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Abstract

Transcription factor networks have evolved in order to control, coordinate, and separate, the 

functions of distinct network modules spatially and temporally. In this review we focus on the 

MYC network (also known as the MAX-MLX Network), a highly conserved super-family of 

related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and 

intracellular signals and modulate global gene expression. Importantly the MYC network has been 

shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we 

summarize molecular and biological properties of the network modules with emphasis on 

functional interactions among network members. We suggest that these network interactions serve 

to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand 

with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic 

activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the 

network as a whole, leading to tumor initiation, progression and maintenance.
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Introduction: biological networks

Networks, in diverse fields including computer sciences, telecommunications, sociology, and 

biology, are generally defined as clusters of distinct nodes connected by what are termed 

“edges.” In biology, complex systems are frequently represented in terms of networks which 

can be subdivided into smaller groups or modules thereby revealing key relationships that 

underlie network activity [3,4]. The ubiquity of network organization reflects its potential to 
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deploy interactions and functions in spatially and temporally determined patterns and to 

accommodate both antagonism and synergy among network components. Moreover, 

networks often possess “tipping points” whereby the loss- or gain-of-function of an 

individual network member may act to alter or distort the activity of the network as a whole. 

These concepts have been applied to intermediary metabolism, neural circuits, signal 

transduction pathways, developmental programs, immune systems, and transcriptional 

regulatory mechanisms. In the area of transcriptional regulation, well studied examples of 

networks include the genes and their encoded proteins that drive the circadian clock [6], 

induce pluripotency [7,8], and determine commitment to T lymphocyte differentiation [9]. In 

this review we focus on the MYC transcription factor network (also known as the MAX-

MLX Network or the Extended MYC Network) which has been strongly implicated in 

normal cell growth and proliferation and in the etiology of a wide range of cancers.

Components of the MYC network

Fig. 1 depicts one way to organize the components of the MYC network, all of which have 

the capacity to function in gene transcription and possess a highly conserved protein–protein 

interaction and DNA binding domain known as a basic-helix-loop-helix-zipper (bHLHZ). In 

its simplest sense this network can be thought of as possessing three major nodes with 

distinct inputs and transcriptional properties: (1) MYC family proteins; (2) proteins in the 

MXD family (as well as MNT and MGA); and (3) the MLXIP and MLXIPL proteins (also 

known as MondoA and ChREBP, respectively). Each of these network proteins employs its 

bHLHZ domain to form an individual heterodimer with the bHLHZ domains of either MAX, 

MLX or both (see Fig. 2 for crystal structures of MYC-MAX and MXD1-MAX bHLHZ 

domain heterodimers). It is heterodimerization with MAX and/or MLX that constitutes the 

functional edges of the network. In what follows we summarize the nature of the MYC 

network modules and focus on the functional interactions among modules (for recent 

reviews on the MYC network see [5,10–13]).

MAX and MLX

Both MAX and MLX were discovered through independent protein interaction screens that 

sought to identify dimerization partners for MYC [14] and for MXD1 [15] respectively. The 

amino acid sequences of the bHLHZ domains of MAX and MLX are related to each other 

(~50% identity), and also show significant similarity to the bHLHZ domains of all of the 

MYC network proteins. Outside of their bHLHZ domains MAX and MLX do not exhibit 

significant homology with each other or with other network members. Importantly, the 

heterodimerization specificity of MAX and MLX for different network members is 

restricted, as indicated by the double-headed arrows in Fig. 1. MAX dimerizes with all three 

MYC family proteins (MYC, MYCN, MYCL) and all six of the MXD/MNT/MGA family 

proteins, while MLX dimerizes with only a subset of the MXD family (MXD1, MXD4, and 

MNT) as well as with MLXIP and MLXIPL [12,13]. Fig. 2 shows the structures of the 

bHLHZ heterodimer interfaces bound to E-box DNA of MYC-MAX and MXD1-MAX [1]. 

For proteins such as MNT, that are capable of dimerizing with either MAX or MLX, it 

appears that the two types of heterodimer are equivalent in terms of DNA recognition and 

transcriptional activity. However more detailed biophysical analysis of the binding constants 
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related to dimerization and DNA recognition of the different complexes remain to be carried 

out.

Unlike MYC, MAX is capable of forming homodimers but these are inhibited from binding 

DNA in vivo due to phosphorylation by casein kinase II [16]. Furthermore structural 

differences in their leucine zipper regions dictate that MAX preferentially heterodimerizes 

with MYC or MXD rather than form MAX-MAX homodimers [1]. MLX and its several 

isoforms have also been reported to homodimerize and bind E-Box DNA but possess 

negligible transcriptional activity, as is the case for MAX homodimers [17]. Therefore, it is 

likely that the primary functions of MAX and MLX are to drive formation of heterodimers 

and facilitate their ability to specifically recognize DNA.

