnormal
protein synthesis from stress conditions and to increase cell viability [8].

Notably, these SGs rapidly disassemble when stress is relieved. They generally con-
tain RNAs, RBPs, and 40S ribosomal subunits and comprise cell-type- or stress-specific
components [9]; however, SGs strictly require translation machinery and they are disrupted
by translation inhibitors [10].

Many signaling molecules tightly regulate the assembly or disassembly of SGs. SG
formation is mostly dependent on eukaryotic translation initiation factor 2α (eIF2α) phos-
phorylation using protein kinase RNA (PKR), heme-regulated inhibitor, general control
nonrepressed 2 (GCN2), or PKR-like endoplasmic reticulum kinase. Most stress increases
eIF2α (S51) phosphorylation, a component of the eIF2-GTP-tRNAiMet ternary complex,
leading to the inhibition of protein translation [11]. SG assembly is enhanced by mTORC1
activation, which is regulated by PI3K and p38 [12]. SG formation is also affected by the
mTORC1 effector kinases S6K1 and S6K2 via eIF2α phosphorylation regulation and persis-
tence, respectively [13,14]. However, eIF4A activity or cap-dependent ribosome recruitment
inhibition induces SG formation in an eIF2α phosphorylation-independent manner [15].
Intriguingly, various proteins are essential for SG formation, such as G3BP1/2 [16], TIA-
1 [17], histone deacetylase 6 (HDAC6) [18], and UBAP2L [19]. These proteins generally
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possess IDRs, which regulate LLPS [17,20,21]. Many mutations in the IDRs of RBPs, such as
FUS, TDP-43, EWS, and hnRNPA1, can alter the phase separation of RNA-binding proteins,
consequently inducing gel-like structures/aggregates.

SGs are biphasic structures with a stable core that is usually surrounded by a dynamic
shell [22]. They initially assemble stable cores, providing a platform for the growth of
dynamic shells around these cores. Shell dissipation occurs first, followed by core decompo-
sition during the disassembly step [23]. SG disassembly occurs in a reverse process where
a less stable shell initially dissolves, accompanied by core disassembly and/or clearance
by autophagy. Several corollaries exist in this observation. First, mRNA is believed to
be in rapid equilibrium between the cytosol and SGs upon translation re-establishment.
This exchange influences stress granule structural integrity and may account for titrating
select RNA into translation. The lag in the clearance of granule cores may reflect the
requirement of a myriad of ATP-dependent remodeling complexes (e.g., heat shock protein
70 or p97/valosin-containing protein (VCP) AAA-ATPase complexes [24,25]) and serve as
a cytoprotective mechanism to acutely re-nucleate SGs whenever the cell re-encounters
stress [23].

2.1.2. P-bodies

P-bodies are also cytosolic dynamic RNP granules containing translationally repressed
mRNAs and proteins involved in mRNA decay, increasing the roles of P-bodies in post-
transcriptional regulation. P-bodies are compositionally and functionally associated with
SGs [26]. They share numerous proteins, such as eIF4E, XRN1, and RAP55, which are
usually fused [27,28], although the physiological meaning of their docking remains con-
troversial. Though P-bodies and SGs are involved in post-transcriptional regulation and
translational control, they form through the coassembly of translationally inactive mRNAs
linked with distinct RNA-binding proteins (RBPs), notably with translational initiation
components (SGs) and mRNA degradation machinery components (P-bodies) [29]. Unlike
SGs, they are internally present within cells, further increased by cellular stresses, such as
sodium arsenite or mild cold shock [30]. It has been reported that mRNA decapping and 5′–
3′ decay generally promote P-body formation [31]. However, the mechanistic explanations
for P-body formation are still unclear.

P-bodies are involved in mRNA storage and degradation, nonsense-mediated mRNA
decay, translational repression, or microRNA (miRNA)/small interfering RNA-mediated
gene silencing [32,33]. Interestingly, P-bodies drive viral mRNP inclusions to prevent viral
protein synthesis during viral infection conditions.

Several factors regulate P-body assembly and disassembly. Notably, the formation
and integrity of P-bodies require mRNA [34]. These mRNAs dissociate from the ribosome
via translation inhibition, subsequently increasing P-bodies [26], and the overexpression
of non-translating mRNA fragments increases the number and size of P-bodies. The
various mRNA-regulating proteins involved in exonuclease activity (XRN1), decapping
(Dcp1A, Dcp2, and Edc3), and deadenylation (Ccr4, Caf1, Pan2, and Pan3) are linked
with the regulation of P-bodies. Similarly, compared with other key factors, 4E-T [35,36],
GW182 [37,38], and RAP55 [27,39] can reduce the P-body assembly. Current studies reveal
that the RNA helicase and P-body component, DDX6, modulates P-body homeostasis and
controls the self-renewal and differentiation of stem cells [40].

