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The utility of allogeneic hematopoietic stem cell transplantation is limited by graft-versus-host disease (GVHD), a
significant cause of morbidity and mortality. Patients with GVHD exhibit cutaneous manifestations with
histological features of interface dermatitis followed by scleroderma-like changes. JAK inhibitors represent a
class of immunomodulatory drugs that inhibit signaling by multiple cytokines. Herein we report the effects
of tofacitinib in a murine model of GVHD. Oral administration of tofacitinib prevented GVHD-like disease
manifested by weight loss and mucocutaneous lesions. More importantly, tofacitinib was also effective
in reversing established disease. Tofacitinib diminished the expansion and activation of murine CD8 T cells
in this model, and had similar effects on IL-2-stimulated human CD8 T cells. Tofacitinib also inhibited the expre-
ssion of IFN-g-inducible chemoattractants by keratinocytes, and IFN-g-inducible cell death of keratinocytes.
Tofacitinib may be an effective drug for treatment against CD8 T-cell–mediated mucocutaneous diseases
in patients with GVHD.
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INTRODUCTION
Allogeneic hematopoietic stem cell transplantation has revolu-
tionized the treatment of an array of disorders ranging from
malignancy, autoimmune diseases, and primary immunodefi-
ciency syndromes (Ringden and Le Blanc, 2005; Ikehara, 2010;
Roifman, 2010). However, its utility is principally limited by the
morbidity and mortality associated with graft-versus-host
disease (GVHD; Ferrara et al., 2009; Blazar et al., 2012).
Although recent developments have reduced the incidence of
GVHD, there are only a few effective treatment modalities.

GVHD is a complex disorder that can be divided into acute
and chronic forms. Skin is the most frequently affected organ. The
rash seen in acute GVHD patients can be maculopapular, blis-
tered, or ulcerated, reflecting histological features characterized
by liquefaction degeneration of the basal epidermal layer (Ferrara

et al., 2009). GVHD is a primarily T-cell–mediated complication
that results from the activation of donor-derived T cells with a
resultant production of proinflammatory cytokines (Coghill et al.,
2011; Toubai et al., 2012). Earlier studies suggested that CD4
T cells are highly pathogenic, whereas CD8 T cells seemed to be
less important in disease pathogenesis (Palathumpat et al., 1995;
Chen et al., 2007; Yi et al., 2008). However, one clinical study
reported that depletion of CD8 T cells prevented GVHD after
bone-marrow transplantation (Maraninchi et al., 1988).

A variety of murine models of GVHD have provided insight
into immunopathogenic mechanisms and served as vehicles
for testing potential therapies (Schroeder and DiPersio, 2011).
To dissect the specific roles of CD8 T cells in GVHD and other
autoimmune skin diseases, we generated a transgenic mouse
that involves the expression of chicken ovalbumin (OVA) in
skin and mucosal epithelium under control of the keratin-14
promoter (keratin 14 promoter-membrane OVA transgenic
(K14-mOVA) mouse). After adoptive transfer of transgenic
T cells (OT-I cells) that express a TCR for the CD8-epitope of
OVA (SIINFEKL), recipient K14-mOVA mice develop erosive
skin and mucosal lesions along with weight loss, clinically
resembling GVHD (Shibaki et al., 2004; Miyagawa et al.,
2010). Thus, our model better represents the mucocutaneous
features of GVHD rather than of full-blown systemic GVHD.

As various cytokines activate the intracellular signaling
cascade in JAK/signal transducer and activator of transcription
pathway leading to enhanced transcription of a large number
of immunologically important molecules, JAKs have been
viewed as potential therapeutic targets for the development
of a class of immunosuppressive drugs (Pesu et al., 2008;
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O’Shea and Plenge, 2012). Tofacitinib is a first-generation JAK
inhibitor targeting JAK1 and JAK3 and to a lesser extent JAK2
(Karaman et al., 2008), and is now approved in the USA and
Japan for use in moderate to severe rheumatoid arthritis, and is
being studied for use in UC and psoriasis (Boy et al., 2009;
Kremer et al., 2012; Sandborn et al., 2012; Ports et al., 2013).
JAK3 is linked to the IL-2 receptor common g-chain-signaling
pathway and mediates the actions of IL-2, IL-4, IL-7, IL-9, IL-
15, and IL-21 (Johnston et al., 1994; Ghoreschi et al., 2009).
JAK1 is associated with receptors of type I/II IFNs and the
gp130 subunit–utilizing cytokines (Muller et al., 1993; Rodig
et al., 1998). A previous study showed that pre-treatment of
mice with tofacitinib limited immunopathology mediated by
the adoptive transfer of semiallogeneic bone marrow and CD4
T cells via the suppression of both proliferation and IFN-g
production by donor CD4 T cells (Park et al., 2010). In the
present study, we sought to determine the effect of tofacitinib
in a model of GVHD that uses the adoptive transfer of CD8 T
cells. Importantly, we found that tofacitinib not only prevents
GVHD-like disease in this murine model but that it also
reverses disease in mice that already have GVHD-like
symptoms. Tofacitinib had direct inhibitory effects on CD8
T cells and on target keratinocytes in this murine model of
mucocutaneous disease and differs from the semiallogeneic
bone marrow and CD4 T-cell–transferred model. Our data
suggest that treatment with tofacitinib may thus have a role in
the prevention and treatment of GVHD.