Both MAX and MLX are stable proteins in vivo with half-lives on the order of 6–8 h, while 

MYC, MXD, MNT, and MGA have considerably shorter half-lives, generally less than 1 h 

(dependent on cell type) suggesting that they are rate-limiting for heterodimer formation 

[18–20](H.M. unpublished data). Not surprisingly, the accumulation of these short-lived 

proteins is highly regulated and dependent on several factors. These include their rates of 

gene expression, RNA half-lives, and translation efficiencies—all processes closely linked to 

environmental and intra-cellular signaling. Interestingly the MLXIP and MLXIPL proteins 

are relatively stable compared to the MYC and MXD family proteins—possibly reflecting 

the fact that their regulation derives in part from their ability to shuttle between nucleus and 

cytoplasm (see below). The differing half-lives, localizations, and the dependence on 

signaling pathways are important contributors to the dynamic nature of the MYC network 

and its role in gene expression [10,21].

MAX serves as a network edge between MYC and the MXD/MNT/MGA family. MLX acts 

similarly for MXD1, MXD4 and MNT and the MLXIP/MLXIPL proteins, which comprise 

the third branch of the MYC Network [15,22] (see Fig. 1). Because MAX, MLX and all of 

the proteins in the MYC network each contain only a single bHLHZ domain, MAX and 

MLX do not physically connect the modules to each other. Rather, within the cellular 

populations of MAX and MLX proteins, individual dimerization interactions with different 

module members occur, based on their abundance, affinity, and localization. The 

heterodimers thus formed must access DNA to exert their transcriptional activities which in 

turn determines the overall activity of the network. In the following sections we briefly 

describe the properties and activities of the MYC network modules.

The MYC module

The MYC protein family (comprised of MYC, MYCN, and MYCL) can be considered the 

founding members of the MYC network. The MYC gene was initially discovered as a 

oncogene (denoted v-myc) present in the genomes of a small group of avian retroviruses 

responsible for transformation of fibroblast cells in tissue culture and for different types of 

hematopoietic neoplasms in animals. It was subsequently determined that the v-myc gene 

was derived by retroviral acquisition of the cellular MYC gene [23,24]. Further studies 

showed that the cellular MYC gene (and its paralogs MYCN and MYCL), while having 

critical functions in normal animal growth and development, are subject to frequent 

alterations in a significant fraction ( > 30%) of human cancers comprising a wide range of 
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tumor subtypes [25]. The alterations in MYC family genes include gene amplifications, 

chromosomal translocations, viral integration, and regulatory mutations in MYC promoter or 

enhancer regions. Much evidence has accumulated indicating that the alterations in MYC 
are associated with key stages of tumorigenesis including initiation, progression, and 

maintenance. Despite the plethora of genetic rearrangements occurring at the MYC locus, 

the vast majority of these do not directly affect the MYC protein coding region. This is 

consistent with the notion that it is the deregulation of MYC expression, rather than altered 

or neomorphic changes in its protein function, that is at the root of MYC driven cancers 

[26,27].

MYC deregulation

The significance of deregulation of MYC expression in cancers became clearer when it was 

understood that in normal cells MYC family genes are both directly and indirectly controlled 

by multiple signal transduction pathways that are in turn activated by external and internal 

stimuli such as growth factors, mitogens, or cytokines. Many of these pathways induce MYC 

gene transcription as an immediate early response (i.e., not requiring protein synthesis) to 

mitogenic signals. For example, treatment of quiescent fibroblast cells with mitogens results 

in the rapid induction of MYC mRNA and protein associated with cell cycle entry [28,29]. 

Many mitogenic signal transduction pathways directly lead to the activation of transcription 

factors that engage MYC enhancers and promoters. Other factors regulate MYC mRNA 

transport, half-life and translation. Moreover, MYC protein levels are maintained by a 

balance between synthesis and regulated degradation. Importantly, in many cancers in which 

MYC family genes are rearranged, the tightly regulated control of MYC expression is 

frequently lost, resulting in constitutive expression of MYC at high levels compared to most 

normal cells (with the exception of normal cells during periods of high proliferative and 

metabolic demand, e.g., T cell activation [30]). Thus in many cancer cells MYC becomes 

insulated from environmental signals, the abundance of its gene products increases and it 

fails to be downregulated in response to appropriate signals for growth arrest and 

differentiation (for reviews see [10,31]). Indeed with some exceptions (e.g., where MYC 

loss induces a dormant state [32]) enforced downregulation of MYC in many tumors leads to 

regression [33,34].

