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From an agricultural perspective, drought refers to an unusual deficiency of plant available

water in the root-zone of the soil profile. This paper focuses on evaluating the benefit of

assimilating soil moisture retrievals from the Soil Moisture Active Passive (SMAP) mission

into the USDA-FAS Palmer model for agricultural drought monitoring. This will be done by

examining the standardized soil moisture anomaly index. The skill of the SMAP-enhanced

Palmer model is assessed over three agricultural regions that have experienced major

drought since the launch of SMAP in early 2015: (1) the 2015 drought in California

(CA), USA, (2) the 2017 drought in South Africa, and (3) the 2018 mid-winter drought in

Australia. During these three events, the SMAP-enhanced Palmer soil moisture estimates

(PM+SMAP) are compared against the Climate Hazards group Infrared Precipitation with

Stations (CHIRPS) rainfall dataset and Normalized Difference Vegetation Index (NDVI)

products. Results demonstrate the benefit of assimilating SMAP and confirm its potential

for improving U.S. Department of Agriculture-Foreign Agricultural Service root-zone

soil moisture information generated using the Palmer model. In particular, PM+SMAP

soil moisture estimates are shown to enhance the spatial variability of Palmer model

root-zone soil moisture estimates and adjust the Palmer model drought response to

improve its consistency with ancillary CHIRPS precipitation and NDVI information.

Keywords: agricultural drought, soil moisture, SMAP, hydrologic modeling, data assimilation

1. INTRODUCTION

Timely and routine knowledge of expected crop yield production is important for farmers,
agricultural agencies, insurance companies, aid organization and other end-users because it drives
food supply/price projections, impacts trade markets, and identifies food insecure areas. However,
yield forecasting using physically-based crop growth models is challenging and requires accurate
knowledge of a variety of environmental parameters (Basso et al., 2013; Di Paola et al., 2016).
Important inputs for these models include: weather-related data (e.g., precipitation, radiation, and
temperature), environmental and crop characteristics (e.g., soil properties, crop type, and crop
growth stages), and agricultural and management practices (e.g., crop calendar, irrigation schedule,
and fertilization information).
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The two factors of the highest significance for crop growth
and yield accumulation are heat (i.e., air temperature and
radiation budget) and plant available water (i.e., soil moisture)
(Lobell et al., 2009). These factors regulate and control all vital
physiological and chemical crop processes such as the amount
of energy absorbed by the crop, water and nutrient uptake and
movement, transpiration, and photosynthesis. However, each
crop has its own ideal heat and soil moisture requirements for
achieving optimal yield potential, and weather extremes can
cause significant deviations from these ideal conditions and result
in sub-optimal crop production.

Drought is of great importance to agriculture. It is
typically characterized by a precipitation deficiency and
high air temperature that results in reduced infiltration,
runoff, and ground water recharge and an increase in
evaporation/transpiration (Keyantash and Dracup, 2002;
Boken et al., 2005). From an agricultural perspective, drought
refers to the deficiency of plant-available water in the root zone
of the soil profile relative to normal conditions over a persistent
period of time (Boken et al., 2005). The inability to replace crop
evapotranspiration losses due to insufficient soil water storage
causes plant water stress, which, in turn, results in reduced
biomass and yield (Keyantash and Dracup, 2002). Thus, root-
zone soil moisture (RZSM) is of great interest for operational
agriculture monitoring and in-season crop growth modeling.

This paper focusses on the value of a specific RZSM
soil moisture data set operationally produced for the U.S.
Department of Agriculture-Foreign Agricultural Service
(USDA-FAS). Important operational USDA-FAS goals include
maintaining global food security and commodities market
development. In particular, USDA-FAS’s Office of Global
Analysis (USDA-FAS/OGA) serves as a major source of objective
and reliable global agricultural production information for
the USDA’s monthly World Agricultural Supply and Demands
Estimates (WASDE) report—the primary source of the USDA’s
global commodity outlook. The monthly WASDE report
provides public access to information affecting world food
security and is crucial for supporting decisions affecting U.S.
agriculture, trade and food aid policies—as well as aiding
economic decisions made by stakeholders, policymakers, and
governments. USDA-FAS/OGA uses a variety of data products
at regional, national and subnational scales to operationally
monitor and analyze monthly changes in global crop production.
The analysis of RZSM patterns, and their relationship to
climatological expectations, is an important part of this analysis.
Within the United States, an analogous domestic monitoring
role is played by the USDA National Agricultural Statistical
Service (USDA NASS).

Prior to 2014, USDA-FAS RZSM information was generated
using a modified two-layer Palmer model (PM). The PM
is a simple soil moisture accounting model driven by daily
meteorological data (including daily precipitation estimates and
temperature observations) provided by the U.S. Air Force
557th Weather Wing (USAF). It applies a simple water balance
formulation to estimate temporal variations in RZSM. However,
this approach shows less skill in the case of poor-quality forcing
data. In particular, random errors in daily precipitation forcing

propagate through modeled soil water balance physics and can
greatly reduce the accuracy of the model-generated soil moisture
estimates (Reichle and Koster, 2004, 2005).

Precipitation related errors are effectively filtered via
the sequential assimilation of satellite-based soil moisture
observations, and numerous studies have demonstrated the
ability of land data assimilation systems to enhance the value
of the model RZSM estimates for yield forecasting and early
agricultural drought detection (de Wit and van Diepen, 2007;
Crow et al., 2008; Bolten et al., 2010). Therefore, starting in
2014, the operational USDA-FAS Palmer model was enhanced
by adding a data assimilation system capable of ingesting surface
soil moisture retrievals acquired from satellite-based passive
microwave sensors. The USDA-FAS has adopted the resulting
product as a baseline RZSM estimator and incorporated its
output into the operational Crop Assessment Data Retrieval and
Evaluation (CADRE) Data Base Management System (DBMS)
(Bolten et al., 2010; Bolten and Crow, 2012; Crow et al., 2012; Han
et al., 2014). To this end, USDA crop analysts use data compiled
within the CADRE DBMS, including this satellite-enhanced
RZSM and a convergence of evidence methodology, to maximize
the accuracy of the USDA-FAS international yield forecasts.

