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Abstract
There are limited options for intravenous anesthetics and a lack of available information on the use of
ketamine infusion during intracranial surgeries. We present a patient case report of hyperlactatemia during
a craniotomy with neuromonitoring while on a propofol infusion with arterial lactate rising from 2.1 mmol/L
to a peak of 5.0 mmol/L before reducing to 3.9 mmol/L after the transition to a mixed ketamine and
dexmedetomidine infusion in order to maintain neuromonitoring quality and an appropriate depth of
anesthesia. No complications were caused by the use of ketamine during this extended neurosurgery case.
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Introduction
Anesthetic management of neurosurgical cases that involve neuromonitoring requires strict maintenance of
anesthetic depth, hemodynamic control, surgical field optimization, and rapid wake-up to facilitate
neurologic examination. Volatile anesthetic gases interfere with the integrity of neuromonitoring signals [1],
so intravenous anesthetics are needed to maintain the patient’s anesthetized state. Disruptions in
neuromonitoring integrity put patients at risk of developing post-operative complications [2]. Propofol is
essential to modern IV neuroanesthetics. The anesthetic depth can be interpreted through neuromonitoring
channels used to monitor surgical integrity [3] and no clear alternative matching propofol’s anesthetizing
properties is readily available. We present a case in which a patient undergoing cranial tumor resection
developed hyperlactatemia and describe how we approached the transition of anesthetic management intra-
operatively. Written consent for this case was obtained from the patient. This manuscript adheres to the
applicable EQUATOR guidelines.

Case Presentation
A 43-year-old, 104 kg man underwent a planned right-sided craniotomy for resection of metastatic
melanoma metastases to the brain. The patient previously experienced uneventful surgical resections of
melanoma lesions on his left arm in 1997 and 1999. Pre-operative imaging identified numerous presumed
metastatic melanoma lesions in the patient’s left hilum, pancreatic neck, multiple subcutaneous soft tissue
nodules, multiple osseous vertebral lesions, and his right cingulate gyrus. He was otherwise physically fit
and active, with minimal symptoms related to his metastatic cancer except for headaches and dizziness, and
was not taking any medications. He had no known drug allergies, and his pre-operative examination and
laboratory findings were unremarkable.

Induction of anesthesia was performed with 2 mg/kg propofol, 1 mcg/kg fentanyl, 1 mg/kg lidocaine, and 0.6
mg/kg rocuronium (Table 1).
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Time (nearest 15 min) Event pH Lactate (mmol/L) PaCO2 (mm Hg) Bicarbonate (mEq/L)

8:00:00 AM Anesthesia start – – – –

9:00:00 AM Initial incision 7.40 2.1 42 26.1

10:00:00 AM – 7.41 3.0 38 24.3

11:00:00 AM – 7.46 3.8 30 21.3

11:30:00 AM – 7.49 5.0 27 20.8

11:45:00 AM Propofol discontinued. Ketamine and dexmedetomidine infusions initiated – – – –

12:30:00 PM – 7.51 4.9 26 21

1:30:00 PM – 7.48 4.4 29 21.4

1:45:00 PM Neuromonitoring discontinued. Intravenous anesthetics discontinued – – – –

2:30:00 PM – 7.42 3.9 36 22.9

3:00:00 PM Surgery end – – – –

3:30:00 PM Patient extubated. Neurological examination completed. – – – –

TABLE 1: Timeline of events and arterial blood gas.
min: minutes; pH: potential of hydrogen.

In addition to standard American Society of Anesthesiology (ASA) monitors, an arterial line was placed to
monitor PaCO2 for hyperventilation brain relaxation, and electrophysiological neuromonitoring was

established to monitor somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), and
electroencephalogram (EEG). Anesthetic maintenance was achieved with partial intravenous anesthetic,

administering 100-150 mcg/kg−1 min−1 of propofol with 0.1-0.3 mcg/kg−1 h−1 sufentanil and isoflurane
maintained at 0.4% end-tidal concentration. This is a standard anesthetic maintenance mix for this
institution when patients require neuromonitoring and paralysis cannot be maintained. Approximately one
hour after induction, an arterial blood gas (ABG) demonstrated expected values except for lactate of 2.1
mmol/L (Table 2); no baseline lactate was available for comparison. Routine serial ABGs to titrate PaCO 2

demonstrated a persistently increasing lactate level, eventually peaking at 5.0 mmol/L about four hours into
the surgery.
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Measure

