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ABSTRACT 
 
Background and Aims: Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is 
reversible at early stages, making early identification of high-risk individuals clinically valuable. 
Previously, we demonstrated that patient-derived induced pluripotent stem cells (iPSCs) 
harboring MASLD DNA risk variants exhibit greater oleate-induced intracellular lipid 
accumulation than those without these variants. This study aimed to develop an iPSC-based 
MASLD risk predictor using functional lipid accumulation assessments.   
 
Methods: We quantified oleate-induced intracellular lipid accumulation in iPSCs derived from 
three cohorts of diverse ancestry: 1) CIRM cohort (20 biopsy-confirmed MASH cases, 2 biopsy-
confirmed MASLD cases, 17 controls), 2) POST cohort (18 MASLD cases, 17 controls), and 3) 
UCSF cohort (4 biopsy-confirmed MASH cases, 8 controls). Lipid accumulation levels in the 
CIRM cohort were used to define an iPSC-based MASLD risk score, which was used to predict 
case/control status in the POST and UCSF cohorts.   
 
Results: In all three cohorts, lipid accumulation was higher in MASLD/MASH cases vs. controls 
(CIRM cases vs. controls 3.32 ± 0.25 vs. 2.70 ± 0.19 -fold change, p=0.06; POST cases vs. 
controls 3.63 ± 0.33 vs. 2.70 ± 0.31, p=0.05; and UCSF cases vs. controls 4.39±0.46 vs. 
2.03±0.20, p=0.0002). The iPSC-based MASLD risk score achieved a sensitivity of 44% and 
specificity of 75% in the POST cohort and 75% and 100%, respectively, in the UCSF cohort. 
Differences in cohort disease severity and cardiometabolic profiles may explain performance 
variability.   
 
Conclusion: While validation in larger cohorts is needed, these findings suggest that oleate-
induced intracellular lipid accumulation in subject-derived iPSCs is predictive of MASH 
development. Additional cellular phenotypes and donor information should be explored to 
improve predictive accuracy to inform MASLD surveillance and prevention strategies.   
 
 
INTRODUCTION 
 
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) 
includes a spectrum of liver phenotypes, including hepatic steatosis, which may progress to 
metabolic dysfunction-associated steatohepatitis (MASH, formally known as NASH). MASLD 
increases the risk of cardiovascular disease [1], which is the primary cause of death for these 
individuals[2]. Despite these risks, underdiagnosis is a significant clinical issue [3]. Generation 
of an individual-level predictor of MASLD onset and/or progression could be used to inform 
targeted surveillance, justify additional screening procedures, and promote increased attention 
toward preventive measures. Current models to predict high-risk MASH require the onset of 
disease to be informative [4-6]. 
 
MASLD is heritable (with estimates up to 50%)[7, 8]; however SNP-based heritability estimates 
suggest a significant fraction of the genomic contribution to MASLD remains undiscovered [9]. 
We reported that undifferentiated induced pluripotent stem cells (iPSCs) exhibit highly 
reproducible and robust accumulation of intracellular lipids in response to a fatty acid challenge, 
and that the magnitude of this effect is greater in cell lines that carry known MASLD genetic risk 
variants [10]. Here we sought to determine whether functional characterization of subject-derived 
undifferentiated iPSCs could be used to define an individual-level MASLD risk predictor. To our 
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knowledge, this would represent the first attempt to use a patient-derived cell-based system to 
guide precision medicine in MASLD disease management. 
 
METHODS 
 
CIRM iPSC MAFLD cases and controls 
The CIRM MASLD case/control cohort is comprised of men and women of diverse racial and 
ethnic ancestries who were recruited from the Liver Clinic at the Zuckerberg San Francisco 
General Hospital and Trauma Center (ZSFG). A biorepository of iPSCs from these individuals 
was previously described [11]. Individuals with alcohol consumption (³ 1 drink/day for women, ³ 
2 drinks/day for men), an active HIV infection, or the presence of another liver disease were 
excluded. CIRM MASLD cases (n=22) were defined by liver biopsy. CIRM Healthy Controls 
(n=20) were defined as individuals with normal (<40U/L) ALT and AST measures.  
 
POST iPSC MASLD cases and controls 
Through the “Pharmacogenomics of Statin Therapy (POST)” project, we recruited patients from 
Kaiser Permanente of Northern California (KPNC) who were at high cardiometabolic risk (i.e., 
individuals were users of statins, a class of cholesterol-lowering drugs). POST MASLD cases 
(n=18) were defined as individuals with one or more MASLD ICD codes, a positive diagnostic 
measure (ALT>40 mg/dL and AST/ALT ratio <0.8; or liver biopsy or imaging on the day of 
diagnosis) and lack of exclusionary medications or conditions as defined within the eMERGE 
NAFLD algorithm [12]. POST Controls (n=16) were defined as individuals without a MASLD 
diagnosis, normal ALT and AST (max <40 mg/dL), BMI<30, and no T2D diagnosis. The BMI and 
T2D exclusions were intended to mitigate the inclusion of undiagnosed MASLD cases. iPSCs 
were established as we previously described [13]. 
 