Transcriptional regulation by MYC-MAX

As mentioned above, MYC family proteins function as transcriptional regulators. 

Heterodimerization with MAX through the HLHZ regions of both proteins permits the 

dimeric basic regions to form induced-fit helices that recognize the symmetric DNA 

sequence CACGTG (Fig. 2 and Fig. 3). This sequence, which is likely to be preferentially 

bound by all members of the network, belongs to the more general class of E-box sequences 

(CANNTG), variants of which are also recognized by MYC-MAX at lower affinity relative 

to the canonical CACGTG. DNA sequences harboring potential E-box binding sites are 

relatively frequent in the genome. For example, the canonical CACGTG sequence is present 

approximately every 4 kilobases. In cells, binding to genomic E-box-containing DNA is 

dependent on chromatin structure. The presence of histone H3 trimethylated at lysine 

position 4 relative to the H3 N terminus (H3-K4me3) and of other DNA binding proteins 

such as WDR5 have been shown to facilitate MYC-MAX binding [35,36].
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While MYC-MAX heterodimers directly bind to DNA, they also recruit other proteins to 

genomic E-boxes. In general, these are factors that mediate transcription (Fig. 3). Several of 

these are associated with the N-terminal transcription activation domain of MYC, such as 

the NuA4 complex which contains the histone acetyltransferase GCN5, the pTEFb RNA 

polymerase pause-release complex, and other factors that remodel chromatin and promote 

transcription. Other factors, such as POZ domain transcription factor MIZ-1, bind the MYC-

MAX heterodimeric interface region [37] and can significantly influence the transcriptional 

and biological activity of MYC-MAX [38]. The specific factors bound and their functions at 

genomic binding sites are likely to depend on the exact biological context [39]. Recent 

studies indicate that MYC-MAX binds and amplifies cell-type specific gene expression 

programs [40–42]. In addition, deregulated, overexpressed MYC in several tumor types 

binds to low-affinity non-canonical E-boxes and associates with high-density enhancers 

(super-enhancers) to promote expression of distinct gene subsets [40,43–47]. In other words, 

deregulated MYC can bind MAX and alter normal ongoing gene expression programs to 

impose a tumor-specific transcription profile.

In taking an overview of the MYC family branch of the network it is reasonable, as a first 

approximation, to view it as a protein module that integrates mitogenic signals from diverse 

sources and enables initiation and/or reinforcement of gene expression programs compatible 

with the cellular environment and the maintenance of cell fate during growth and division.

The MXD/MNT/MGA module

In addition to forming heterodimers with MYC family proteins, MAX heterodimerizes with 

all members of the MXD family (MXD1, MXI1 (MXD2), MXD3, and MXD4) and the 

related MNT protein, each of which possesses a bHLHZ region [18,48–51] (Fig. 3). 

Moreover Max dimerizes with the bHLHZ domain of the MGA protein, the largest member 

of the MYC network, which also contains a functional T-box DNA binding region [52] 

related to the Brachyury/Tbx proteins, a family known to play key roles in early vertebrate 

development [53–55] (Fig. 3). The MAX heterodimers formed with each of these proteins 

bind canonical E-box DNA similar to MYC-MAX dimers and crystallographic studies 

indicate that the bHLHZ dimeric interfaces are nearly identical (limited to MAX-MAX; 

MYC-MAX, and MXD1-MAX) [1,56] (Fig. 2).

It is not entirely straightforward to ascribe a broad functionality to the MXD/MNT/MGA 

module as a whole. While their heterodimerization with MAX and their ability to bind E-

box DNA might suggest that the MXD/MNT/MGA module functions similarly to the MYC 

module, a great deal of evidence argues against this idea. Indeed, MXD/MNT/MGA appear 

to act as antagonists of MYC function. First, whereas MYC-MAX binding predominantly 

promotes or reinforces active transcription (see above), the MXD/MNT/MGA module 

proteins act as transcriptional repressors. The MXD family members and MNT contain a 

short conserved amino acid sequence, which directly interacts with mSIN3A or mSIN3B co-

repressor complexes [18,49,57,58]. mSIN3 acts as a platform upon which multiple proteins 

that mediate gene silencing are assembled. Most notably, these include Class I histone 

deacetylases (HDAC1 and HDAC2) that enzymatically remove acetyl groups from histones 

H3 and H4, thereby contributing to silencing of active chromatin [59–61] (Fig. 3). By 
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recruiting mSIN3-HDAC co-repressor complexes to their genomic binding sites, 

MXD/MNT proteins appear to antagonize or reverse the transcriptional activity of MYC 

family proteins which, as noted above, recruit co-activator complexes leading to the 

acetylation of histones H3 and H4, characteristic of active chromatin (see below for 

discussion of antagonism).