The latest refinement to the satellite-enhanced PM system is
based on ingesting near-real time, daily ground soil moisture
observations acquired from the NASA Soil Moisture Active
Passive Mission (SMAP) mission (Mladenova et al., 2019).
The ingestion of SMAP soil moisture products, which began
operationally in April 2017, was designed to enhance the USDA-
FAS’s drought monitoring capability by improving the quality
of RZSM soil moisture information provided to the USDA-FAS
CADRE DBMS. As such, it represents one of the first truly
operational implementations of SMAP soil moisture products for
decision support.

Our focus here is to evaluate and quantify the added value
contributed by assimilating SMAP for the agricultural drought
monitoring capacity of the USDA-FAS CADRE DBMS. This will
be done by: (1) assessing the impact of SMAP on the USDA-
FAS’s soil moisture estimates and (2) examining the change in
skill (if any) of the SMAP-enhanced PM model (PM+SMAP)
for capturing the extent, duration and severity of agricultural
drought events. To this end, the performance of the USDA-
FAS’s soil moisture information (without and with SMAP) will be
examined for its capability to detect RZSM deficiency over three
agricultural regions that have experienced major agricultural
drought since the launch of SMAP in early 2015: (1) the 2015
drought in California (CA), USA, (2) the 2017 drought in South
Africa, and (3) the 2018 mid-winter drought in Australia. RZSM
deficiency will be established by evaluating the behavior and
accuracy of the model standardized soil moisture anomalies
in relation to change in anomalies in precipitation and the
Normalized Difference Vegetation Index (NDVI).

Therefore, this paper is organized as follows. Section II
provides background on the physics of agricultural drought
and its impact on crop growth and yield production—as
well as describing available soil moisture-based indices with
demonstrated value for agricultural drought monitoring. Section
III focuses on the soil moisture, precipitation, and NDVI datasets
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and provides a description of the study domains and the drought
events listed above. Results will be presented/discussed in section
IV and summarized in section V.

2. BACKGROUND: AGRICULTURAL
DROUGHT AND SOIL MOISTURE INDICES

Agricultural drought is generally associated with a decline in
precipitation that causes insufficient plant water availability and
reduced soil water storage. Its adverse effect can be accelerated
by the simultaneous occurrence of high air temperatures and
strong winds, which causes further drying. Boken et al. (2005)
describe agricultural drought as “the most complex category of
drought” since it cannot be measured immediately due to the
delay between its manifestation and the eventual determination
of its magnitude (via yield measurements made at the end of
the growing season). In addition, the relationship among plants,
weather, and environmental conditions is not linear. Therefore,
below-average precipitation does not cause an immediate decline
in crop health—as plants have several short-term adaptive
mechanisms to deal with a brief shortage of water and/or
heat stress (Slayter, 1967; Jensen, 1968; Wani et al., 2009). In
relation to plant development and health and yield formation,
the three most important aspects of agricultural drought are
its duration (i.e., how long is the period of limited soil
moisture conditions), timing (i.e., when does the water stress
occur during the growing season), and severity (Abendroth
et al., 2011; Licht, 2014; Mladenova et al., 2017). Plant water
requirements vary strongly during the growing season. Crop
yields are generally most susceptible to water deficiency during
the reproductive crop development stage associated with grain-
filling and formation. As these requirements are relatively well-
known, the eventual (yield-based) impact of drought can often
be estimated within season.

A large number of indices have been developed to monitor
drought and quantify its impact. Mishra and Singh (2010) offer
a comprehensive overview of commonly used drought indices
and a detailed discussion of their advantages and disadvantages.
Overall, each index explores a different component of the
water cycle (i.e., precipitation, runoff, groundwater storage, and
evapotranspiration) or environmental variable (i.e., land surface
temperature and NDVI) and its relation to drought.

Here our primary focus will be on soil moisture-based
indices. Narasimhan and Srinivasan (2005) proposed a Soil
Moisture Deficit Index (SMDI) based on simulated soil moisture
values acquired from the SWAT (Soil Water Assessment Tool).
SMDI monitors drought by scaling the most recent weekly soil
moisture conditions relative to long-term median, minimum,
and maximum expectations. Several authors have proposed soil
moisture indices where drought conditions are assessed based
on rescaling estimated soil moisture content relative to soil-
specific properties such as available water content (AWC), field
capacity (FC), or wilting point (WP) (Sridhar et al., 2008; Hunt
et al., 2009; Martínez-Fernández et al., 2015). Zhou et al. (2017)
advanced this approach by applying a root-weighting function,
where a soil moisture index is corrected for crop rooting depth

and root-length density. SMDI requires that the inter-annual
and seasonal effects are properly accounted for, which, in turn,
requires an adequate long-term climatology. The soil property
rescaled indices, on the other hand, require reliable AWC, FC,
and WP, and results can vary widely based on the approach used
to obtain these parameters (Martínez-Fernández et al., 2016). In
addition, the actual rooting depth and soil volume from which
plants extract water changes throughout the growing season. As
a result, applying this approach at a global scale is challenging.

Another alternative is the calculation of standardized anomaly
indices that express current soil moisture conditions relative to a
climatological expectation. This can be useful to convey degree
and duration of drought across several climatological regions
and multiple soil and vegetation types over time. If standardized
by a long-term standard deviation, such an index represents
standardized anomalies that summarizes the deviation of the
current soil moisture conditions in terms of standard deviations
relative to long-term climatological expectations for a given
month. The monthly Standardized Anomalies (SA) used here is
computed as:

SAi = (RZSMi − µm)/σm (1)

where RZSM is the root-zone soil moisture, m represents the
climatological value sampled for a particular month of the year,
i indicates the monthly time series values, and µ and σ indicate
mean and standard deviation SM values for the specific month
m. For example, the SA for April 2013 is estimated by calculating
µ and σ utilizing soil moisture observations sampled from all
Aprils in the historical data record.

Here, the SA approach is applied because it is easily applicable
at a global scale and does not require any additional ancillary
data inputs. In addition, it offers the opportunity to compare
different components of the hydrologic cycle (e.g., soil moisture
vs. precipitation) and measurements reflecting vegetation status
(e.g., NDVI). Since the RZSM product is an important part
of the official product suite currently generated for USDA-
FAS, an anomaly analysis carried out as described above should
provide useful insight into the utility of this product for the
USDA-FAS crop analysts. Note that the interpretation of (1) is
typically based on an implicit assumption of a Gaussian RZSM
distribution. More robust non-parametric percentile or return
interval approaches are also possible but require longer sampling
periods than the relatively short data records provided by existing
global RZSM products (see below).