RESULTS
Tofacitinib prevents GVHD-like disease

To determine whether tofacitinib prevented CD8 T-cell–
mediated GVHD-like disease, K14-mOVA mice were treated
with tofacitinib orally twice daily (bis in die (BID)) at 50 or
12.5 mg kg–1 beginning on the same day as OT-I cell transfer.
As expected with this GVHD model, vehicle-treated control
mice showed progressive weight loss starting 4 days after
OT-I cell transfer and developed erosive skin and mucosal
lesions. One mouse died in the vehicle-treated group.
Although the higher dosage of tofacitinib (50 mg kg–1 BID)
completely prevented weight loss (Po0.01; two-way analysis
of variance (ANOVA) versus the vehicle group, Figure 1a), the
lower dose (12.5 mg kg–1 BID) had only a partial effect on
weight loss (Po0.01; two-way ANOVA vs. tofacitinib 50 mg
kg–1 BID group and vehicle group, Figure 1a). Vehicle-treated
mice developed crusted skin and mucosal lesions with
histological changes including infiltrating inflammatory cells,
exocytosis, and liquefaction degeneration of the basal epi-
dermal layer 2 weeks after OT-I cell transfer (Figure 1c and d).
Tofacitinib at both doses completely prevented the skin and
mucosal lesions and the corresponding histological changes
in the ears (Figure 1e–h).

Clinical scores assessed 2 weeks after OT-I transfer were
also significantly reduced by tofacitinib in a dose-dependent
manner (Figure 1b). The intermediate clinical scores in the
group receiving tofacitinib 12.5 mg kg–1 BID are attributable to
the significant weight loss that occurred in the absence of skin
and mucosal lesions. Consistent with all of these findings, we
found that the number of OT-I cells infiltrating the skin was

markedly reduced when tofacitinib was given at either dosage
(Supplementary Figure S1 online).

Tofacitinib inhibits OT-I cell activation and proliferation in
skin-draining lymph nodes (SDLNs) of mice with GVHD-like
disease

Serum levels for several cytokines, including IL-12, IL-4, IL-10,
and GM-CSF, were not different in tofacitinib-treated mice as
compared with vehicle-treated mice 5 days after OT-I cell
transfer (data not shown), whereas serum levels of IFN-g and
tumor necrosis factor-a were reduced in tofacitinib-treated mice
(Figure 2a). As OT-I cells in this murine model of GVHD are
expected to be the main producers of IFN-g and tumor necrosis
factor-a, for tracking purposes we transferred green fluores-
cence protein transgenicþ (GFPþ )OT-I cells into K14-mOVA
mice that were treated with either tofacitinib 50 mg kg–1 BID or
vehicle. We found that the frequencies of GFPþOT-I cells in
the SDLNs from mice treated with tofacitinib 50 mg kg–1 BID
were 50% less than those in vehicle-treated mice 4 days after
GFPþOT-I cell transfer (Figure 2b). Total cell numbers in
SDLNs were indistinguishable. Thus, tofacitinib selectively
inhibited the proliferation of transferred OT-I cells.

Analysis of GFP-gated populations revealed reduced cell-
surface expression of OVA-specific TCR (Va2 and Vb5) as well
as CD25 and slightly enhanced the expression of CD62L on
transferred OT-I cells in SDLNs from mice treated with tofacitinib
50mg kg–1 BID compared with OT-I cells in vehicle-treated
mice (Figure 2c). We also observed markedly reduced intracel-
lular IFN-g and tumor necrosis factor-a in the transferred OT-I
cells in mice treated with tofacitinib 50mgkg–1 BID versus
vehicle-treated mice (Figure 2d). Taken together, these results
indicate that tofacitinib impairs OT-I cell functions when
administered beginning on the same day as the OT-I cell transfer.