MGA

MGA (pronounced mega) stands somewhat apart from the MXD/MNT family due to its 

large size (with > 3000 residues MGA is ~14 fold larger than the MXD family and 5 fold 

larger than MNT) and the presence of both bHLHZ and T-box domains (Fig. 3), as well as 

its apparent ability to both activate or repress transcription in a context dependent manner 

[52]. While, like the other MXD/MNT family factors, MGA attenuates MYC-induced cell 

transformation it does not contain a mSIN3 binding domain. Interestingly however MGA-

MAX has been shown to comprise a subunit of a variant Polycomb complex (PRC1.6) 

which suppresses meiosis in germ cell development and is almost certain to possess other 

functions [62–66]. Moreover MGA, unlike MXD family proteins, is essential for early 

embryonic development and has been shown to be involved in embryonic patterning and 

maintenance of pluripotency [67–69]. In addition, MGA sustains genomic alterations, 

including indels and point mutations in a range of human tumors at a high frequency relative 

to MXD/MNT. A subset of these alterations is predicted to inactivate the MGA bHLHZ 

domain proximal to its C terminus [70–74]. The prevalence of potentially inactivating 

mutations as well as its ability to oppose MYC transforming activity, makes MGA a strong 

candidate for functioning as a tumor suppressor.

MLX and the MLXIP/ MLXIPL module

MLX was first identified through its ability to dimerize with MXD1, MXD4 and MNT (but 

not to MXD2/MXI1, MXD3 or MGA) [17,22]. Moreover, MLX does not dimerize with 

either MAX or MYC family members. Importantly, later work revealed that MLX forms 

heterodimers with two large bHLHZ proteins: MLXIP (MondoA) and MLXIPL (ChREBP 

or MondoB) (referred to here collectively as MLXIP proteins) [22] (Fig. 4). The structural 

basis for the unique binding specificity of MLX is unknown but it has been suggested that a 

conserved tyrosine residue in the leucine zipper of the MLX bHLHZ domain may, upon 

phosphorylation, permit a shift in dimerization partners [11,66].

A key function of MLXIP- and MLXIPL-MLX heterodimers is to mediate the cellular 

transcriptional response to changes in glucose and glutamine levels. MLXIP-MLX dimers 

are localized to the outer mitochondrial membrane and MLXIPL-MLX dimers are present in 

the cytoplasm where they directly or indirectly sense G-6-P (glucose-6-phosphate) and other 

metabolites derived from glucose [12,75–78], relocalize to the nucleus, and bind sequences 

known as carbohydrate response elements (ChoREs) which are comprised of two closely 

spaced E-boxes [78–80]. Many of the ChoRE-containing genes bound and regulated by 

these MLXIP/MLXIPL-MLX heterodimers play critical roles in cellular glucose and lipid 

metabolism. For example, MLXIP-MLX bind to a ChoRE sequence in the promoter of the 

gene encoding thioredoxin-interacting protein (TXNIP) which functions in part to suppress 

glucose uptake and inhibit mTOR and thioredoxin (for review see [11]). In this way the 
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MLXIP-MLX-TXNIP pathway acts as a negative feedback regulator responsive to glucose 

stimulation and serves as a nutrient sensor, communicating information from the 

mitochondrion to the nucleus in order to maintain metabolic homeostasis. The importance of 

this module has been underscored by studies in Drosophila melanogaster where MondoA-

Mlx (orthologs of vertebrate MLXIP-MLX) acts as a master regulator of the physiologic 

response to sugar by both directly and indirectly modulating expression of effector genes 

mediating lipid, carbohydrate, and amino acid metabolism [81,82]. Several Drosophila 
MondoA-MLX target genes have human orthologs that contain polymorphisms associated 

with high levels of circulating triglycerides and coronary artery disease [81]. In addition 

MLXIPL-MLX regulates gene expression linked to glucose and lipid metabolism, and 

genetic studies further implicate this heterodimer in metabolic disease and cancer (for 

review see [83]).