UCSF iPSC MASLD cases and controls 
UCSF MASLD cases (n=4) were previously identified as familial MASH patients, of which three 
are related [14]. UCSF MASLD Controls (n=8) were identified from the Coriell Institute as healthy 
donors. Fibroblasts from cases and controls were reprogrammed on feeders to iPSCs [15]. 
 
The clinical and demographic characteristics of the cohorts are shown in Tables S1-S4. Informed 
consent was obtained for the creation and distribution of all iPSCs, and studies were performed 
with IRB approval of ZSFG, KPNC and UCSF. 
 
Quantitation of intracellular lipid accumulation 
iPSCs were cultured in mTeSR1 (Stem Cell Technologies) and grown at 5% O2, 5% CO2. Oleate-
induced intracellular lipid accumulation was quantified as previously described [10]. Briefly, cells 
were cultured in BSA-free HCM bullet kit media (Lonza) containing 100µM oleate conjugated to 
BSA, or fatty acid-free BSA as a negative control for 24 hours and stained with 100ug/mL Nile 
Red. Fluorescence was quantified on the BD FACS LSRFortessa using the Alexa Fluor 488 and 
PE filters with 10,000 gated events measured. FACS data was analyzed using FloJo software. 
 
Generation of an iPSC-based MASLD risk score 
Binary logistic regression followed by receiver operating characteristic (ROC) curve analysis was 
used to identify the oleate-induced lipid accumulation fold change threshold that maximizes 
Sensitivity-(1-Specificity) (i.e., True Positive Rate - False Positive Rate) using the CIRM iPSC 
dataset. The AUROC was calculated to evaluate how well iPSC lipid accumulation fold change 
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classified the MASLD disease status of donor individuals. A similar logistic regression analysis 
was performed on the combined CIRM+POST+UCSF dataset (N=88). 
 
 
RESULTS 
 
Lipid quantification in CIRM iPSCs and creation of an iPSC-based MASLD risk score 
In the 42 CIRM iPSC cell lines oleate treatment led to a 3.02 ± 0.16 (ave ± SE fold change from 
BSA, Fig. 1A) increase in intracellular lipid levels, with values increasing in iPSCs from every 
donor. There was a trend (p=0.06 two-tailed t-test) toward increased intracellular lipid 
accumulation in iPSCs from the MASLD cases (3.32 ± 0.25 fold change from BSA) vs. controls 
(2.70 ± 0.19 fold change from BSA), Fig. 1B. Using logistic regression, we found that a threshold 
of at least a 3.33-fold change in oleate-induced intracellular lipid accumulation best separated 
MASLD cases from controls.  
 
Application of the iPSC-based MASLD risk score to the POST and UCSF cohorts 
In the 35 iPSCs from the POST cohort, we observed a 3.19 ± 0.24 fold increase in intracellular 
lipid accumulation in response to oleate (Fig. 1A). There was greater intracellular lipid 
accumulation in the POST MASLD cases (3.63 ± 0.33) versus controls (2.70 ± 0.31), p=0.05, 
Fig. 1B. In the 12 iPSCs from the UCSF cohort, oleate-induced intracellular lipid levels rose on 
average 2.81 ± 0.39 fold (Fig. 1A), which was higher in MASH cases than controls (4.39±0.46 
vs. 2.03±0.20 fold change, p=0.0002, Fig. 1B). Next, we tested the ability of the 3.33-fold change 
threshold value to correctly predict MASLD case vs. control status in the two cohorts calling cell 
lines with oleate-induced lipid accumulation fold change ³3.33 as “cases” and those with values 
< 3.33 as “controls”. This score had a 44% sensitivity and 75% specificity to predict disease 
status in the POST cohort, and a 75% sensitivity and 100% specificity in the UCSF cohort. 
 
As a secondary analysis, we recalculated the iPSC lipid accumulation fold change using all three 
cohorts. Application of this threshold value (3.19) to each of the cohorts individually resulted in 
sensitivity between 50-75%, specificity between 75-100%, precision between 73-100% and 
accuracy between 67-92% (Table S5). 
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Fig. 1. Oleate-induced intracellular lipid levels in iPSCs from three cohorts of MASLD 
cases and controls. iPSCs from the CIRM (n=42), POST (n=34), and UCSF (n=12) cohorts 
were incubated with either 100µM oleate or BSA control for 24hr after which cells were stained 
with Nile Red and fluorescence levels quantified by FACS. A) Raw fluorescence values of BSA 
vs. oleate-treated iPSCs. P-values were calculated using a paired Student’s t-test. B) 
Comparison of oleate-induced intracellular lipid accumulation in all three cohorts. Dashed line 
indicates the value of oleate-induced lipid accumulation used to define the iPSC-based MASLD 
risk score.  
 