2.1.3. Germ-Cell-specific RNP Granules

Germ-cell-specific RNP granules are cytoplasmic RNP granules specifically formed
only in germ cells for proper germ cell development from worms to humans [41]. Germ
granules have various names depending on the organisms, such as chromatoid bodies in
mammals, P granules in Caenorhabditis elegans, cytoplasmic polar granules in Drosophila
melanogaster, and Balbiani bodies in zebrafish. Germ-cell-specific RNP granules act as
storage compartments that prevent maternally provided mRNAs’ premature translation in
many organisms [42,43]. Notably, germ granules provide platforms for the PIWI-interacting
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RNA (piRNA) pathway and are involved in piRNA biogenesis and piRNA-targeted RNA
degradation. Recently, other RNA regulatory mechanisms, such as the nonsense-mediated
mRNA decay pathway, have been linked with germ granules. Germ-cell-specific RNP
granules share components with SGs and P-bodies and contain specific proteins and RNAs
involved in gametogenesis and embryonic development [44]. DEAD-box RNA helicase
VASA (DDX4) and nanos mRNA are vital components of the general germ granule. Among
germ-cell-specific RNA granules, chromatoid bodies are transiently and highly condensed
structures at the initial spermatogenesis stages, comprising mouse VASA homolog (MVH),
MIWI, TDRD family proteins, UPF2, IP6K1, GRTH [45], and small RNAs, such as miRNAs
and piRNAs.

The molecular specifics of germ-cell-specific RNP granule assembly and disassembly
are poorly elucidated. However, a few studies reported that PGL proteins, PGL-1 and PGL-
2, are crucial for germ granule formation through self-association and RBP recruitment [46].
Furthermore, in Drosophila germ granules, also called polar granules, RNA molecules form
homotypic clusters containing multiple molecules of the same RNA species, signifying the
importance of RNA assembly in the polar granules [47].

2.2. Nuclear RNP Granules
2.2.1. Cajal Bodies

Cajal bodies, also called coiled bodies, are subnuclear organelles with diameters
between 0.3 and 1.0 µm in the nucleoplasm of animal and plant cells. These are the
main sites for assembling small nuclear RNPs (snRNPs). Thus, Cajal bodies are enriched
with snRNPs, small nucleolar RNPs (snoRNPs), and telomerase RNA. Most snoRNPs are
involved in guiding RNA modification in snoRNAs, specifically named scaRNAs in Cajal
bodies [48]. These RNP granules are essential for histones mRNA, rRNA processing, and
intron-encoded snoRNP biogenesis.

Coilin phosphorylation regulates the assembly and disassembly of the Cajal body.
Coilin (also known as P80C), a marker protein of Cajal bodies, is essential for the proper
formation of Cajal bodies and cell proliferation [49,50]. However, coilin overexpression
does not increase the number or size of Cajal bodies, indicating that coilin concentration is
not a limiting factor for their assembly [51]. Another regulator of the formation of Cajal
bodies is WRAP53, also a central player in the trafficking and formation of telomerase
RNPs [52]. Spinal motor neuron (SMN) protein, through its interaction with coilin, is
also localized to Cajal bodies [53]. This protein is required for the biogenesis of various
snRNPs. Therefore, SMN deletion inhibits Cajal body formation and maintenance [54].
Furthermore, Cajal bodies facilitate telomerase recruitment to telomeres and telomere
elongation [55–57]. In this process, coilin and WRAP53 are associated with telomerase
RNA, which may contribute to telomerase biogenesis.

2.2.2. Paraspeckles

Paraspeckles are unique subnuclear structures composed of specific long noncoding
RNAs (lncRNAs) and proteins [58]. They are structured in a core–shell spherical struc-
tures with irregular diameters of ~0.36 µm on average [59]. Paraspeckles are critical for
controlling gene expression as the site of nuclear retention of specific mRNAs during
differentiation, viral infection, and stress responses [60]. Additionally, they are involved in
transcriptional gene regulation, such as mRNA biogenesis, pre-mRNA 3′-end formation,
and cyclic AMP signaling.

Paraspeckles have lncRNAs, and nuclear paraspeckle assembly transcript 1 (NEAT1),
composed of two isoforms (NEAT1_1 and NEAT1_2), serves as an architectural compo-
nent [61]. Indeed, most paraspeckles are assembled near the NEAT1 locus on human
chromosome 11 [62]. NEAT1 knockout mice fail to form paraspeckles, and only NEAT1_2
overexpression can rescue the paraspeckle formation, indicating that NEAT1_2 is essential
for paraspeckle formation [63]. Interestingly, a recent study showed that TDP-43 and FUS,
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associated with amyotrophic lateral sclerosis (ALS), are abundant in paraspeckles and
interact directly with NEAT1_2 in ALS-patient-derived motor neurons [64].

