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Peste des petits ruminants virus (PPRV) is an important agent of contagious,

acute and febrile viral diseases in small ruminants, while its evolutionary

dynamics related to codon usage are still lacking. Herein, we adopted

information entropy, the relative synonymous codon usage values and

similarity indexes and codon adaptation index to analyze the viral genetic

features for 45 available whole genomes of PPRV. Some universal, lineage-

specific, and gene-specific genetic features presented by synonymous codon

usages of the six genes of PPRV that encode N, P, M, F, H and L proteins

reflected evolutionary plasticity and independence. The high adaptation of

PPRV to hosts at codon usages reflected high viral gene expression, but

some synonymous codons that are rare in the hosts were selected in high

frequencies in the viral genes. Another obvious genetic feature was that the

synonymous codons containing CpG dinucleotides had weak tendencies to

be selected in viral genes. The synonymous codon usage patterns of PPRV

isolated during 2007–2008 and 2013–2014 in China displayed independent

evolutionary pathway, although the overall codon usage patterns of these

PPRV strains matched the universal codon usage patterns of lineage IV.

According to the interplay between nucleotide and synonymous codon usages

of the six genes of PPRV, the evolutionary dynamics including mutation

pressure and natural selection determined the viral survival and fitness to

its host.

KEYWORDS

peste des petits ruminants virus, information entropy, synonymous codon usage,

evolutionary dynamics, PPRV

Introduction

Peste des petits ruminants (PPR) caused by peste des petits ruminants virus (PPRV) is

a highly contagious, acute and febrile viral disease of wild and domestic small ruminants,

and poses a great threat to the ruminant industry in the world (1). PPRV was classified

under the genus Morbillivirus, family Paramyxoviridae, and order Mononegavirales

(2). This is an enveloped virus containing a single negative-strand RNA genome of

about 16,000 nt in length and has six transcription units encoding nucleocapsid (N),

phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H) and polymerase (L) (3).
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H and F proteins (the two surface glycoproteins) function in the

attachment and entry into the host cell. M protein is located on

the inner surface of the viral membrane stabilizing the virion.

N, P and L proteins are required for viral RNA polymerase

activity. Because PPR produces a high mortality of up to 100%

in immunologically naïve populations, it has been listed as

a big threat to the development of sustainable agriculture by

the Food and Agriculture Organization (FAO) and the World

Organization for Animal Health (OIE) for eradication with the

aim to globally eliminate PPR by 2030 (4).

The PPR outbreaks can cause high morbidity and mortality,

resulting in severe economic losses in the developing countries.

Hence, the analysis of epidemic tendency and evolutionary

dynamics of PPRV for prevention and control remains

particularly important. A Bayesian phylogenetic analysis of

all PPRV lineages (I-IV) identified an ancestral PPRV and

individual lineages of Nigeria for PPRV and Senegal for lineage

I, Nigeria/Ghana for lineage II, Sudan for lineage III and India

for lineage IV (5). In addition, some reports have put forwarded

about the host range expansion and cross-species infection of

PPRV (6–8). PPRV might switch hosts and spread more easily

after eradication of rinderpest virus (RPV), similar to that the

eradication of smallpox virus created a niche for cowpox and

monkeypox viruses to cross the species barrier into humans (9).

Based on PPR epidemics in large scale and rapidly spreading

in China in the absence of RPV, the evolutionary dynamics

of PPRV might provide potential opportunities for expanding

the host range of PPRV in China to a certain extent. Previous

reports on the evaluation of molecular epidemiology of PPRV,

which was based on nucleotide usage patterns of small regions

of partial sequences or the whole genome, were carried out

and figured out some genetic variations for PPRV (5, 10, 11).

Compared with nucleotide usage variations of coding sequences,

the genetic codons consisting of triplets of nucleotides are

generally redundant, and most of the amino acids can be coded

by more than one codon. This phenomenon is referred to as

“synonymous codon usage bias”. This bias acts as a key factor

in modulating the efficiency and accuracy of protein production

and maintaining the same amino acid sequence of the protein.