Tofacitinib directly inhibits murine and human CD8 T-cell
functions in vitro

To determine whether tofacitinib had direct effects on OT-I
cell proliferation, naive OT-I cells were co-cultured with
SIINFEKL-pulsed B6 splenocytes. The addition of tofacitinib
to culture wells inhibited the OT-I cell proliferation in a dose-
dependent manner (Figure 3a). To assess the effects of
tofacitinib on OT-I-mediated cytotoxicity, OT-I cells were
stimulated with SIINFEKL-pulsed B6 splenocytes, IL-2, and
IL-4 for 5 days with or without tofacitinib. The OT-I cells were
subsequently cocultured with EL-4 target cells pulsed with a
relevant peptide. We observed that activated OT-I cells were
cytotoxic for the target EL-4 cells, but not for non-pulsed EL-4
cells. Tofacitinib inhibited the development of cytotoxic OT-I
cells in a dose-dependent manner (Figure 3b).

Next, we performed in vitro assays using human peripheral
CD8 T cells cocultured with tofacitinib. CD8 T cells purified
from human blood were cultured with major histocompat-
ibility complex (MHC) IIþ peripheral blood cells pulsed with
tetanus toxoid or Candida albicans protein, or with recombi-
nant human IL-2. Human CD8 T cells proliferated vigorously
in response to antigen-specific stimulation and to IL-2, and the
proliferation was significantly inhibited by tofacitinib in a
dose-dependent manner (Figure 3c). Quantitative real-time
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reverse-transcriptase–PCR arrays show that tofacitinib pre-
vented the upregulation of mRNAs encoding IL-2-inducible
and cytotoxic T-cell–produced activation markers, including
IFN-g (IFNG), perforin (PRF1), granzyme B (GZMB), and other
molecules (Figure 3d, Supplementary Figure S2 online). These
results suggested that tofacitinib inhibits the activation and
proliferation of human and murine CD8 T cells.

Tofacitinib inhibits IFN-c-induced activation and apoptosis of
keratinocytes

One of the most marked effects of tofacitinib administration in
this GVHD model was the prevention of skin and mucosal
lesions. Keratinocytes are the main components of the epi-
dermis and secrete multiple chemokines, including CXCL9
and CXCL10, in response to IFN-g from recruited immune
cells such as CD8 T cells. In vivo studies demonstrated
that serum levels of CXCL9, an IFNg-inducible chemokine,
were significantly reduced in tofacitinib-treated mice with
GVHD-like disease in a dose-dependent manner (Figure 4a).

Chemokine mRNA expression in ear epidermal keratinocytes
of K14-mOVA mice 5 days after OT-I transfer was quantified
using a quantitative real-time reverse-transcriptase–PCR array.
The results normalized with internal control mRNAs are
presented as fold-changes relative to those of mice without
OT-I transfer. Quantitative real-time reverse-transcriptase–PCR
revealed a markedly enhanced expression of IFN-g-inducible
chemokine mRNAs encoding CXCL9 and CXCL10 in vehicle-
treated mice with GVHD-like disease, although non-IFN-g-
inducible chemokine mRNAs encoding CCL7 and CCL19
were unchanged. Tofacitinib 50 mg kg–1 BID treatment
selectively inhibited the IFN-g-inducible chemokine mRNA
expression in the epidermis by 495% (Figure 4b).

To determine whether tofacitinib has direct effects on
keratinocytes, we incubated HaCaT cells, a human keratino-
cyte cell line, with IFN-g or poly (I-C), a Toll-like receptor-3
ligand. We observed that tofacitinib inhibited CXCL10 pro-
duction from IFN-g-activated keratinocytes and from poly
(I-C)-activated keratinocytes in a dose-dependent manner
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(Figure 5a). IFN-g-activated HaCaT cells also upregulate
human leukocyte antigen-DR and intercellular adhesion
molecule-1 after a 24-hour stimulation. Upregulation was
also inhibited by tofacitinib (Figure 5b). We also observed
similar inhibitory effects of tofacitinib on poly (I-C)-activated
HaCaT cells (data not shown). Taken together, we report that
tofacitinib had effects on keratinocytes, limiting their activa-
tion by IFN-g and a Toll-like receptor-3 ligand.