Some of the paraspeckle proteins overlap with SGs. Furthermore, stress-induced
SG assembly induces paraspeckle formation, indicating that SGs act as key regulators
of paraspeckle assembly in response to stress [65]. However, the mechanism for the
disassembly of paraspeckles remains unknown.

2.2.3. Promyelocytic Leukemia (PML) Bodies

PML bodies are spherical structures in the nucleus that can measure up to 1 µM
in diameter. Unlike other granules, PML bodies only contain more than 170 proteins
and do not contain RNA or DNA processes [66]. However, in a specific situation, such
as HSV-1 infection into cells, the HSV-1 genome can be encased into PML bodies [67].
PML bodies vary in composition and are implicated in cellular processes such as telomere
lengthening, DNA repair, and the DNA damage response [68–70]. Proteasomes and
nuclear diffused defective ribosomal products (DRiPs) can accumulate in PML bodies
with polyubiquitin conjugation, indicating that they remove newly synthesized misfolded
proteins [71]. Moreover, the interaction of PML bodies with chromatin is important for
controlling specific cellular chromatin assembly pathways and the chromatinization of viral
genomes [67].

The principal organizing component of PML bodies is the PML protein, a member of
the TRIM/RBCC family protein and a type of tumor suppressor gene. They are essential
for the biogenesis and formation of PML bodies. This protein contains an N-terminal
RING finger, two zinc fingers, and an RBCC domain. The RBCC domain mediates protein
interaction, multimerization, and localization in the PML bodies. However, it does not have
a DNA-binding capacity [72]. In particular, it is dimerized and oligomerized upon oxidative
stress. Additionally, PTMs on PML are critical for PML body assembly. SUMOylation
(small ubiquitin-like modifier) can alter protein interactions and cellular localization. The
SUMOylation of PML also plays a critical role in recruiting partner proteins and accelerates
PML body formation [73]. The SUMOylation of PML K160 is required for PML body
recruitment [74]. Moreover, other SUMOylated proteins, such as Sizn1, are implicated in the
accumulation of PML bodies [75]. Furthermore, DNA damage or stress-activated kinases,
such as ATM [76], CHK2 [70], CK2 [77], or ERK [78], phosphorylate PML, regulating PML
stability, PML body biogenesis, and interacting protein association.

2.2.4. Nuclear SG-like Structures

Nuclear SG-like structures have been recently identified. Nuclear SG-like structures
are assembled upon heat shock or stress induced by chemicals. Tellurite-induced oxidative
stress also induces eIF2α phosphorylation and G3BP1- and eIF2β-positive nuclear gran-
ules [79]. Therefore, we called them nuclear SG-like structures. Nuclear SG-like structures
are composed of the transcription and splicing machinery, RBPs, and satellite III (SatIII)
lncRNAs [80,81]. Additionally, pre-mRNA-splicing factor SF2, an alternative splicing factor
(SF2/ASF), is recruited to nuclear SG-like structures, which is mediated by a direct interac-
tion with SatIII transcripts [82]. However, the specific roles of nuclear SG-like structures
remain elusive.

2.2.5. Physiological Roles of RNP Granules

RNP granules are eukaryote-conserved biomolecular condensates composed of RNA
and RBPs, which play a major role in RNA metabolism. Moreover, in the case of cytoplasmic
RNP granules, such as SGs, P-bodies are enriched with mRNAs that are suggested to
play a role in translation regulation and mRNA storage. In this section, we describe the
physiological roles of RNP granules.

RNP granules form and play roles in various cellular functions. P-bodies regulate
mRNA metabolism, Cajal bodies play a role in RNA processing and telomerase biogenesis,
and paraspeckles control gene expression. Among the RNP granules, SGs, which are
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the most studied, are mainly formed to cope with abnormal translation and improve cell
survival in stress conditions. [1]. SGs can sequester various intracellular components and
regulate cell signaling pathways. Stress can typically induce apoptosis to avoid stress-
induced alterations. However, some evidence shows that SGs prevent apoptosis. The
apoptotic signaling receptor protein RACK1 is sequestered into SGs under heat stress
conditions, inhibiting the p38 and c-Jun N-terminal kinase apoptotic signaling pathway [2].
SGs also inhibit apoptosis by recruiting mammalian TOR (mTOR) to SGs [3]. Not only
can SGs prevent apoptosis but they can also play a potential protective role through anti-
inflammatory [4] and antioxidant effects [5].

A growing body of evidence implies that RNP granules carry specific mRNAs to target
sites to synthesize the required proteins. Notably, highly polarized cells carry specific
mRNAs to target sites to synthesize the required proteins in the neurons. In neurons,
highly polarized cells, the transport of mRNAs to distal sites from the cell body is required
for the accurate synthesis of specific proteins [6]. RNP granules containing mRNAs have
been transported in neurons by interacting with the cytoskeleton and motor proteins.
Additionally, RNP granules play a role in local protein synthesis by transporting mRNA
to the axons or dendrites [7]. For example, the persistence of activated spine localized β-
actin mRNA [8] undergoes multiple translations, and the newly synthesized proteins may
function in spine enlargement and synaptic consolidation [6]. Furthermore, upregulated
TDP-43 forms RNP granules, also called myo-granules, in injured skeletal muscle, which
contains mRNA encoding structural proteins vital for proper muscle formation [9].