MYC network dynamics and crosstalk

We earlier mentioned that among the advantages of having an integrated network 

organization is the capacity to separate, control, and coordinate the specific activities of the 

network modules in time and space. This concept is likely to apply to the MYC network. 

Moreover, the notion of a “tipping point” — in which an imbalance in the regulation, 

abundance or activity of an individual network member may dysregulate the integrated 

function of the network as a whole — can be considered to apply to the oncogenic 

alterations leading to deregulation and increased expression associated with the MYC 

module (for review see [84]) as well as loss of function mutations in MAX [71,85] and MNT 

[86,87]. To understand how this might occur we will briefly describe the evidence for 

functional interactions among network components and argue that a functional balance 

among network members is critical for cellular homeostasis.

Functional interactions between MYC and MXD/MNT

The notion that MYC-MAX and the MXD-MAX/MLX arms of the network may act 

antagonistically was initially prompted by the findings that MXD/MNT proteins contain 

transcriptional repression domains that recruit histone deacetylases to their DNA binding 

sites in chromatin while, in contrast, MYC proteins recruit complexes that promote 

transcription by facilitating chromatin accessibility and release of paused RNA polymerase 

(Fig. 3). The recruitment of distinct complexes with presumably opposing activities is the 

molecular basis for MYC vs. MXD/MNT/MGA antagonism (Fig. 3) which is also 

manifested at the level of their biological activities. MYC family genes, when 

overexpressed, stimulate cellular growth and proliferation balanced by apoptosis, eventually 

leading to transformation and tumor formation. By contrast, there is considerable evidence 

that MXD1, MXD2 (MXI1), MXD4 and MNT act to retard cellular growth and proliferation 

and have the capacity to block MYC induced mitogenic effectors and transformation 

[18,49,88–91].

One setting where this antagonism serves to regulate normal cellular events is during cell 

cycle entry. In the G0 to G1 transition MNT-MAX levels are constant while MYC is 

strongly induced, resulting in an increased ratio of MYC-MAX:MNT-MAX complexes, 
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consistent with the idea that MYC and MNT are in competition for available MAX. Either 

MNT overexpression or MYC loss inhibits cell cycle entry, suggesting that antagonism 

between these proteins and their balanced expression may set the threshold for the transition 

between quiescence and proliferation [92]. However, given the multiple cellular processes 

that are responsive to MYC, it would seem unlikely that MXD/MNT would antagonize 

every aspect of MYC function. For example, there is evidence for dependence or 

cooperation between MYC and MNT, especially in situations in which MYC levels are 

elevated and MNT acts to suppress MYC-induced apoptosis [93,94]. Another example is 

MXD3, which has been reported to stimulate neural cell proliferation and promote apoptosis 

in response to radiation damage [95,96]. Although the precise relationship of MXD3 to 

MYC activity is unclear, it is possible that MXD3 can cooperate with or substitute for MYC.

The above examples of functional interactions within the network occur in contexts where 

MXD/MNT/MGA and MYC proteins are present at the same time and in the same sub-

cellular compartment. However significant interactions between MYC and MXD/MNT may 

also occur if the proteins in question are not simultaneously present. This is relevant 

considering that endogenous expression of many of these proteins are correlated with 

different cell cycle and differentiation states. MYC expression is predominantly, but not 

solely, confined to proliferating cells while MXD1, MXI1, and MXD4 are detected in 

resting or differentiated cells and are downregulated when cells enter the cell cycle. This 

inverse correlation with MYC expression does not hold for MNT, which is co-expressed 

with MYC but is maintained upon differentiation, when MYC is downregulated (for review 

see [97]). However, antagonism may occur even if the MYC and MXD/MNT proteins are 

not simultaneously present. For example, during terminal differentiation MYC is generally 

downregulated while MXD1 is sharply induced as cells arrest growth. During this period a 

shift from MYC-MAX to MXD1-MAX complexes is observed, leading to binding and 

repression by MXD1-MAX at promoters previously transcriptionally activated by MYC-

MAX [19,89,98]. Why would repression by MXD1-MAX at these promoters be necessary if 

MYC is already downregulated? One likely explanation is that loss of MYC alone is 

insufficient to fully suppress target gene expression. Most transcription is regulated by 

multiple factors and at multiple levels such as chromatin mediated promoter accessibility, 

pre-initiation complex assembly, RNA polymerase initiation, pausing, elongation, and 

termination. Recent evidence suggests that MYC, rather than acting as an transcriptional 

on/off switch, is primarily involved in release of paused RNA polymerase II and the 

amplification of gene expression [41,42]. Furthermore MYC binding leads to histone 

acetylation and other chromatin modifications compatible with active transcription. 