3. APPROACH

3.1. Soil Water Balance Modeling
As discussed above, the USDA-FAS soil moisture product is
based on the modified 2-layer Palmer model (PM) (Palmer, 1965;
Bolten et al., 2010; Bolten and Crow, 2012). The top layer is
assumed to have a maximum water holding capacity of 25.4mm,
while the amount of the water that can be stored in the root-
zone is modeled as a function of specific soil properties. The
PM is a simple 2-layer bucket-type of soil water balance model
driven by daily observations of precipitation and minimum and
maximum air temperature. The USAF precipitation data used to
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force the model is generated as a part of the agency’s Agricultural
Meteorology modeling system. The precipitation estimates are
acquired in near-real-time by merging observations from the
Special SensorMicrowave/Imager (SSM/I) satellite, geostationary
satellites such as Geostationary Operational Environmental
Satellite (GOES) and Meteosat, and rain gauge data from
the World Meteorological Organization (WMO). Here, the
PM was applied daily at a global scale on a regular 0.25◦

grid to calculate daily RZSM products via its soil water
balance formulation.

3.2. SMAP Level 2 Soil Moisture
The SMAP satellite was launched in January of 2015 and
began providing scientific data on March 31, 2019. It is an L-
band mission that observes the Earth’s surface at about 40-km
resolution twice a day at 6 a.m. and 6 p.m. (local solar time).
SMAP was designed to carry aboard two microwave instruments,
a radar (centered at 1.26 GHz) and a radiometer (centered at
1.5 GHz). Unfortunately, the SMAP radar failed in July 2015.
However, the passive microwave radiometer has continued to
generate a nearly continuous data record since late March 2015.

SMAP generates several different global soil moisture
products using various radiative transfer-based algorithms and
methodologies. Of particular interest here is the Level-2 passive-
based only soil moisture product (L2_SM_P) (ONeill, 2018).
The L2_SM_P baseline soil moisture is retrieved using V-pol
brightness temperature data and the so-called “Single Channel
Algorithm” (Jackson, 1993; Chan, 2016). This data product is
distributed at a 36-km × 36-km EASE2 grid projection. Prior to
assimilation into the PM model (see below), L2_SM_P retrievals
were re-projected and re-sampled to match the 0.25◦ PM grid
using tools developed by the SMAP science team. The SMAP
L2_SM_P product has been extensively validated over a large
number of validation sides and using ground data collected
during a number of field campaigns specifically designed to
support the SMAP Calibration/Validation (Cal/Val) activities
(Chan, 2016; Chan et al., 2016; Burgin et al., 2017; Cai et al., 2017;
Colliander et al., 2017).

3.3. Data Assimilation
The current operational USDA-FAS SMAP-based RZSM product
is derived based on the assimilation of the SMAP L2_SM_P
soil moisture product (section 3.1) into the 2-layer PM (section
3.1) to filter random errors that degrade PM RZSM estimates.
This assimilation is based on an Ensemble Kalman filtering
(EnKF) approach. The EnKF, its background and application in
hydrology—as well as its specific USDA-FAS implementation—
have been well-documented by previous studies (Reichle and
Koster, 2004, 2005; Bolten et al., 2010; Bolten and Crow, 2012;
Han et al., 2014). In particular, the specific data assimilation
system applied to generate the existing USDA-FAS RZSM
products is described in detail by Mladenova et al. (2019).
Therefore, only a few key elements relevant to the specific USDA-
FAS SMAP implementation are summarized here.

The EnKF is a sequential data assimilation technique where
the update of the model forecasts in response to the acquisition
of uncertainty observations is based on error covariance
information sampled from a Monte Carlo model forecast

ensemble. Here, this ensemble is generated by applying random
noise directly to 2-Layer PM states. As a result, the EnKF is
indirectly driven by two user-defined parameters: the forecast
error noise covariance matrix Q (used to drive the generation of
the Monte-Carlo PM ensemble) and the observation covariance
matrix R (which reflects our degree of confidence in the accuracy
of assimilated observations). Q and R are generally assumed
constant in time here—see Mladenova et al. (2019).

Uncertainty in the PMmodel forecasting represents a primary
source of the model forecast uncertainty represented by Q.
As noted above, USAF precipitation forcing estimates are
generated by merging various sources including the World
Meteorological Organization (WMO) ground stations. Given the
general understating that gauge-based correction is important for
ensuring the quality of precipitation forcing data,Q was modeled
as an increasing function of the distance between the model
grid pixel and the nearest gauge station—thereby lending more
confidence to background PM forecasts over areas with greater
station density coverage (Bolten and Crow, 2012).

Similar ground-based quality concepts were applied when
parametrizing R. Generally, the performance of the passive-
based soil moisture retrieval algorithms and the quality of the
corresponding estimates are highly dependent on the vegetation
layer. Canopy density and the amount of water present in
the plants both tend to prevent the microwave signal from
fully penetrating through the vegetative canopy. Even though
the SMAP baseline retrieval algorithm implements a vegetation
correction step, canopy attenuation still causes higher soil
moisture retrieval uncertainty over densely vegetated areas. The
SMAP Calibration and Validation (Cal/Val) team has evaluated
SMAP soil moisture retrievals using very comprehensive and
well-calibrated ground-collected datasets (Colliander et al.,
2017). Using this information and algorithm sensitivity analysis,
they have developed uncertainly flags that allow the user
to mask out unreliable retrievals (including retrievals over
densely vegetated areas). In addition, the Cal/Val team generates
regular error statistics computed against in situ data as a
function of land cover type. Therefore, R values used here
were based on the unbiased component of the Root Mean
Squared Error (ubRMSE) values provided by the SMAP
Cal/Val team for specific vegetation classes (Jackson et al.,
2016).