Further studies on the composition, assembly, and transport of RNP granules are
required to understand their role in cellular regulation and organization.

3. Dynamic Regulation of RNP Granules by PTMs

As described earlier, many different RNP granules are dynamically assembled or
disassembled, which can be tightly controlled in various ways for their proper cellular
functions. Therefore, among the numerous ways to dynamically control RNP granules,
the physiological PTM of RNP granules becomes an important factor (Table 1). Further-
more, currently accumulating evidence suggests that abnormal PTMs of RNP granules are
also present in a disease state, leading to an alteration in the dynamics of RNP granules
(Figures 2 and 3).

PTMs refers to the covalent modification of amino acid residues using methyl, acetyl,
phosphoryl, etc. PTMs generally regulate biological processes by affecting the interaction
strength between proteins and nucleic acids, affecting protein stability and localization.
This section will describe PTMs on RBPs to regulate RNP granule dynamics.

3.1. PTMs in Dynamic Physiological Regulation
3.1.1. Arginine Methylation

Methylation by arginine methyltransferases or histone lysine methyltransferases is
modified by the methyl group of various amino acid side chains. The methylation of
RGG/RG motifs in RBPs by arginine methyltransferases regulates the phase separation to
form RNP granules [83,84]. The arginine methylation of RNA-binding proteins reduces
the arginine-π aromatic interaction and phase separation [85]. For example, the most
common SG component, G3BP1, is methylated by arginine methyltransferases PRMT1
and PRMT5 [86]. JMJD6 (Jumonji C domain-containing protein), arginine demethylase,
is known to demethylate G3BP1 directly or indirectly [87]. Previous studies showed that
G3BP1 demethylation resulted in enhanced SG assembly. UBAP2L, an essential component
for SG assembly and disassembly, is asymmetrically dimethylated by PRMT1 in its RGG
motif [19,84]. Increased arginine methylation of UBAP2L inhibits SG formation. Altogether,
arginine methylated SG core proteins can inhibit SG assembly. The dynamics of SGs and
P-bodies or chromatoid bodies are also regulated by methylation. In contrast to SGs,
PRMT5-mediated symmetrical dimethylarginine on Lsm4 [88] or SMEDWI-3 [89] promotes
the formation of P-bodies or chromatoid bodies, respectively.
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in neurons is a hallmark of several neurodegenerative diseases. (c) Abnormal RNP granules and
aggregates can be degraded by granulophagy.

3.1.2. Phosphorylation

Phosphorylation transfers a phosphate group from ATP to the receptor residues
by kinase enzymes. Phosphorylation modification mainly occurs on Ser, Thr, Tyr, and
His residues. Many RBPs are modified by phosphorylation and affect the dynamics of
RNP granules. As one of the critical translation regulators during stress, Gle1 [90] is
phosphorylated by MAPKs and GSK3 [91]. Phosphorylated Gle1 inhibits SG assembly and
promotes disassembly. ULK1/2 and CK2 phosphorylate VCP [92] and G3BP1 S147 [93],
respectively, which can induce efficient SG disassembly. Furthermore, Grb7, which is
required to form SGs, is phosphorylated by focal adhesion kinase and attenuates SG
disassembly [94]. Phosphorylation also affects the P-body assembly. The phosphorylated
P-body component Dcp1A at S315 increases the number of Dcp1A-positve P-bodies [95].
Tristetraproline (TTP), a common component in SGs and P-bodies, is also phosphorylated
by MAP kinase-activated protein kinase 2 (MK2). Interestingly, TTP phosphorylation by
MAPKAP2 deliberates the protein from SGs but not from PBs [96]. In the phosphorylation
of the protein-associated splicing factor and p54nrb, paraspeckle proteins regulate the
integrity and size of paraspeckles [97,98].

3.1.3. Acetylation

Protein residues modify acetylation with the acetyl group to the lysine side chains,
which is catalyzed via lysine acetyltransferase and histone acetyltransferase. In SG dy-
namics, the acetylation of the lysine 376 residue in the RNA-binding domain of G3BP1
is regulated by HDAC6 and CBP/p300. Acetylated G3BP1 impaired RNA-binding and
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interactions with other components, facilitating SG disassembly [99]. The acetylation of the
IDR of DDX3X, an SG component, impairs SG formation [100]. Furthermore, MVH (also
known as DDX4, a germ-cell-specific-type RBP) in the chromatoid body of germ cells is
acetylated in a Hat1-dependent manner during mammalian spermatogenesis, which leads
to the inhibition of MVH RNA-binding capacity [101]. Most of the acetylation seems to
regulate RNP granules negatively. However, the acetylation of SG components, such as
FUS or TDP-43, is also linked to a pathological transition and will be described later.