Therefore simply removing MYC may leave certain promoters susceptible to stimulation or 

induction and permit them to remain active, hence the need for expression of MXD1 to 

reverse MYC’s activity as an early event in differentiation. This concept is supported by 

genetic studies in Drosophila melanogaster where deletion of dm1 (which encodes dMyc, 

the Drosophila ortholog of MYC) produces growth arrest at an early stage of larval 

development and diminished expression of growth related genes. By contrast, flies lacking 

both dMyc and dMnt (the single paralog of MXD/MNT in Drosophila) display significantly 

augmented growth and development accompanied by a partial restoration of the expression 
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of dMyc activated growth genes [99]. Interestingly a similar type of rescue dynamic has 

been reported for other antagonistic pairs of transcription factors [100,101].

Regulation through degradation

Taken together, the evidence suggests that a regulated balance between MYC and 

MXD/MNT factors is important in maintaining growth homeostasis in response to 

environmental signals (Fig. 5). In the case of the MYC module, the signals leading to 

induction and maintenance of MYC expression can be generally classed as mitogenic and 

include a broad range of growth factors and cytokines including CSF-1, LIF, Wnt, Notch, 

Sonic Hedgehog, EGF, and IL2. While the MXD module is generally considered to be 

induced by growth arrest, as well as by developmental, and differentiation signals, the 

specific pathways leading to MXD induction are not well defined. Because the MYC family 

and MXD/MNT/MGA proteins all possess relatively short protein half-lives, regulation of 

their degradation is also an important aspect of setting the balance between these modules. 

MYC degradation is mediated by several ubiquitin ligases, one of which (FBXW7), requires 

a specific set of phosphorylations within a phosphodegron near the MYC N terminus (Fig. 

3) [102]. As these phosphorylation events are stimulated by growth factor responsive signal 

transduction pathways such as RAS-MAPK and PI3K-AKT-GSK3β, it is evident that MYC 

degradation is responsive to environmental cues (for review see [103]). Interestingly, MXD1 

has also been shown to be degraded subsequent to PI3K/AKT and MAPK mediated 

phosphorylation [104] suggesting that environmental signaling through these pathways may 

contribute to the balance between MYC and MXD arms of the network (see Fig. 5).

MAX inactivation

A loss of network balance may also come into play in the case of the surprising findings that 

inactivating mutations or deletions of MAX are associated with tumorigenesis, particularly 

involving cells of neuroendocrine origin [71,85]. MAX inactivation would be expected to 

cancel MYC’s tumorigenic functions. However loss of MAX should also result in reduction 

or loss of MXD family, MNT and MGA binding. Although MXD1, MXD4, and MNT might 

still retain some activity by dimerization with MLX (see Fig. 1), the balance among network 

members upon MAX loss is likely to be seriously compromised, perhaps leading to aberrant 

activation of genes due to abrogation of MXD/MNT/MGA repression, similar to the effects 

observed upon double deletion of dMyc and dMnt in Drosophila as described above [99]. 

Another, not necessarily mutually exclusive, possibility is that MYC can retain certain 

critical functions in the absence of MAX, as suggested by MAX deletion experiments in 

Drosophila [105].

Functional interactions between MYC-MAX and MLXIP-MLX

Given that deregulated MYC has been shown to stimulate aerobic glycolysis and to 

reprogram multiple aspects of metabolism [106] it is not entirely unexpected that important 

functional interactions exist between MYC-MAX and the MLXIP-MLX modules [11,21]. 

One aspect of this interaction was revealed in a recent study showing that, in a number of 

MYC-driven cancer cell lines (i.e., cells in which MYC is clearly deregulated and which 

depend on continued MYC expression for growth), the loss or suppression of MLXIP or 

MLX results in growth arrest and apoptosis, even though high MYC levels are maintained 
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[107]. In a neuroblastoma cell line, MYC-MAX and MLXIP-MLX were found to 

cooperatively regulate transcription of a subset of genes involved in metabolism. These 

include genes encoding fatty acid synthase (FASN) and sterol CoA-desaturase (SCD), both 

rate limiting for fatty acid biosynthesis. Metabolomic and carbon tracing experiments 

demonstrated a significantly decreased contribution to the production of palmitate, an initial 

step in the fatty acid biosynthesis pathway. The resulting metabolic stress and cell death can 

be rescued by either restoring MLXIP expression, or by addition of the C18.1 

monounsaturated fatty acid, oleate, supporting a critical role for lipid production in the 