It is well known that IFN-g induces apoptotic cell death of
keratinocytes. When compared with HaCaT cells treated with
IFN-g and vehicle, increasing doses of tofacitinib resulted in
an augmented recovery of viable cells (Figure 5c). When
viabilities were assessed by measuring the incorporation of
the dye 7-AAD by flow cytometry, tofacitinib also inhibited
IFN-g-induced cell death (Figure 5c).

Tofacitinib effectively reverses GVHD-like disease

To determine whether tofacitinib was able to reverse estab-
lished GVHD-like disease, we utilized the same animal model
used in Figure 1, but drug administration was delayed until
GVHD-like disease was evident. We initiated tofacitinib 50 or
12.5 mg kg–1 BID oral treatment 4 days after OT-I transfer,
when all mice showed acute weight loss and skin and
mucosal lesions. Tofacitinib 50 mg kg–1 BID treatment com-
pletely prevented the expected severe weight loss (Po0.01;

two-way ANOVA vs. vehicle group), whereas the lower dose
(tofacitinib 12.5 mg kg–1 BID) led to partial recovery (Po0.01
and Po0.05; two-way ANOVA vs. tofacitinib 50 mg kg–1 BID
group and vehicle group, respectively; Figure 6a). Two of the
six mice in the vehicle-treated group died, whereas none of
the tofacitinib-treated mice died. Similarly, clinical scores
assessed at 2 weeks after OT-I transfer were significantly
reduced by tofacitinib in a dose-dependent manner
(Figure 6b). Although the vehicle-treated mice developed
severe skin and mucosal lesions with histological changes
identical to those in Figure 1c and d (Figure 6c and d),
mice treated with tofacitinib 50 mg kg–1 BID exhibited no skin
or mucosal lesions, and mice treated with tofacitinib 12.5 mg
kg–1 BID had only a few lesions near the eyes and nose
(Figure 6e–h). From these experiments, we conclude that
administration of tofacitinib can reverse established GVHD-
like disease with complete normalization of both systemic and
skin pathologies.

DISCUSSION
In this study, we have shown that tofacitinib is effective not
only in the prevention but also in the treatment of a CD8
T-cell–mediated murine model of GVHD via direct inhibition
of CD8 T-cell proliferation and effector function. Furthermore,
the JAK inhibitor blocked infiltration of CD8 OT-I cells and
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inhibited the proliferation and gene expression of cytotoxic
molecules by human CD8 T cells in vitro. A previous study
using blood from cynomolgus monkeys has shown that

tofacitinib inhibited IL-15-induced CD69 expression in NK
cells and also inhibited memory CD8 T-cell numbers (Conklyn
et al., 2004). The effects of tofacitinib on activated CD8 T cells
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were not investigated. Previous studies using rodent disease
models have focused mainly on CD4 T-cell–mediated
autoimmune and/or inflammatory diseases. Tofacitinib
attenuates semiallogenic CD4 T-cell–mediated GVHD (Park
et al., 2010), Th1-mediated delayed-type hypersensitivity
responses (Kudlacz et al., 2004), Th2-mediated pulmonary
eosinophilia (Kudlacz et al., 2008), Th1- and/or Th17-
mediated murine models of rheumatoid arthritis including
collagen-induced arthritis (Milici et al., 2008; Tanaka et al.,
2012), and Th17-mediated brain ischemia (Konoeda et al.,
2010). Our results strongly suggest that tofacitinib may also be
useful in the treatment of human CD8 T-cell–mediated
diseases. Although the prevention and prophylaxis of GVHD
with immunosuppressants is a strategy that is commonly used
in patients, effective treatment of established GVHD remains
an unmet need. Interestingly, as little as 1 week of tofacitinib
administration prevented the weight loss and skin findings in
mice that occur during the second week post adoptive transfer
of OT-1 cells; hence, timing seems to be critical
(Supplementary Figure S3 online). In the clinic, tofacitinib
appears to have a good safety profile as an immunosuppres-
sant, and for this reason tofacitinib could be used for this
indication (Boy et al., 2009; Kremer et al., 2009; Sandborn
et al., 2012; Ports et al., 2013).