3.1.4. Glycosylation or Poly(ADP-ribosyl)ation (PARylation)

Interestingly, glycosylation is also one of the PTMs for regulating RNP granule dynam-
ics. Glycosylation is the enzymatic process that modifies specific residues with oligosac-
charide chains. Based on the target residue, it is classified into six groups, including
N-glycosylation, O-glycosylation, and C-glycosylation. O-GlcNAc glycosylation regulates
SG and P-body formation [102]. For example, the glycosylation of RACK1 and prohibitin-2,
which are associated with the translational machinery, promotes SG assembly [102]. Con-
versely, a knockdown of GFAT, which converts glucose to GlcNAc and O-GlcNAc trans-
ferase, inhibits SG assembly. As with other PTMs, PARylation is a reversible process that
adds ADP-ribose to the Glu, Asp, Lys, Arg, or Ser residue. PARylation is also known as the
major SG dynamic regulator. The inhibition of PARylated TDP-43 or hnRNPA1 reduces the
dynamics of SG assembly and disassembly [103].

3.1.5. Ubiquitination, Neddylation, or SUMOylation

Ubiquitination, the addition of monoubiquitin or a ubiquitin chain on a single lysine
residue on the substrate protein, affects cellular processes by regulating protein degradation
via the proteasome. Neddylation is mediated by NEDD8, a small ubiquitin-like protein
covalently conjugated to the lysine residue on the target protein, to induce a conformational
change and provide a novel binding surface [104]. These PTMs are potential regulators
of SG dynamics. SGs colocalize with ubiquitin–proteasome system-related proteins, in-
cluding ubiquitin-specific protease 10, HDAC6, or ubiquitin-conjugating enzyme 9. Kwon
et al. showed that polyubiquitinated G3BP1 is required for SG disassembly upon heat
shock [105]. For SG assembly, serum and arginine-rich splicing factor 3(SRSF3), which is
neddylated upon oxidative stress, is required [106]. Moreover, current studies reveal that
ubiquitination or neddylation inhibition regulates SG dynamics [106–108]. However, there
is a controversial study that found that the inhibition of ubiquitin-activating enzyme or
NEDD8-activating enzyme did not affect SG dynamics [109]. SUMO protein is covalently
attached to a lysine residue. SUMOylation is also a similar process to ubiquitination and
regulates RNP granule dynamics. The SUMOylation of the PML protein enhances PML
body formation, recruiting proteins [73].

3.1.6. Hypusine Modification

Hypusine is a polyamine-derived amino acid that is essential for eukaryotic transla-
tion [110]. This target protein modification is a conjugation of the aminobutyl moiety of
spermidine to a specific lysine residue. The post-translational modification is catalyzed
by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). eIF5A is
required for global protein synthesis, and only hypusine modifies protein. Furthermore,
one study showed that a hypusine modification of eIF5A is required for arsenite-induced
stress granule assembly, showing that a knockdown of DHPS inhibits the assembly of
SGs [111].
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Table 1. PTMs regulating physiological ribonucleoprotein (RNP) granule dynamics.

PTM Protein RNP Granule Assembly or
Disassembly Reference

Arginine methylation

G3BP1
SG

Disassembly [86,87]
UBAP2L Disassembly [19,84]

Lsm4 P-body Assembly [88]
SMEDWI-3 Chromatoid body Assembly [89]

Phosphorylation

VCP

SG

Disassembly [92]
G3BP1 Disassembly [93]
Gle1 Assembly [91]
eIF2α Assembly [11]
GRB7 Disassembly [94]

PSF, p54nrb1 Paraspeckle Assembly [97,98]

Acetylation G3BP1
SG

Disassembly [99]
DDX3X Disassembly [100]

PARylation TDP-43, hnRNPA1 SG
Delayed assembly

and disassembly (low
dynamics)

[103]

Phosphorylation and ubiquitination Dcp1A P-body Assembly [95]
Ubiquitination G3BP1 SG Disassembly [105]
Neddylation SRSF3 SG Assembly [106]

O-GlcNAcylation RACK1, prohibitin-2 SG Assembly [102]
SUMOylation PML PML body Assembly [73,112]

Hypusine modification eIF5A SG Assembly [111]

Further detailed studies are required to address how many PTMs affect the dynamics
of various RNP granules in a context-dependent manner.

3.2. PTMs on Pathological RNP Granules

Interestingly, many PTMs, such as PARylation, phosphorylation, or ubiquitination,
mainly modify RBPs in RNP granules. Liquid-like RNP granules can alter gel-like or
solid structures/aggregates by some PTMs [113], such as phosphorylation, acetylation,
and PARylation. Conversely, PTMs also inhibit RNP granules’ transition from liquid-like
structures to aggregates. This section describes the regulation of pathological RNP granules
by PTMs (Figure 3).