survival of these tumor cells [107]. Importantly, cells in which MYC expression is under 

normal regulation are largely unaffected by MLXIP-MLX loss of function. This suggests 

that at least one aspect of MLXIP-MLX cooperativity with MYC-MAX is to modulate the 

expression of metabolic genes, such as FASN and SCD, in order to meet the increased 

metabolic demands imposed by MYC-MAX driven cell transformation. In this scenario, 

deregulated MYC, unlinked from its normal physiologic regulators, drives anabolic 

metabolism and proliferation regardless of the availability of extracellular factors that are 

normally limiting for cell growth. This imbalance is expected to result in stress, eventually 

leading to growth arrest and apoptosis. However the stress response is at least partially 

attenuated by MLXIP-MLX which remains responsive to nutrient availability and can be 

thought of as a transcriptional gatekeeper by adjusting gene expression in order to match 

metabolic demand [108] (Fig. 5).

Involvement of MLXIP-MLX in the response to cellular stress

If MLXIP-MLX functions to suppress stress in MYC-driven cancers we might anticipate its 

involvement in other forms of stress response. In this regard it has been reported that MLX 

in C. elegans stimulates expression of autophagy genes subsequent to golgi disruption [109] 

and acts to inhibit TOR to promote longevity [110]. This is consistent with a report that 

MLX is responsive to, and suppresses, golgi stress in mammalian cell culture [110]. In 

addition, MLX null mice fail to regenerate muscle, compared to the rapid recovery of 

wildtype mice, following damage due to cardiotoxin treatment [111]. Furthermore, normal 

physiologic processes entailing high metabolic demand, such as T cell activation and 

spermatogenesis, are impaired in the absence of MLX (P.A.C. and B.W.F. manuscript in 

preparation). While MYC is known to be critical in both spermatogenesis [112] and T cell 

activation [30], it is unclear whether MLXIP-MLX are acting cooperatively with MYC-

MAX in the manner described above for MYC-driven neuroblastoma and other tumor types 

[107]. Moreover in a triple negative breast cancer (TNBC) cell line, and in BRAF mutant 

melanomas, MYC and MLXIP appear to have opposing activities, at least with regards to 

inducing expression of the TXNIP target gene which encodes a negative regulator of glucose 

transport [113,114]. For example, in the highly glycolytic TNBC line, knockdown of MYC 

leads to MLXIP-mediated activation of TXNIP and decreased glucose uptake, indicating 

that MYC and MLXIP are acting antagonistically [113]. These diverse examples imply that 

the precise mechanisms underlying functional interactions between MYC-MAX and 

MLXIP-MLX are likely to depend on the specific biological context in which they occur and 

the unique bioenergetic or metabolic wiring present in those systems. Nonetheless, the 

available data support the overarching concept that these network interactions serve to 
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modulate metabolism at the transcriptional level in order to balance nutrient supply and 

demand and influence cell fate [115].

Genomic binding by MYC network heterodimers

The integrated functions of the network are dependent on the binding of heterodimeric 

complexes of network members to DNA (Fig. 1). Indeed, it is reasonable to surmise that the 

cooperative or antagonistic interactions among module heterodimers arises from direct 

interactions between these proteins at target gene loci. Genomic occupancies of many of 

these proteins have been mapped by the Encode project (www.encodeproject.org). However, 

as mentioned above, MYC-MAX binds to thousands of genes whose identity is dependent 

both on the nature of the cellular transcriptome and the abundance of MYC protein [40–42]. 

It is plausible to assume that binding by other network members will also be dependent on 

cellular context. Therefore, genomic occupancy studies of the MYC network will need to be 

carried out in biological settings in which network function is active and relevant and can be 

perturbed to reveal its critical functions.

A recent study employing in vitro selection for co-bound factors found that cooperative 

transcription factor binding to DNA is surprisingly common, estimating that ~25 000 distinct 

pairs of transcription factors may be associated with mammalian genomic DNA [116](for 

review see [117]). Cooperative binding is thought to contribute to the presence of dense 

clusters of transcription factors as observed primarily in nucleosome-free regions [118]. At 

the simplest level the dimerization of MAX with MYC or MXD proteins represents 

cooperative binding since these proteins do not recognize DNA as monomers nor form 

stable homodimers. However, an important question is whether heterodimers from the 

different arms of the MYC network interact cooperatively with DNA. Interestingly, 

structural studies indicate that MYC-MAX heterodimers could themselves dimerize to form 

heterotetramers in solution [1] and MLXIPL-MLX is thought to function as a dimer of 

dimers on the tandem ChoRE E-boxes in a cooperative manner [119]. Detailed analysis 

remains to be carried out on cooperative binding by different network heterodimers, but 

initial work supports the idea that MYCN-MAX and MLXIP-MLX can co-occupy the 

TXNIP promoter region and act to cooperatively augment TXNIP expression in MYC-

driven neuroblastoma [107]. Cooperative binding is likely to account for the cooperative 

effects of MYC-MAX and MLXIP-MLX on expression of other metabolic genes and may 

account for antagonistic activity of MYC and MXD proteins (Fig. 5).