Reproducibility of the iPSC-based risk score  
To evaluate the reproducibility of the iPSC-based risk score measurement we quantified the 
variation across technical replicates (13 iPSC lines measured in quadruplicate via FACS) and 
biological replicates (4 iPSC lines run on different days). Technical replicates had an average 
CV of 2.22 ±0.46%, while biological replicates had an average CV of 22.3±4.3% (Fig. 2). 
 
 
 
 

A

B

BSA Oleate
101

102

103

104

105
Fl

uo
re

sc
en

ce
 in

te
ns

ity
 (A

U
)

CIRM cohort

n=42
p<0.0001 paired t-test Wilcoxon

p<0.0001

BSA Oleate
100

101

102

103

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 (A
U

)

POST cohort

n=34
p<0.0001 paired t-test Wilcoxon

p<0.0001

BSA Oleate
100

101

102

103

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 (A
U

)

UCSF cohort

n=12
p=0.0005 paired t-test Wilcoxon

p=0.0005

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.13.632567doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 2. Replicate values of oleate-induced intracellular lipid accumulation. Oleate-induced 
intracellular lipid accumulation was measured in quadruplicate (technical replicates) by FACs in 
iPSCs from 13 different donors. Of these, four lines (indicated as “a” or “b”) were measured twice 
on different days (biological replicates). 
 
 
DISCUSSION 
 
MASLD is a significant public health challenge, with an estimated prevalence of 30-40% among 
US adults [16]. The high prevalence underscores the need for innovative approaches to mitigate 
MASLD-related morbidity and mortality. Our study sought to address gaps in MASLD 
management by investigating whether the functional assessment of patient-derived iPSCs could 
predict individual risk of MASLD based solely on cellular data. Such a model could identify high-
risk individuals prior to disease onset, providing a potential avenue for earlier intervention.  
 
There are many existing screening algorithms to identify individuals likely to have MASLD prior 
to confirmation with imaging or biopsy [17-22]. However, many models use data not routinely 
collected in clinical settings (e.g., plasma insulin levels or waist circumference), and algorithms 
that do not use these data have relatively poor predictive ability [20, 21]. Even advanced machine 
learning algorithms and multi-omics-based approaches are largely designed to identify 
individuals who already have MASLD [4-6, 18], limiting their utility for proactive risk stratification. 
In contrast, our iPSC-based approach queries the phenotypic impact of genetic risk, offering the 
potential to detect disease predisposition before clinical manifestations emerge. 
 
Advancements in technology allow for the efficient generation of patient-derived iPSCs and 
established protocols to differentiate them into hepatocyte-like cells (iPSC-Heps). While iPSC-
Heps are valuable for studying disease mechanisms, they are costly, time-intensive, require 
specialized expertise, and often result in heterogeneous cultures [23]. In contrast, patient-
derived iPSCs retain donor-specific genetic traits, exhibit self-renewal, and can be 
cryopreserved, making them a versatile and scalable cellular model. Our findings that iPSCs 
from MASLD/MASH cases show greater oleate-induced lipid accumulation align with previous 
reports, where iPSCs with MASLD genetic risk variants and iPSC-Heps from MASLD cases 
demonstrated higher cellular steatosis than those without these risk variants or from healthy 
controls [10, 11]. 
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The CIRM iPSC-based MASLD risk score had relatively strong predictive performance in the 
UCSF cohort but was weaker in the POST cohort, which may be due to inherent differences in 
the cohorts. The CIRM and UCSF cases were either entirely or mostly MASH, while the POST 
cases were less severe.  CIRM and UCSF cases were biopsy-defined, while POST disease 
status was inferred. The CIRM controls were screened to be free from liver disease, while the 
POST controls algorithm relied on the absence of values within the electronic health record. 
Lastly, all POST subjects used statins, which may reduce MASLD risk [24]. Future efforts will be 
needed to validate a cell-based risk assessment tool in diverse ancestry cohorts with more 
similar disease characteristics and evaluate whether additional information (e.g., donor 
characteristics, genetics, other cell-based measures, etc.) can improve the prediction 
performance. 
 
In summary, while our iPSC-based model represents a promising tool for assessing MASLD 
genetic risk, its predictive performance varies depending on cohort characteristics. Refining 
these models and integrating additional layers of data could enhance their utility for early MASLD 
risk stratification, offering a pathway toward improved prevention and management strategies. 
 
 
Abbreviations 
ALT: alanine aminotransferase 
AST: aspartate aminotransferase 
BMI: body mass index 
BSA: bovine serum albumin 
CV: coefficient of variation 
FACS: fluorescence-activated cell sorting 
ICD: international classification of diseases 
iPSC: induced pluripotent stem cell 
iPSC-Hep: induced pluripotent stem cell-derived hepatocyte-like cell 
MASLD: metabolic dysfunction associated steatotic liver disease 
MASH: metabolic dysfunction steatohepatitis 
SNP: single nucleotide polymorphism 
T2D: Type 2 Diabetes 
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