For example, the PARylation of TDP-43 and hnRNPA1 reduces SG dynamics, increases
cytotoxicity, and promotes protein aggregation [103]. Tau is regulated by two PTMs that
have the opposite effect on aggregation properties. The phosphorylation of tau promotes
phase separation and can serve as an intermediate to aggregate formation [114]. However,
the acetylation of tau decreases phase separation, preventing aggregate formation [115]. Fur-
thermore, the methylation [85,116], phosphorylation [117–119], and acetylation [120,121]
of FUS or TDP-43 associated with ALS and frontotemporal dementia (FTD) decrease
aggregation. The phosphorylation of TDP-43 could induce or reduce aggregation in a
context-dependent manner [122]. Intriguingly, the O-GlcNAcylation of TDP-43 inhibits its
hyperphosphorylation, resulting in the suppression of TDP-43 aggregates [123]. Addition-
ally, phosphorylation can induce the ubiquitination of RBPs within aggregates and promote
proteasomal or autophagic degradation, showing that PTMs can promote other PTMs.

There are some RNP granules called myo-granules (again, TDP-43), transport granules,
and neuronal granules in neurons. These mainly transport mRNAs to target sites and are im-
portant for neuronal functions such as axonal translation, synaptic properties, and memory.
A very small portion of TDP-43 localizes to cytoplasmic RNA granules. TDP-43-positive
RNA granules in neurons deliver the target mRNA to a distal neuronal compartment. TDP-
43 mutations inhibit mRNA-RNA granule transport kinetics in Drosophila motor neurons,
mouse cortical neurons, and ALS patient iPSC-derived neurons [124]. Interestingly, the
retrograde movement was significantly decreased. This paper suggested that impairing the
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axonal transport of mRNA targeted by TDP-43 may cause ALS or FTD pathogenesis. PTM
also regulates RNP granules in neurons and their function. Fragile X mental retardation
protein (FMRP) binds mRNAs and generates RNP granules. These transport mRNA to
active synapses along axons and dendrites to regulate local translation [125]. During this
process, FMRP SUMOylation is essential for maintaining RNP granule shape and regulating
spine elimination and maturation. Additional research is needed to uncover the therapeutic
target for inhibiting the aggregate property, which is related to neurodegenerative diseases.
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Figure 3. PTMs on pathological RNP granules. (a) Increased aggregation property by PTMs
on RBPs: phosphorylation of tau [114] or TDP-43 [121], acetylation of TDP-43 [122], PARylation
of TDP-43, or hnRNPA1 [103] accelerate the solid transition. (b) Decreased aggregation prop-
erty by PTMs on RBPs: methylation [85,116], phosphorylation [119], or acetylation [120] of FUS;
phosphorylation [117,118,122], or acetylation of tau [115] prevent the phase to solid transition.

4. Abnormal RNP Granules and Neurodegenerative Diseases

Ischemia, neuroinflammation, and aging affect SG formation and induce the irre-
versible accumulation of RBPs in SGs in neurons [126–128]. SGs are mainly composed
of RBPs, which are proteins that frequently contain low-complexity domains. These do-
mains make RBPs more prone to aggregate, interact with other proteins, and recruit to
aggregates. Inside cells, aggregate-prone RBPs normally participate in the repeating and
highly dynamic cycles of functional assembly and disassembly of protein-RNA granules
such as SGs [25]. On the other hand, the pathological SGs cause RBPs and RNAs/DNAs to
aggregate abnormally and stably. Their presence may disrupt the normal RBP aggregation
equilibrium; RBPs from SGs and abnormal disease-containing proteins with low-complexity
domains may produce an overactive aggregation phenomenon within neurons. The se-
questration of RBPs and other components of SGs may contribute to the pathogenesis of
several neurodegenerative diseases with aggregate-prone proteins. Cell stress and stress
response dysfunction may further exacerbate abnormal protein disruption, further feeding
the aggregation cascade. This section will describe the accumulation of abnormal RNP
aggregates, a hallmark of several neurodegenerative diseases.