A detailed description of the network will involve mapping the genomic binding sites of all 

members of the three network modules as well as the effects of genetic and chemical 

perturbation of the network on genomic binding and expression of bound genes. In addition 

it is worth noting that the MYC network itself belongs to the larger super-family of bHLH 

transcription factors that recognize E-box DNA [120]. These include proteins such as 

CLOCK-BMAL and HIF among many others, whose functions impinge on MYC network 

activity [121,122]. Given the importance of the MYC network, we anticipate that the 

elucidation of its genomic binding, functional interactions, and its integration with other 

cellular transcriptional networks, will lead to deeper insights into normal cellular functions 

and provide new pathways and targets for cancer therapy.
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Fig. 1. 
The MYC network showing the three modules from left to right—MYC; MXD/MNT/MGA; 

and MLXIP/MLXIPL and the dimerization interactions with MAX and/or MLX (indicated 

by double-headed arrows). The resulting heterodimers bind to E-box sequences in DNA.
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Fig. 2. 
Crystal structures of the bHLHZ domains of (left) MYC-MAX heterodimer (PDB:INKP) 

and (right) MXD1-MAX heterodimer (PDB: INLW) bound to E-box DNA (5′-
CACGTG-3′) at 19 nm and 2 nm resolution, respectively [1]. Image created with the 

PyMOL Molecular Graphics System, Version 1.5.0.4, Schrödinger, LLC.
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Fig. 3. 
Organization of the MYC, MAX, MNT and MGA proteins. Heterodimers are formed by 

direct interaction of the basic-helix-loop-helix-zipper (bHLHZ) domain of MAX with the 

bHLH-Z domains of either MYC, MNTor MGA (blue lines). Number of residues in each 

protein indicated at C terminus. MYC: MBI–IV — conserved MYC boxes; PEST— region 

rich in proline, glutamic acid, serine and threonine; NLS— nuclear localization sequence; 

Calpain cleavage site—proteolytic cleavage to generate MYC-Nick [2]. MNT: SID — 

binding site for the mSIN3 co-repressor complex. MGA: repression mediated through 

assembly into a variant polycomb repressor complex (PRC1.6). Question mark indicates that 

the region of MGA that directly interacts with the complex is unknown. Protein lengths not 

to scale. See text for details.
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Fig. 4. 
Organization of MLXIP (MondoA) and MLX. MLXIP: highly conserved regions proximal 

to the N terminus are thought to be responsible for binding to glucose metabolites. MLX 

interacts with MLXIP through their bHLHZ and DCD domains. MLX has 3 isoforms 

generated by alternative splicing: MLX-g (nuclear localized), MLX-α and MLX-β (both 

cytoplasmic).
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Fig. 5. 
A hypothetical representation of two states of the MYC network and their impact on gene 

expression programs that influence growth, proliferation, differentiation, apoptosis and 

metabolism. (A) A balanced network in which gene expression is controlled through normal 

endogenous regulation of the MYC network. Transcriptional effects of MYC-MAX are 

balanced by MNT (heterodimerized with either MAX or MLX), MGA-MAX, and, under 

conditions of stress, by MLXIP-MLX or MLXIPL-MLX. (B) An unbalanced network due to 

deregulation of MYC expression. In this state MYC-MAX suppresses differentiation, 

reprograms metabolism, and triggers the apoptotic pathway. The suppressive effects of 

MGA-MAX and MNT-MAX/MLX on proliferation are overwhelmed by MYC-MAX which 

contributes to suppression of MYC-induced apoptosis. Increased nuclear accumulation of 

MLXIP-MLX (in response to deregulated MYC and/or metabolic stress) adjusts metabolic 

reprogramming by MYC-MAX and further reduces apoptosis. The effects on gene 

expression are presumed to occur through genomic binding and co-occupancy by network 

members. Green arrows, transcriptional activation; red arrows, transcriptional repression. 

Arrow width proportional to estimated transcriptional effect. Diagram adapted from [5].
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