Time

9:00 AM 10:00 AM 11:00 AM 11:30 AM 12:30 PM 1:30 PM 2:30 PM

pH 7.40 7.41 7.46 7.49 7.51 7.48 7.42

PO2 (mmHg) 126 86 110 96 82 114 158

PCO2 (mmHg) 42 38 30 27 26 29 36

Total hemoglobin (g/dL) 14.6 14.4 13.2 13.8 14.2 13.5 13.0

Hematocrit (%) 44.7 44.3 40.6 42.2 43.5 41.3 40.0

Potassium (mmol/L) 4.4 4.4 4.4 4.3 4.1 4.0 4.0

Sodium (mmol/L) 138 135 132 135 139 141 142

Ionized calcium (mmol/L) 1.18 1.18 1.10 1.14 1.13 1.12 1.12

Chloride (mmol/L) 103 102 102 104 106 109 109

Glucose (mg/dL) 116 113 105 115 129 125 121

HCO3 (mmol/L) 26.1 24.3 21.3 20.8 21 21.4 22.9

Base excess 1.2 −0.3 −2.4 −2.6 −2.1 −2.0 −1.6

Lactate (mmol/L) 2.1 3.0 3.8 5.0 4.9 4.4 3.9

TABLE 2: Complete arterial blood gas measurements.
pH: potential of hydrogen.

Explanations for the rising lactate level were investigated. The patient’s blood pressure was sustained within
the normal range (105 to 140 systolic and 60 to 80 diastolic) without vasoactive medication support. Fluid
input/output was robust throughout the case, with 1.5 liters of urine and two liters of crystalloid
administered at the time of peak lactate level was recorded. Over the course of the eight-hour surgery, three
liters of urine were produced and five liters of crystalloid were administered, in addition to 1 mg/kg of
mannitol for brain relaxation. Both intraoperative triglycerides and creatinine kinase were measured to
investigate the possibility of propofol infusion syndrome (PRIS) developing; both laboratory values were
within normal limits (122 mg/dL and 34 U/L, respectively). Bleeding was minimal, with approximately 150
mL of total blood loss recorded by the end of the surgery. The patient’s extremities were examined for signs
of hypoperfusion or compression, but no evidence of this was seen. He had no known source of infection,
and his pre-operative white blood cell count was within normal limits. Neuromonitoring was being utilized,
and an EEG examination showed no evidence of seizure or other unexpected activity (Figure 1A). As our
patient had no indication of systemic hypoperfusion as a cause of his rising lactate, our consideration then
turned to the use of propofol infusion as a possible source of the rising lactate.
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FIGURE 1: EEG waveform activity before and after the transition of
anesthetic infusions.
(A) EEG reading from approximately one hour before propofol discontinuation (propofol rate of 100 mcg/kg/h).
This activity is of moderate to low amplitude with a dominant delta-theta (4-6 Hz) frequency background,
consistent with a continuous sleep state induced by propofol. (B) EEG reading from approximately one hour after
conversion to ketamine (8 mg/kg/h) + dexmedetomidine (1 mcg/kg/h) infusions. This activity is of moderate
amplitude with a dominant theta frequency (6-7 Hz) background and well-defined intermittent beta activity; theta
dominance is characteristic of ketamine’s effect on EEG, and the beta activity reflects dexmedetomidine’s induced
sleep-like state.

In order to maintain neuromonitoring fidelity, a total inhaled anesthetic had to be avoided. In lieu of

propofol, we opted to substitute a ketamine infusion at 8 mcg/kg−1 min−1 with a dexmedetomidine infusion

at 1 mcg/kg−1 h−1 and continue the sufentanil infusion. After discontinuing propofol, the patient’s lactate
declined steadily over the remaining four hours of surgery, with the final intraoperative lactate at 3.9
mmol/L.

Intraoperative neuromonitoring displayed a change in our patient’s EEG from a continuous sleep state
indicated by dominant delta-theta frequency with moderate to low amplitudes (Figure 1A, one hour prior to
medication transition), to waveforms of dominant theta frequency and intermittent beta activity with
moderate amplitudes (Figure 1B, one hour after medication transition). This is consistent with the transition
from propofol to a combination of ketamine and dexmedetomidine.

Towards the end of the surgery, when neuromonitoring was no longer indicated, intravenous anesthetics
were discontinued, and inhaled isoflurane was used for the remainder of the surgical case. Within 25
minutes of the surgery ending, the patient was safely extubated after meeting all extubation criteria. Within
10 minutes after presenting to the post-anesthesia care unit (PACU), the patient was awake and following
directions with normal neurologic function. The patient was observed overnight in the ICU, transferred to a
floor room on post-operative day 1, and discharged on post-operative day 3. There were no complications,
and he denied any unpleasant experiences or memories.
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Discussion
We present the case of suspected propofol-induced hyperlactatemia during a craniotomy with
neuromonitoring requirements and the transition to the use of a ketamine and dexmedetomidine infusion
to preserve neuromonitoring quality.

Lactate is an important marker of tissue hypoxia and metabolic dysfunction that is associated with poor
outcomes in critically ill and specifically neurosurgical patients [4,5]. Initially, we evaluated intraoperative
systemic causes of hyperlactatemia related to end-organ hypoperfusion. There were no signs of active
infection (previous laboratory studies were within normal limits and the patient was afebrile). Intraoperative
monitoring of cardiac activity was normal; the patient received appropriate intraoperative fluid resuscitation
and did not require vasoactive medications while maintaining normal urine output. The patient’s
positioning and padding appeared adequate to prevent significant localized ischemic pressure injury.
Though ischemia may also be induced by surgical retraction of the brain and surrounding tissue, it is
unlikely to cause such a continuous and significant rise in lactate levels. End-tidal carbon dioxide
monitoring was not significantly elevated to indicate a hypermetabolic state, and neuromonitoring did not
show any evidence of seizure activity (Figure 1A).