Current perspectives on the biology of proteins with low-complexity sequences sug-
gest a putative mechanistic link between the biophysical properties of SGs and the patho-
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logic aggregation of disease-associated proteins such as FUS, TDP-43, or poly-Q diseases.
Proteins enriched in low-complexity sequences are prone to forming intracellular liquid-
like condensates, of which SGs are an example [129]. Phase-separated membraneless
organelles appear to be metastable. While they can disassemble, they can also evolve into
a solid-like state or directly drive the formation of amyloid-like fibrils, as demonstrated
for abnormal SGs [4]. Many RBPs associated with ALS or FTD, such as TDP-43 [130],
FUS [131], Ataxin2 [132], C9orf72 [133], hnRNPA1 [134], and TIA-1 [135], are colocalized to
SGs. Interestingly, several genetic mutations in the IDRs of RBPs result in the accumulation
of abnormal SGs. For example, mutations on TDP-43 (A315T and M337V) [136], FUS
(G156E) [137,138], TIA-1 (P362L) [135], and hnRNPA2B1 (hnRNPA2 D290V and hnRNPA1
D262V) [134] impair SG dynamics, leading to the accumulation of abnormal SGs. Ad-
ditionally, poly(GR) dipeptide repeats in ALS-linked C9orf72 induce SG formation and
delay disassembly [133]. The connection of SGs with neurodegeneration is not limited
to changes in protein aggregates. The cytoplasmic mislocalization of TDP-43, which nor-
mally has a nuclear localization, is sequestered into SGs. Nucleocytoplasmic transport
factors sequester into SGs and impair nucleocytoplasmic transport [139]. Furthermore,
SGs that are spontaneously assembled by mutant TDP-43 and dipeptide repeat proteins
also disrupt nucleocytoplasmic transport, contributing to the pathogenesis of ALS/FTD.
Parkinson’s disease (PD)-associated protein, DJ-1 mutation, promotes abnormal SG for-
mation and PD pathogenesis [140]. Furthermore, G3BP1-positive SGs that recruit TDP-43
are increased in huntingtin mutant-expressing Huntington’s disease (HD) mouse cortical
neurons [141]. This implies that the abnormal dynamics of SGs play a significant role in the
pathophysiology of HD, and mutations in RBPs cause persistent stress in cells.

Tau protein is a risk factor for neurodegenerative diseases, including Alzheimer’s
disease. It is associated with microtubules and is essential for transport along axons.
Although tau protein is not an RBP, they are localized to SGs, interacting with TIA1. Tau
can promote SG formation, and interactions with TIA1 contributes to the pathophysiology
of tauopathy [142]. Furthermore, tau phosphorylation can accelerate phase separation and
tau aggregates [114].

Acute stress could also enhance the dynamics of SGs to support the physiological
cellular environment. However, the SGs induced by chronic/prolonged stresses differ from
acute-stress-induced SGs in their contents and dynamics [143]. For example, SGs induced
by acute stress are translation initiation factors, 40S ribosomes, RBPs, and mRNAs, whereas
SGs formed under chronic nutrient starvation lack 40S ribosomes and have reduced dynam-
ics [144]. In addition, chronic arsenic stress also formed pathological TDP-43 aggregates in
induced pluripotent stem cell (iPSC)-derived motor neurons from patients with ALS [145].

The accumulation of paraspeckles and neural RNA transport granules is associated
with neurodegenerative diseases. Paraspeckles, such as SGs, also contain ALS-associated
proteins, including TDP-43 and FUS. The sequestration of TDP-43 into RNP granules
enhances paraspeckle assembly by the upregulation of NEAT1 and NEAT1_2 and the
impairment of miRNA processing during ALS pathogenesis [146]. TDP-43 D169G mutation
impairs the assembly of TDP-43-positive paraspeckles, causing an excessive translocation
of TDP-43 into cytoplasmic SGs [147]. Additionally, FUS P525L mutation promotes the
excessive formation of dysfunctional paraspeckles [148]. On the contrary, FUS R522G
mutation induces the accumulation of cytoplasmic FUS-positive paraspeckles in motor
neurons of patients with ALS [149]. The alteration of the dynamics of RNP granules by IDR
mutations or chronic stresses induces persistent RNA granules resistant to degradation.
The excessive accumulation of abnormal RNP granules might cause neuronal toxicity.
Therefore, manipulating abnormal RNP granules is an excellent matter of therapeutic
approaches. The following section will describe the removal of abnormal aggregates of
RNP granules.
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5. Autophagic Degradation of RNP Granules: Granulophagy

Current accruing evidence proposes that the disassembly and removal of RNP gran-
ules can be induced by chaperones, such as HSP70 family proteins, or autophagy. In
particular, gel-like or solid RNP granules are resistant to disassembly. Therefore, intracellu-
lar degradation pathways should clear these abnormal structures. Among the degradation
pathways, there is autophagy, a self-degradation pathway in which cytoplasmic materials
are sequestered into double-membrane-bound vesicles and delivered to the lysosomes
for degradation. RNP granules could be degraded by autophagy, which is called granu-
lophagy [24,150,151].