In addition to effects on CD8 T cells, we demonstrated that
tofacitinib inhibits IFN-g-inducible chemokine production by
keratinocytes in our murine model of GVHD and that
tofacitinib directly inhibits IFN-g and Toll-like receptor-3
stimulation–inducible production of chemokine (CXCL10)
and expression of MHC class II and intercellular adhesion
molecule-1 by human keratinocytes. The inhibitory effects of
tofacitinib on keratinocytes suggest that tofacitinib may inhibit
the recruitment of inflammatory cells to the skin. Perhaps
related to the inhibitory effects of tofacitinib on IFN-g-

inducible apoptosis of HaCaT cells, treatment with tofacitinib
completely inhibited the development of characteristic histo-
logical changes (liquefaction degeneration of the basal cell
layers) that appear in GVHD. According to a ‘seed and soil’
model, which proposes that effector T cells and target tissue
cells work synergistically in the development of autoimmune
diseases (Okiyama et al., 2012), tofacitinib has the significant
advantage of inhibiting the activation of both the soil,
keratinocytes, and the seeds, CD8 T cells.

Although we have no direct evidence that tofacitinib
inhibits ‘interface dermatitis,’ our results suggest that it may
be effective in the treatment of IFN-g-producing T-cell–
mediated mucocutaneous diseases that exhibit histological
changes with liquefaction degeneration, including those seen
in skin lesions of acute GVHD, lupus erythematosus, derma-
tomyositis, Stevens–Johnson syndrome, and lichen planus
(Sontheimer, 2009). A clinical trial of tofacitinib in psoriasis
has shown tofacitinib to be efficacious: Psoriasis Area and
Severity Index (PASI 75) response rates were significantly
higher for tofacitinib twice-daily groups compared with
placebo in a dose-dependent manner (Papp et al., 2012).
Tofacitinib is thought to be effective in psoriasis via inhibition
of CD4 T-cell activation with blockade of the JAK3 signaling
pathway. Interestingly, topical tofacitinib has also recently
been tested in psoriasis (Ports et al., 2013).

Although tofacitinib has effects on the signaling path-
ways of multiple cytokine receptors and on cells with
various immunocyte lineages, we have focused on its effects
on murine and human CD8 T-cell and keratinocyte activation
and have shown its efficacy in CD8 T-cell–mediated
GVHD-like disease. These results suggest that clinical trials
of JAK inhibitors, including tofacitinib, in patients with
acute GVHD merit strong consideration. In addition, the
data suggest that JAK inhibitors may be useful in other
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diseases in which CD8 effectors are responsible for disease
pathogenesis.

MATERIALS AND METHODS
Mice

K14-mOVA mice were generated (Shibaki et al., 2004) by crossing

Rag-1-deficient OT-I mice (Taconic, Hudson, NY) with human

ubiqutin C promoter–GFPþ mice (The Jackson Laboratory, Bar

Harbor, ME) and C57BL/6 (B6) mice to generate GFPþOT-I mice

and OT-I mice, respectively. All animal studies were conducted with

prior approval from the Animal Care and Use Committee of the NCI.

Cells

GFPþOT-I cells were purified from LNs of GFPþOT-I mice using

CD8 columns (R&D Systems, Minneapolis, MN). Buffy coats were

obtained from volunteers after informed consent and according to the

institutional guidelines and the Declaration of Helsinki Principles,

and CD8 T cells and MHC class IIþ cells were purified by negative

selection using a CD8 T-cell isolation kit and by positive selection

using anti-MHC II microbeads (Miltenyi Biotec, Auburn, CA). HaCaT

cells were kindly provided by Dr Stuart H Yuspa (NCI, NIH) and

cultured in high-glucose DMEM (Life Technologies, Grand Island,

NY) with 10% fetal bovine serum (Thermo, Wyman, MA), 1%

GlutaMax (Life Technologies) with 20 ng ml–1 recombinant human

IFN-g (PeproTec, Rocky Hill, NJ) or 20mg ml–1 poly (I-C) sodium salt

(Sigma-Aldrich, St Louis, MO).

JAK inhibitor

Tofacitinib was provided by Pfizer Research Laboratories (Cambridge,

MA) in 0.5% methylcellulose/0.025% Tween 20 (Sigma-Aldrich) for

oral administration or in DMSO (Sigma-Aldrich) for in vitro use.

A murine model of GVHD

GFPþOT-I cells (1� 106) were injected intravenously into K14-

mOVA mice. The mice were given either vehicle control or varying

doses of tofacitinib by gavage. Clinical scores were calculated for
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rash, alopecia, mucosal involvement, hunched appearance, and

weight loss (Miyagawa et al., 2008).