3.4. Evaluation Data
Given the overall lack of ground-based RZSM observations,
and the difficulty of scaling available observations up to a
coarse-scale average, we will employ alternative approaches
for assessing value in our data assimilation results. However,
it should be noted that more traditional verification of the
USDA-FAS SMAP-based RZSM product against ground-
based soil moisture is described in Mladenova et al.
(2019).

Globally, most agriculture production is still rain-fed. Thus,
temporal and spatial variations in precipitation play an important
role in crop growth. With this in mind, we can leverage the
relationship between root zone soil moisture dynamics and
precipitation and vegetation dynamics in regions of rain-fed
agriculture. Since the PM is governed primarily by precipitation
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forcing, PM soil moisture patterns reflect patterns in the
precipitation forcing used by the PM. However, the assimilation
of SMAP into the PM (hereinafter referred to as the PM+SMAP
case) should allow for the representation of more realistic
soil moisture patterns than the baseline USAF-forced PM.
Therefore, one technique for demonstrating the value of a
data assimilation-based system combining both satellite-based
precipitation and soil moisture observations is to carefully
analyze the spatial and temporal agreements between the datasets
(i.e., PM RZSM and PM+SMAP results), as well as the datasets
used in their production, and compare them to a higher-accuracy
precipitation dataset (i.e., the consolidated CHIRPS data set).
This approach is followed here. Specifically, we compare both
the PM and PM+SMAP results with the independent CHIRPS
precipitation dataset.

An additional comparison analysis against NDVI anomalies
is conducted to evaluate the impact of water shortage on
vegetation health as captured by NDVI. Is it well-known
that, in mid-latitude agricultural regions during the growing
seasonal, negative anomalies in RZSM tend to produce a time-
lagged corresponding negative anomaly in NDVI (Adegoke and
Carleton, 2002). The strength of association between RZSM and
NDVI have been used to assess the value of the PM+SMAP
case under the assumption that—when comparing multiple
products in a water-limited environment—the highest-quality
RZSM product should also possess the largest lagged correlation
with independent NDVI estimates of biomass and vegetation
health (Bolten and Crow, 2012; Crow et al., 2012; Han et al.,
2014). However, as discussed below, uncertainty regarding the
exact temporal relationship between RZSM and NDVI anomalies
can complicate this interpretation.

Based on this two-tiered approach, we aim to determine if
applying SMAP-based soil moisture in an EnKF framework leads
to more realistic patterns of wetness and vegetation dynamics
by comparing them to satellite-based CHIRPS precipitation and
MODIS-based NDVI.

3.4.1. CHIRPS Precipitation

As described above, we applied a data denial validation
precipitation data to assess the ability of SMAP data assimilation
to compensate for random precipitation forcing errors. Hence,
baseline RZSM results were based on forcing the PM using
the Climate Hazards group Infrared Precipitation with Stations
(CHIRPS) dataset. CHIRPS is distributed at 0.05◦ and offers
a quasi-global coverage (50◦S-50◦N). CHIRPS incorporate
global climatologies, several different satellite-based products
and in situ station data. Thus, the CHIRPS algorithm
encompasses three major components: (a) the Climate Hazards
group Precipitation climatology (CHPclim), (b) the satellite-
only Climate Hazards group Infrared Precipitation (CHIRP),
and (c) the station blending procedure that produces the
CHIRPS. The global monthly climatologies are based on station
data obtained from the Agromet Group of the Food and
Agriculture Organization of the United Nations (FAO) and
the Global Historical Climate Network (GHCN). In addition
to the gauge data, CHPclim incorporates elevation, latitude
and longitude information as well as monthly long-term mean

values acquired from Tropical Rainfall Measuring Mission
2B31 microwave precipitation estimates, CMORPH microwave-
plus-infrared based precipitation estimates, monthly mean
geostationary infrared brightness temperatures and land surface
temperature estimates. CHPclim uses a moving window method
to build tile specific regression models that are consequently fit to
the FAO climatology. Station specific biases are then computed
against the GHCN data. Lastly, CHIRP is blended with station
observations from several public regional archives. Merging is
done by computing bias ratios between the CHIRP data and
the nearest 5 stations. These bias ratios are used to compute
a correction factor that is used to adjust the original CHIRP
values. Final CHIRPS estimates are a weighted combination of
the original CHIRP and the adjusted CHIRP, where the weighing
function is determined based on the agreement of each product
with the nearest station. A detailed description of the CHRIP/S
methodology and validation results can be found in Funk et al.
(2015), Paredes-Trejo et al. (2017), and Rivera et al. (2018).

CHIRPS precipitation is an independent data set as it was not
used to run the PM and is considered to be of relatively high-
quality (vs. the USAF precipitation product used to drive the
PM) due to its more complex blending algorithms, the use of
global precipitation climatology and the much larger number of
gauge data incorporated into the CHIRPS product, as discussed
above. However, as mentioned, it a quasi-global data set and does
not provide full global coverage (50◦S-50◦N). In addition, there
is considerable latency in data availability (about 2 days for the
preliminary product and about 3 weeks for the final CHIRPS
data used here; see Funk et al., 2015). Therefore, unlike the
USAF precipitation product used operationally by USDA-FAS to
generate PM RZSM estimates, the final CHIRPS product is not
appropriate for near-real time operational implementation.

Preliminary analyses (not included in this paper) show that
the CHIRPS temporal and spatial response is consistent with
other precipitation data sets such as the Parameter-elevation
Relationships on Independent Slopes Model (PRISM) and the
South African Weather Service data. However, both of these
products have only regional coverage (i.e., the contiguous
United States and South Africa, respectively) and cannot support
a global analysis.

3.4.2. GIMMS MODIS NDVI

NDVI anomalies were used here as a proxy of crop status
and vegetation health. The Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI data used in this study was
processed by the NASA/Goddard Space Flight Center’s Global
Inventory Modeling and Mapping Studies (GIMMS) Group
through funding support of the Global Agricultural Monitoring
project by USDA-FAS. It is generated using the maximum-value
compositing technique (Tucker et al., 2005; Brown et al., 2006).
As discussed above, NDVI is used to evaluate the ability of various
RZSM products to predict inter-annual variations in crop status
and/or vegetation health.