Until now, there are a few proteins involved in granulophagy. For example, VCP
belongs to the AAA+ (ATPases associated with diverse cellular activities) family of a
chaperone-like protein involved in various cellular processes [152]. VCP promotes au-
tophagosome biogenesis and is critical for SG clearance and interacting with LC3 and
p62 [24,153,154]. Furthermore, hypoxia-induced SG-like structures in Arabidopsis thaliana [155]
contain calmodulin-like 38, a calcium-sensor protein, and cell division cycle 48A (ortholog
VCP in mammals). These proteins regulate their degradation by autophagy. More recently,
ULK1 and ULK2, autophagy-inducing kinases, localize to SGs and regulate their disas-
sembly by VCP phosphorylation [92]. This process is dependent on the enhanced ATP
hydrolase activity of VCP. Moreover, VCP mutations are identified in ALS and FTD, sug-
gesting that defects in VCP cause the abnormal accumulation of SGs due to the impairment
of autophagy, leading to neurodegeneration [156,157].

Zinc finger AN1-type containing 1 (ZFAND1) is known to recruit 26S proteasome and
VCP into arsenite-induced SGs for the clearance of SGs [158]. DRiP-positive abnormal
SGs accumulate in ZFAND1-deficient cells treated with autophagy inhibitor, indicating
that abnormal SGs can be disassembled or cleared by the proteasome and then activated
autophagy to control protein homeostasis. Furthermore, a recent study showed that chronic
oxidative stress increased the number of p62-TIAR- and LC3-TIAR-positive autophago-
somes in TDP-43 A382T patient-derived iPSC motor neurons, suggesting that SG clearance
is regulated by autophagy [145].

Autophagy can degrade P-bodies in yeast and mammalian cells [24,159]. The deletion
of atg15 in yeast causes the accumulation of P-bodies [24]. An autophagy inhibitor blocked
the transmission of growth factor-β (TGF-β)-induced Dcp1A-positive P-body clearance
upon TGF-β removal conditions [159]. Another RNP granule, germ granules in C. elegans,
termed PGL granule component PGL-3, interacts with SEPA-1, forming aggregates and
binding to LGG-1/Atg8 [160,161].

Autophagy adaptor protein, p62 or NDP52, is preferentially colocalized with SGs or
P-bodies [162]. Lee et al. [163] also showed that p62 knockout mouse embryonic fibrob-
lasts slowly recover the SG from heat shock stress. Additionally, an autophagy inhibitor,
bafilomycin A1, inhibits the clearance of heat-shock-induced SGs. p62, as an adaptor pro-
tein for SG degradation, is also required to degrade arsenite-induced SGs [150]. One of the
autophagy genes, Atg19, is known to mediate cargo selection in selective autophagy [164].
SG and P-body proteins also colocalize to Atg19 [24]. Taken together, Atg19 may contribute
to granulophagy by targeting RNP granules.

As mentioned earlier, the protein quality control system through granulophagy is
important for the clearance of abnormal RNP granules. However, a chaperone-mediated
protein quality system and granulophagy could prevent the formation of abnormal SGs
and promote their disassembly [165].

DRiP (prematurely terminated and misfolded polypeptides) accumulation in SGs
leads to aberrant SGs and delays their disassembly. A recent study also showed that
SGs are regulated by a chaperone complex, HSPB9-BAG3-HSP70 [166]. However, the
relative contribution of granulophagy or chaperone on the clearance of physiological or
pathological RNP granules needs to be further studied.
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6. Discussion

Many nuclear or cytoplasmic RNP granules, such as dynamic membraneless or-
ganelles, regulate protein synthesis or various RNA processes, which are important for
regulating gene expression. Thus, the assembly and disassembly of these RNP granules
must be tightly regulated by multiple cellular mechanisms. PTMs act as important regula-
tors of RBPs and influence the biophysical properties, molecular interactions, subcellular
localizations, and cellular functions of RBDs in RNP granules. This review has described
the roles of physiological or pathological PTMs on various RNP granules. Accumulat-
ing evidence suggests that PTMs are emerging as crucial factors for the dynamics and
assembly/disassembly of RNP granules in a context/tissue-dependent manner. Notably,
further detailed proteomic studies might explain why components of RNP granules are
different or how PTMs have a tissue-specific pattern in a physiological or pathological state.
Moreover, how the combinational effects of PTMs within one protein affect the function of
RNP granules will explain the PTM perspective in the regulation of RNP granules. Beyond
the PTMs in RBPs discussed in this review, many other key regulators of PTMs might be
associated with RNP granules, which will be an exciting future area of exploration for
scientists to discover.

Additionally, this review also described granulophagy, which can regulate RNP gran-
ule clearance, including SGs. Many exciting questions must be solved to understand
the cellular mechanism of granulophagy. For example, what are the specific signals for
activating granulophagy for physiological or pathological RNP granules? Which PTMs
could contribute to granulophagy? How effectively would a combinational approach
that controls autophagy and PTMs treat neurodegenerative diseases, such as FTD and
ALS? In addition to the regulation of cytosolic RNP granules, recent studies suggest the
importance of nuclear autophagy for nuclear RNP granules. Future studies to uncover the
molecular mechanism of nuclear RNP granules will open new fields for RNA metabolism,
granulophagy, and neurodegenerative diseases.
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