After consideration of the possible causes of intraoperative hyperlactatemia, we focused our attention on
the propofol infusion as a possible source of our patient’s rising lactate levels. PRIS did not match our
clinical scenario as it typically occurs with prolonged infusions greater than 48 hours and with high infusion

dosing >4 mg/kg−1 h−1. In addition to metabolic acidosis, a diagnosis of PRIS requires cardiac abnormalities
such as bradycardia or asystole, along with rhabdomyolysis, hyperlipidemia, or myoglobinuria [6,7]. Only
hyperlactatemia occurred in our patient; triglycerides and creatinine kinase were within normal limits.

In addition, propofol-induced hyperlactatemia not matching PRIS has been documented in a few other case
reports and a limited number of studies [8,9]. The consequences of this isolated hyperlactatemia are less
severe than PRIS but have been shown to be associated with prolonged hospitalizations after neurological
surgeries, extended intubation, organ failure, and, in some studies, increased mortality [5,10,11]. Although
far from being a definitive cause, the relationship between propofol infusion and the patient’s
hyperlactatemia was supported by a decline in serum lactate after discontinuation of propofol.

Once we decided propofol was the most likely source of the patient’s hyperlactatemia, and out of concern
for potential consequences of continued elevated lactate, an alternative anesthetic agent was needed. The
decision of which anesthetic drug to use as an alternative to propofol involves consideration of a drug that is
easily titratable, allows reasonably fast emergence, has little impact on increased intracranial pressure
(ICP), and has minimal side effects. An etomidate infusion was considered but dismissed out of concern for
adrenal suppression with the prolonged infusion. Dexmedetomidine was deemed insufficient to maintain
anesthetic depth alone given the need for complete patient immobility and the long context-sensitive half-
time, although it does have the possible benefit of lowering ICP [12]. Barbiturates were not available at our
institution. Midazolam would not facilitate a fast wake-up after surgery to provide a neurologic exam, and
reversal with flumazenil could induce a seizure.

Of the available alternatives, ketamine is the most easily titratable, provides an emergence time similar to
propofol, and has the added benefit that it would enhance neuromonitoring signals [13,14].

Potential negative effects of ketamine include increased intracranial pressure (ICP) and cerebral metabolic
rate of oxygen (CMRO2). Despite the common association of ketamine with elevated ICP and CMRO 2, these

physiologic effects have not been observed in multiple studies. In fact, ketamine administration has been
associated with a reduction of ICP and CMRO2 in numerous studies [15-17].

A more likely concern from ketamine administration was post-operative delirium or disinhibition interfering
with neurologic assessments. Currently, there is no clear guidance on an appropriate ketamine infusion dose
to maintain immobility during a general anesthetic case. We opted to use a ketamine dose of 8

mcg/kg−1 min−1, providing approximately 50 mg/h of ketamine to our patient. The intravenous anesthetic

was supplemented with dexmedetomidine at 1 mcg/kg−1 h−1 and was then decreased to 0.5 mcg/kg −1 h−1

over two hours. The observed EEG changes described in Figure 1 are consistent with the transition from
propofol to a combination of ketamine and dexmedetomidine: one hour before discontinuing propofol, EEG
activity demonstrated a continuous sleep state (delta-theta dominance) associated with propofol infusion;
one hour after the transition, EEG demonstrated an induced-sleep-like state with beta activity consistent
with dexmedetomidine’s effects and theta dominance consistent with ketamine’s effects. Our patient was
extubated in a timely fashion and was able to participate in a neurological examination immediately upon
presenting to the post-operative recovery unit. He had an uneventful hospitalization and an efficient
discharge home.

Conclusions
Hyperlactatemia during neurosurgical cases has the potential to negatively affect patient outcomes. When
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all other possible sources of our patient’s rising lactate were ruled out, we decided to transition from a
propofol infusion to a mixed ketamine-dexmedetomidine infusion to maintain the intravenous anesthetic
needed to preserve intraoperative neuromonitoring while safely maintaining the patient’s anesthetic depth.
This combined ketamine-dexmedetomidine infusion was well tolerated by the patient: lactate trended down,
no complications were observed, and a rapid post-operative examination was achieved.

Given the limited alternatives for intravenous anesthetics and the lack of available information on the use of
ketamine infusions in complex and delicate neurosurgical scenarios, we hope our experience can provide
guidance for other anesthesia providers. Further research is warranted to determine other dosing regimens
as well as the impact of ketamine infusion on neurosurgical patient outcomes.
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submitted work. Financial relationships: All authors have declared that they have no financial
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relationships or activities that could appear to have influenced the submitted work.
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