The standardization procedure described in (1) is applied
to develop monthly standardized precipitation and NDVI
standardized anomalies. A “∗” superscript is used to indicate
standardized anomalies (SA). Therefore, PM∗ is RZSM SA of
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FIGURE 1 | Study areas.

the Palmer model alone and ENKF∗ refers to SA produced
via the assimilation of SMAP into the PM (PM+SMAP).
Likewise, CHIRPS∗ and NDVI∗ refer to monthly SA anomalies
acquired from the CHIRPS precipitation and the GIMSS NDVI
products, respectively.

3.5. Domains Description
As mentioned above, our three study domains of interest
are: California (USA), the Western Cape (South Africa) and
New South Wales (Australia) (Figure 1). Each of these regions
experienced at least one major agricultural drought event within
the SMAP data era (i.e., late March 2015 to present).

Along with the WASDE report, USDA-FAS routinely releases
Commodity Intelligence Reports (CIR), and World Agricultural
Production (WAP) Circulars. These briefs describe changes in
crop status and expected yield variations for a specific country or
agricultural area in the context of an ongoing weather or climate
event. The impact of the 2017 drought in South Africa and the
2018 mid-winter drought in Australia were extensively described
by the USDA-FAS briefs. Likewise, the Californian drought is
described by USDA NASS reports. These reports are referenced
below to provide context concerning the impact of our three
selected drought events on large-scale agricultural productivity.

3.5.1. Western Cape, South Africa (2017)

Our first case study focuses on the impact of a prolonged
drought in the Western Cape province of South Africa. The
Western Cape is located in the south-western edge of South
Africa. It is the country’s largest wheat producing region and
operates on an austral winter wheat calendar with planting in
May and harvest in November. The agriculture in the area
is predominantly rain-fed. Climate in the Western Cape is
characterized by hot/dry summers and cold/wet winters. Average
annual rainfall is 185mm, which is significantly lower than the
South African national average of 380mm (statistics are based
on the 1981–2018 CHIRPS data record). The Western Cape
Province has experienced below-average rainfall since 2014/15—
reaching near-record lows during the 2017 growing season,
which was the lowest recorded since either 1981 (based on
CHIRPS data record) or 1933 (based on the South African
Weather Service stations; see Wolski, 2018). As result, the 2017
growing season was categorized as the worst since 1904 (Botai

et al., 2017;Wolski, 2018). In February of 2018, the South African
Crop Estimating Committee predicted that the 2017/2018 wheat
yield would fall 64% below its 5-year average (see USDA-FAS
Commodity Intelligence Report from February 8, 2018; https://
ipad.fas.usda.gov/highlights/2018/02/SouthAfrica/index.pdf).

3.5.2. New South Wales, Australia (2018)

The New South Wales (NSW) province, located in the south-
eastern corner of Australia, is one of the major agricultural
production areas in Australia. Its climate varies from arid to
semi-arid, in areas to the west of the Great Dividing Range, to
more oceanic and humid subtropical in the east. Average annual
rainfall is about 365mm (based on the 1981–2018 CHIRPS data
record). Wheat, canola and barley are the major commodities
cultivated in the area. Winter crops are planted between May
and July and harvested between late October and early January.
However, specific planting dates are highly dependent on winter
rainfall amounts. Numerous studies have found that Australia
is prone to inter-annual drought due the impact of several
major climate phenomenon such as El Niño/SouthernOscillation
(ENSO), Pacific Decadal Oscillation (PDO), and the Indian
Ocean Dipole (IOD) (Ummenhofer et al., 2009; Verdon-Kidd
and Kiem, 2009; van Dijk et al., 2013). For example, the 2018
rainfall season brought below-average rainfall causing delay in
sowing operations and postponed planting. USDA-FAS winter
wheat crop statistics for the 2018 winter season are given in
Table 1. The corresponding reduction in expected yields for 2018
was attributed to a persistent deficit of RZSM caused by the
below-average precipitation starting from the beginning of the
austral winter growing season (i.e., in and around May 2018).

3.5.3. California, USA (2015)

California (CA) typically receives most of its annual precipitation
during the winter season (November through April). However,
the 2013/2014 winter season was the 6th driest since 1985 (Seager
et al., 2015). Furthermore, the 2011–2014 3-year winter average
precipitation and air temperature were the 2nd lowest and the
warmest, respectively, on record since 1985 (Vose et al., 2014;
Seager et al., 2015). Anomalously high temperatures intensified
a RZSM deficit by increasing the amount of soil water lost
to evapotranspiration. According to the US Drought Monitor
(https://droughtmonitor.unl.edu/), as of early April 2015, 44%
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FIGURE 2 | According to the United States Drought Monitor, percent area of CA, USA facing drought conditions between 2009 and (early) 2019. D4 Exceptional

Drought, D3 Extreme Drought, D2 Severe Drought, D1 Moderate Drought, and D0 Abnormally Dry Data Source: US Drought Monitor (https://droughtmonitor.unl.edu/

Data.aspx).

TABLE 1 | USDA-FAS 2018 Winter Wheat Monthly Crop Statistics.

Report date Crop Harvested area Expected yield

July 2018 ↑3% ↓2% ↑5%

September 2018 ↓6% ↓10% Same as last year

October 2018 ↓13% ↓10% 18% below the 5-year average

November 2018 ↓18% ↓12% 21% below the 5-year average

December 2018 ↓20% ↓18% 17% below the 5-year average

↑ and ↓ indicate % up and down from last year. The specific CIR and WAP Circular Series

can be found at https://ipad.fas.usda.gov/search.aspx.

of CA was experiencing exceptional drought conditions (D4 on
the Drought Monitor severity scale). This percentage increased
to almost 47% by mid-May (Figure 2). Thus, 2015 was the fourth
year of profound multi-year drought event.