Flow cytometry

SDLN cells from mice and cultured HaCaT cells were stained with

phycoerythrin-conjugated anti-mouse Vb5 (clone: MR9-4) and

human CD54 (HA58), Per-CP5.5-conjugated anti-mouse CD8a
(53-6.7) and mouse CD62L (MEL-14), allophycocyanin-conjugated

anti-mouse Va2 (B20.1), mouse CD25 (PC61), and human leuko-

cyte antigen-DR (L243) monoclonal antibodies (BD Pharmingen,

San Jose, CA). 7-AAD (BD Pharmingen) and LIVE/DEAD fixable

violet dead-cell staining kit (Life Technologies) were used to

detect dead cells. For intracellular cytokine staining, the SDLN

cells were cultured in the presence of 2 mg ml–1 of SIINFEKL

(Sigma-Aldrich) and 5 mg ml–1 of GolgiPlug (BD Pharmingen) for

5 hours, and then fixed and permeabilized in Cytofix/Cytoperm

solution (BD Pharmingen). The cells were stained with phycoery-

thrin-conjugated anti-mouse IFN-g (XMG1.2) or tumor necrosis

factor-a (MP6-XT22) (BD Pharmingen). Isotype-matched antibodies

were used as controls. Stained cells were analyzed on a LSR-II flow

cytometer (BD Biosciences, San Jose, CA).

Serum cytokines and chemokines
Cytokine and chemokine levels in murine serum samples were

measured with Bio-Plex ProTM Mouse Cytokine Th1/Th2 assay kits

(Bio-Rad Laboratories, Hercules, CA).

Proliferation assay

Splenocytes from naive B6 mice were incubated with 1 mg ml–1

SIINFEKL and treated with 50 mg ml–1 mitomycin C (Sigma-Aldrich)

for 1 hour. OT-I cells (2� 105) were cultured with 2� 105 SIIN-

FEKL-pulsed splenocytes and tofacitinib in RPMI 1640 with 10%

fetal bovine serum in 96-well flat-bottom plates. Human MHC class

IIþ cells were pulsed with 1 mg ml–1 Tetanus toxoid (Enzo Life

Science, Farmingdale, NY) or 20 ng ml–1 Candida albicans protein

(Fitzgerald Industries International, Acton, MA) for 2 hours, and

then treated with mitomycin C. Human CD8 T cells (2� 105) were

cultured with the antigen-pulsed cells (2� 105) or with 6 mg ml–1

recombinant human IL-2 (PeproTec) in RPMI 1640 with 10%

human AB serum (Sigma-Aldrich) in 96-well flat-bottom plates for

2 days with tofacitinib. The WST-I assay was performed on the last

day of culture (Clontech).

Cytotoxicity assay

Following previous articles (Khor et al., 2013; Miyagawa et al., 2013),

splenocytes from OT-I mice were cultured with SIINFEKL, recombinant

mouse IL-2 and IL-4 (PeproTech) in the presence of tofacitinib for 5 days.

IFN-g-stimulated and SIINFEKL-pulsed EL-4 cells (ATCC, Manassas, VA)

were labeled with calcein AM fluorescence (Life Technologies). Effector

OT-I cells were cocultured with 1.5� 104 target EL-4 cells in calcium-

and magnesium-free Hank’s balanced salt solution with 5% fetal

bovine serum in sealed 96-well round-bottom plates for 3hours at

37 1C. Lysis buffer (50mM sodium borate and 0.1% Triton X in distilled

water) was used to induce maximum target cell lysis. The fluorescence

release was measured on a fluorometer (excitation/emission¼ 485nm/

535nm). Percentage lysis was determined in the following manner:

(experimental release� spontaneous release)�(maximum release�
spontaneous release) � 100.

Quantitative real-time reverse-transcriptase–PCR arrays
Human CD8 T cells were cultured with 6mg ml–1 recombinant human

IL-2 and tofacitinib for 2 days. mRNA was extracted from 1� 107

cells using RNeasy Mini kits. To obtain epidermal sheets, mouse ears

were incubated in 0.5 M ammonium thiocyanate (Sigma-Aldrich) for

20 min at 37 1C. mRNA was extracted from the epidermal sheets

using RNeasy Fibrous Tissue kit (Qiagen, Gaithersburg, MD). Com-

plementary DNA was synthesized from mRNA samples (40–600 ng)

using an RT2 First Strand Kit (Qiagen). The complementary DNA

samples mixed with RT2 SYBR Green PCR Master Mix were analyzed

using RT2 Profiler PCR Arrays (Human T-Cell Anergy and Immune

Tolerance and Mouse Inflammatory Cytokines and Receptors). All

reagents were obtained from Qiagen.

Statistical analysis

Data were analyzed using a two-way ANOVA, the Mann–Whitney

U-test, or a two-tailed Student’s t-test. Values of Po0.05 were

referred to as significant differences.
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