CA is one of the major agricultural areas in the US.
Commodities grown in the area are diverse and include a large
variety of fruits, nuts and vegetables—as well as additional field
crops (https://www.nass.usda.gov/Quick_Stats/Ag_Overview/
stateOverview.php?state=CALIFORNIA). An important
characteristic of CA agriculture is its heavy reliance on irrigation,
which supports the growth of high-value cash value crops such
as nuts and vegetables. As a result, the state of CA has the largest
number of acres of irrigated farmed land in the U.S. (Johnson
and Cody, 2015). According to the California Department of
Water Resources, about 41% of total water withdrawals in the
state are allocated for irrigated agriculture (based on 2010 data).
Therefore, plant growth is not solely dependent on precipitation
and inter-annual differences in crop productivity are often
buffered. For example, during 2009–2012 (a low drought stress
period) and 2014–2017 (a high drought stress period) 4-year
almond yield averaged were nearly identical (i.e., 2,215 and 2,105
lb/acre, respectively based on the USDA-NASS survey program,
https://quickstats.nass.usda.gov/). This lack of inter-annual
variability highlights the importance of irrigation in CA and its

ability to moderate drought impacts on plant growth and lower
agricultural crop productivity.

4. RESULTS

Our analysis focuses on exploring the agreement between
PM RZSM products (acquired both with and without SMAP
data assimilation) with independent estimates of rainfall and
vegetation health captured by CHIRPS and GIMSS MODIS
NDVI, respectively. For all three locations over the entire
SMAP data record (March 31, 2015 onward), time series of
the standardized anomalies of PM-only RZSM (PM∗), EnKF-
based RZSM (ENKF∗), precipitation (CHIRPS∗), and vegetation
health (NDVI∗) standardized anomalies are shown in Figure 3.
In addition, temporal correlations between CHIRPS∗ and both
PM∗ and ENKF∗ RZSM time series are summarized in Figure 4.

The convergence of evidence approach employed by the
USDA-FAS crop analysts is based on evaluating current crop
status relative to some expected normal level using a variety
of geospatial variables linked to agricultural productivity (e.g.,
precipitation, air temperature, RZSM, and NDVI). As shown
in Table 1, USDA-FAS crop statistics and yield forecasts are
reported relative to either the previous year or the most-recent
5-year average. Figure 5 shows monthly changes in RZSM and
NDVI during the 2015–2018 growing season. The gray line
represents normal conditions, while the green/blue colored lines
show the inter-annual deviation of these variables for a specific
year relative to normal. A comparable analysis, performed in
near-real-time, can be found on the USDA-FAS Crop Explorer
web portal (https://ipad.fas.usda.gov/cropexplorer/Default.aspx).

Note that the plots for the Western Cape and NSW reflect
the austral winter crop growing season (roughly November to
May). Spatial variability in ENKF∗ RZSM, PM∗ RZSM, CHIRP∗

precipitation, and NDVI∗ standardized anomalies over South
Africa, Australia and the western half of the United States are
shown in Figures 6–8. Specific results for each of our three case
study events are summarized in the next three sub-sections.
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FIGURE 3 | Time series of monthly standardized RZSM anomalies (ENKF* and PM*), precipitation anomalies (CHIRPS*), and vegetation status anomalies (NDVI*) for

the Western Cape, South Africa (column 1), NSW, Australia (column 2), and CA, USA (column 3) domains shown in Figure 1. Black boxes highlight periods of time

where SMAP assimilation had a notable impact on RZSM* results. Values represent domain averages.

4.1. Western Cape, South Africa
Time series of the Western Cape ENKF∗ RZSM, PM∗ RZSM,
CHIRPS∗ precipitation, and NDVI∗ in Figure 3 indicate
generally good agreement between both RZSM standardized
anomaly products and between each RZSM product and
precipitation (CHIRPS∗). However, assimilation of SMAP
data (used to generate ENKF∗ results) introduces additional
temporal variability not captured by the original model-only
PM∗ product—see the black outlined boxes in Figure 3. This
added variability is in close agreement with observed temporal
variations in CHIRPS rainfall and results in the ENKF∗ product
demonstrating enhanced temporal correlation, as compared to
model-only PM∗ results, vs. the CHIRPS∗ precipitation baseline
(see Figure 4).

The impact of SMAP data assimilation is also evident in
Figure 5 where PM∗ results reflect very dry soil moisture

conditions and negligible inter-annual variability. The
SMAP-based ENKF∗ results for 2016 and 2018 both show
additional information resulting in a slight seasonal peak
that is more consistent with the NDVI data. 2017 is the
driest year since 1981 (based on CHIRPS data record)
in terms of soil moisture over the Western Cape, South
Africa (Figure 5 cyan colored line displays the results
for 2017).

Spatial variability in RZSM (PM∗ and ENKF∗), precipitation
(CHIRPS∗), and NDVI∗ anomalies over South Africa for two
growing seasons (2016 and 2017) are shown in Figure 6. All
data sets accurately identify the 2017 growing season as the
drier of the two. Drought conditions reach their peak between
July and September. Nevertheless, PM∗ and ENKF∗ results show
different spatial patterns (in e.g., October 2016, May-July 2017,
and October 2017). In particular, ENKF∗ more closely adheres
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FIGURE 4 | Temporal agreement between monthly standardized RZSM anomalies (ENKF* and PM*) and precipitation anomalies (CHIRPS*) over all three study

regions. Dark gray and light gray colored bars show sampled correlation between CHIRPS* and ENKF* and CHIRPS* and ENKF*, respectively. Error bars reflect 95%

confidence intervals for these sampled correlations. Z-test statistics at α = 0.10 indicated that the R values computed with and without SMAP over NSW and South

Africa are significantly different.

to spatial variability displayed in CHIRPS anomalies—suggesting
that the assimilation of SMAP observations is correcting for
spatially erroneous rainfall information used to generate the
model-only PM∗ product. This is especially clear in the May-
July 2017 imagery where PM∗ results contain an obvious spatial
artifact (indicated by the bright blue circular pattern in Figure 6)
in northern South Africa. This artifact originates in the USAF
precipitation data and propagates into PM-based RZSM soil
moisture estimates. However, the assimilation of SMAP soil
moisture retrievals properly filters such spurious patterns and
recovers spatial information that is comparable with the spatial
patterns captured in the CHIRPS precipitation data.

NDVI also shows that vegetation conditions worsen during
the 2017 growing season. However, the spatial pattern of
NDVI∗ does not correlate perfectly with comparable CHIRP∗

and NDVI∗ patterns. This is most likely due to a temporal
lag in response between the change in plant status and the
change in water supply—which can complicate the use of
RZSM/NDVI anomaly correlation as an evaluation metric for
RZSM time series.

4.2. New South Wales, Australia
RZSM∗, NDVI∗, and CHIRPS∗ time series within New South
Wales, Australia (NSW; see Figure 3) show good agreement

between the RZSM∗ products and between each RZSM∗

product and CHIRPS∗ precipitation. Nevertheless, black boxes
in Figure 3 (second column), highlight examples where the
ENKF∗ (generated via the assimilation of SMAP soil moisture
products) corrects model-only PM∗ results in a way that
better reflect spatial CHIRPS∗ patterns. As in the Southern
African case, the total temporal agreement between ENKF∗

and CHIRPS∗ is higher than that sampled between PM∗ and
CHIRP∗ (Figure 4)—indicating that SMAP data assimilation
is successfully filtering the impact of precipitation errors in
PM∗ results. However, it should be noted that the correlation
improvement seen in Figure 4 is relatively small.

Based on the seasonal change in RZSM and NDVI, 2018
can clearly be identified as the worst year in the 2015–
2018 SMAP data record for RZSM and vegetation status in
the NSW (see Figure 5—the blue line displays results for
2018). In addition, Figure 5 show large interannual variability,
which is slightly reduced by the assimilation of SMAP soil
moisture (narrower blue error bars, which represent the monthly
standard deviation for the ENKF product in the 2015–2018 time
period). Figure 7 shows the spatial variability in PM∗, ENKF∗,
NDVI∗, and CHIRPS∗ anomaly patterns over Australia. Overall,
the assimilation of SMAP soil moisture improves the spatial
coherence between the modeled-based RZSM and CHIRPS
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FIGURE 5 | Monthly change in actual soil moisture [m3/m3 ] and NDVI [–] over the growing season over 2015–2018 time period. Gray line represents the normal

(average) conditions, while the green and blue colored lines show the annual deviation of these variables relative to the normal. Values represent domain averages. The

plots for the Western Cape, South Africa and NSW, Australia reflect the winter crop growing season as specified in the USDA-FAS CIR and WAP briefs cited in this

paper.

precipitation anomalies. Furthermore, the decline in RZSM over
the NSW region during the 2018 austral winter growing is clearly
captured by both the PM∗ and ENKF∗ products—as well as
in the precipitation anomalies. NDVI∗ results show a generally
similar trend.

The NSW received badly needed rainfall in October-
November 2018. However, the impact of this rainfall is not
reflected in an observed increase in NDVI. This is expected
since this period of rainfall occurred late in the growing
season and coincided with the harvesting period for winter
wheat. In addition, during the 2016 growing season, there
is a disagreement between the vegetation conditions and
precipitation. 2017 begins with above-average rainfall. For
example, the Australian Government Bureau of Meteorology
reported that the precipitation for the months of January-April
2017 was at or above average and dropped substantially below
average only during the month of May (http://www.bom.gov.
au/climate/current/statement_archives.shtml). This agrees with

the CHIRPS precipitation. Thus, the relatively good vegetation
status in May 2017 (see Figure 7) is most likely due to adequate
water availability prior to the start of the growing season. As
such, it demonstrates the temporal lag discussed above between
changes in moisture conditions and its potential delayed impact
on vegetation status. This is also confirmed by the decline in
vegetation status as a result of the decline in RZSM over the
agricultural areas observed later in the growing season (i.e.,
Victoria, along the coast in South Australia, the eastern half of
NSW, the south-eastern corner of Queensland, and the south-
western corner of Western Australia).

4.3. California, USA
Relative to the South African and Australian results discussed
above, comparisons between PM∗ and ENKF∗ RZSM time series
reveal only a minor impact of SMAP data assimilation on RZSM∗

in CA (Figure 3). This is almost certainly due to the relatively
higher quality of the USAF precipitation forcing data over the
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FIGURE 6 | Monthly PM*/ENKF* RZSM, CHIRPS*, and NDVI* anomalies over the Western Cape in South Africa for the 2016 (A) and 2017 (B) austral winter crop

growing season.
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FIGURE 7 | Monthly PM*/ENKF* RZSM, CHIRPS*, and NDVI* anomalies over Australia for the 2017 (A) and 2018 (B) austral winter crop growing season.
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United States and our approach of parameterizing the model
error—and thus the impact of SMAP soil moisture assimilation—
in rain-data-rich areas like the United States. Based on the
monthly change in actual soil moisture and NDVI over the
CA growing season (Figure 5), PM, ENKF, and NDVI results
all show similar seasonal behavior and minimal interannual
variability In addition, no discernible SMAP data assimilation
impact emerges (that is, no difference between PM and ENKF
results). As mentioned above, most of the agriculture in CA is
irrigated, which may explain the difficulty of isolating drought
events in NDVI∗ and ENKF∗ time series results. Nevertheless,
2015 was the 4th year of multi-year drought period. Precipitation
amounts during the preceding winter season were much below
average. Early on during the 2015 growing season (April-May)
soil moisture and vegetation conditions were below normal
(Figure 5 light green colored line displays the results for 2015).
However, as the growing season develops, irrigation supported
by the extraction of groundwater causes RZSM and NDVI values
to return back to normal.

Figure 8 maps PM∗ and ENKF∗ over the Western
United States and CA for the months of April for the 2015–
2018 period. As anticipated, results illustrate that April 2015
RZSM levels were lower than those in other years. In addition,
over the Western United States in general, spatial patterns
in ENKF∗ run for the month of April appear to be more
consistent with CHIRPS precipitation anomalies than baseline
PM∗ results lacking SMAP assimilation. Therefore, while SMAP
assimilation adds little to time series of spatial averages (see
Figure 5), it does appear to improve the accuracy of RZSM∗

spatial patterns.

5. DISCUSSION

In general, both the PM and ENKF RZSM products properly
represent the drought events targeted in this paper. However,
close comparison between the PM and ENKF results reveal
certain key differences (see Figures 3, 6–8). Several anomaly
changes are seen in the ENKF product run that are not evident

FIGURE 8 | Monthly PM*/ENKF* RZSM, CHIRPS*, and NDVI* anomalies over the western United States for the month of April for the 2015–2018 period.
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in the PM model run (see boxes in Figure 3). These changes
reflect periods of missing precipitation events and, therefore,
inadequate PM-only RZSM anomaly response. However, inmany
cases, the assimilation of SMAP soil Level 2 SM data adequately
compensates for missing rainfall and/or misrepresented rainfall
events, and ENKF RZSM results demonstrate better temporal
agreement with baseline CHIRPS data. Furthermore, SMAP
properly adjusts the model spatial variability and makes it more
in line with the spatial variability captured by CHIRPS (see
Figures 6–8). The increase in correlation values in Figure 4 is
the largest for South Africa followed by NSW. Overall, results
demonstrate the value of SMAP and its potential to improve the
USDA-FAS crop forecasting system.

The relationship between NDVI and PM and ENKF RZSM
estimates are also examined. However, due to lagged nature of
the RZMS/NDVI relationship and the tendency for irrigation to
de-coupled NDVI and RZSM anomalies in agricultural areas, the
vegetation-weather relationship is not always straightforward,
which makes it difficult to interpret NDVI behavior relative to
the soil moisture and precipitation (Figures 6–8) and estimate
the anticipated drought impact on crop growth and yield.
Nevertheless, the NDVI anomaly response captured in Figures 3,
5 follows the general pattern evident in the RZSM results. Soil
moisture responds rapidly and instantaneously to rainfall and the
changes in soil moisture conditions occur almost simultaneously.
However, changes in vegetation status is somewhat delayed
since plants employ coping mechanisms to deal with water and
heat stress. Therefore, crop status will not change in response
to an intermittent rainfall event during a period of extended
below normal precipitation conditions. Likewise, crops may
not recover after prolonged drought and the NDVI response
may remain negative during above average precipitation period
following a drought. This pattern is observed over drought
conditions in NSW between mid-2018 and early 2019. While a
small positive spike in rainfall is recorded at the very end of
2018, the NSW NDVI∗ series remains negative indicating poor
vegetation health through the whole period. These dynamics
illustrate the difficulty of verifying RZSM dynamics using
NDVI alone.

6. SUMMARY AND IMPLICATIONS

This paper focused on a data assimilation system designed
to enhance the USDA-FAS root-zone soil moisture (RZSM)
information via the assimilation of SMAP Level 2 surface soil
moisture retrievals into the USDA-FAS Palmer model (PM).
The resulting PM+SMAP assimilation system is one of the first
operational systems to use SMAP data products in a decision
support context (Mladenova et al., 2019).

Overall, results demonstrated the benefit of assimilating
SMAP and confirmed its potential to improve the USDA-
FAS RZSM information generated by the Palmer model. The
satellite-based observations were able to enhance the spatial
variability of the PM root-zone soil moisture, adjust the model
performance and make its response more coherent with the
CHIRPS precipitation.

As discussed above, drought is a complex phenomenon.
Vegetation growth is directly dependent on the amount of
water present in the root-zone; however, RZSM is not the
sole factor determining crop health and yield formation. RZSM
monitors only one aspect of the drought manifestation (i.e., water
deficiency) and as our NDVI analysis demonstrated, exploiting
this information to predict future change in crop health may
be challenging. The complex plant-weather relationship and
the adaptive mechanism plants have to handle environmental
stresses complicate direct inter-comparisons between NDIV and
SM and precipitation. Our NDVI-based results showed some
temporal offset between the soil moisture and NDVI responses
to drought; however, this relationship was not immediately
apparent and varied between sites. This indicates that the use
of root-zone soil moisture dynamics to verify and predict NDVI
variability is not straightforward and requires further study.
One possible approach would be to consider a more complex
methodology, where the precipitation driven variability in RZSM
is evaluated relative to air temperature, water levels, snow melted
water, wind speed, etc.

SMAP began operational data production in early 2015 and
the SMAP data record is still relatively short. This complicates the
calculation of interannual anomalies. Despite this complication,
the analyses presented here demonstrate that the ENKF data
outperform the PM-only run and that SMAP adds additional
variability and information, which effectively improves the
quality of RZSM information operationally available to the
USDA-FAS. However, the short duration of the operational
passive-based satellite sensors such as SMAPmakes it challenging
to set up a stable data assimilation system, compute dependable
climatological anomalies and sample statistically significant
differences in performance metrics.

One of the main assumptions of data assimilation is that
the systematic differences between the model and the satellite
observations are accounted for prior to assimilation. This is often
achieved using long-term, climatology-based statistical rescaling
techniques. Furthermore, while a large number of approaches are
applied to detect and track drought, the most commonly used
indices are anomaly-based (Keyantash and Dracup, 2002; Mishra
and Singh, 2010). Along with SMAP, there have been several
other passive-based global systems that have and/or currently
provide global soil moisture observations, i.e., the Advanced
Microwave Scanning Radiometer (AMSR-E operational between
2002 and 2010 and its successor AMSR2 launched in 2012) and
Soil Moisture Ocean Salinity (launched in 2010). Combing these
missions within a single data assimilation framework would allow
for the generation of a consistent long-term RZSM database for
USDA-FAS using the existing satellite-enhanced Palmer model
and satellite-based retrievals acquired from AMSR-E, AMSR2,
SMOS and SMAP.

RZSM and NDVI are essential parts of the USDA-FAS data
repository. As clarified, RZSM provides information on the
plant available water, while NDVI provides valuable vegetation
related information such as vegetation dynamics, crop health
and phenology. Therefore, RZSM and NDVI are both key
components of the USDA-FAS’s CADRE data management
system and play a central role in the agency’s cropmonitoring and
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yield forecasting analysis. RZSM and NDVI show a somewhat
lagged agreement (in time) and appear to provide complimentary
information-since the value of each variable for crop monitoring
changes throughout the growing season (Peled et al., 2010;
Bolten and Crow, 2012; Han et al., 2014; Mladenova et al.,
2017). Better knowledge of the RZSM-NDVI relationship, and
proper understating of its temporal variability as a function of
crop growth stages, would enhance our ability predict potential
change in crop health due to agricultural drought using RZSM
information, which, in turn, would aid and improve the yield
forecasting. This relationship and its potential to predict change
in crop health and the generation of a combine NDVI-RZSM
index for drought monitoring and yield forecasting have not been
fully explored yet. Filling this gap is a logical next step.
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