The analysis of synonymous codon usage patterns reflects

several evolutionary and functional factors in shaping the

synonymous codon usage bias, including translational/natural

selection, mutation pressure, host, genetic drift, gene expression,

secondary protein structure and fine-tuning translation kinetics

selection (12–21). Based on the knowledge on codon usages,

optimization of synonymous codon usage can be frequently

required for the efficient expression of genes in heterologous

host systems (22–25). For better achievement of the general viral

Abbreviations: PPR, Peste des petits ruminants; PPRV, Peste des petits

ruminants virus; FAO, Food and Agriculture Organization; OIE, World

Organization for Animal Health; NCBI, National Center for Biotechnology;

RSCU, relative synonymous codon usage; CAI, codon adaptation index.

fitness, survival and evasion of the host immune system and

evolution, the interplay between synonymous codon and amino

acid usages of the virus and that of its host were thought to be

the key evolutionary factors (26, 27). Therefore, knowledge of

synonymous codon usage of PPRV enlightens PPRV molecular

evolution and extends our insights into the regulation of viral

gene expression.

Materials and methods

Information about full genome of PPRV

The 45 whole genome sequences of PPRV strains available

were downloaded from the National Center for Biotechnology

(NCBI) Genbank database, accessed on 1 September 2017

(Supplementary Table S1). Based on coding sequence

annotations of the 45 PPRV strains, the six coding sequences

(F, H, L, M, N and P) were extracted from the corresponding

genome. According to the given coding sequences of PPRV, the

following nucleotide contents were calculated for the coding

sequences by MEGA 6.0 software: (1) the overall nucleotide

usage patterns (T%, A%, C% and G%); and (2) the nucleotide

usage patterns at the 1st, 2nd, and 3rd codon positions (T1, A1,

C1, G1, T2, A2, C2, G2, T3, A3, C3, and G3%). Depending on

the statistical test (One-way ANOVA), the overall nucleotide

usage patterns and nucleotide usage patterns at the 1st,

2nd, and 3rd codon positions were described in each gene,

respectively. To further investigate the genetic diversity of PPRV

at nucleotide levels, a phylogenetic tree was constructed with all

the full genome sequences by producing neighbor-joining trees

with Kimura 2-parameter model of base substitution (Gamma

distributed rate and between transitional and transversional

substitutions) using MEGA 6.0 software (28).

Nucleotide usage bias by information
entropy method

As for the nucleotide usage bias at gene levels of the 45 PPRV

strains, the normalized information entropy over the frequencies

of different nucleotides in a given gene was presented by the

below formula (29):

Entropy = −

∑

i
fi × log2(fi)

4

fi =
Fi

F(A)+ F(T)+ F(G)+ F(C)

where fi is the probability of the specific nucleotide (Fi), and

Fi is the total number of occurrences of the specific nucleotide
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in the target gene (i, i = A, T, G or C). The value of Entropy

for nucleotide usage bias ranges from 0 to 1, representing how

the dispersed contribution of these four types of nucleotides

is: the higher the value is, the more uniform the nucleotide

usage is; in contrast, a lower value reflects a more biased usage

of nucleotides.

To further compare the nucleotide usage biases in the six

coding sequences, the overall nucleotide usage biases, and the

nucleotide usage biases at the 1st, 2nd, and 3rd codon positions

were estimated by One-way ANOVA method in SPSS 16.0

software, respectively.

Relative synonymous codon usage
calculation

The relative synonymous codon usage (RSCU) values

for the given coding sequences of the PPRV strains were

calculated to quantify synonymous codon usage bias without

the confounding influence of amino acid usage patterns or the

length of different gene samples (30). Of note, two-thirds of

PPRV strains were isolated from China and were classified into

lineage IV (Supplementary Table S1). To better investigate the

synonymous codon usage patterns of each gene of epidemic

PPRV in China, we classified these strains into six groups

(groups I–VI) for RSCU calculation and presented varied extents

of synonymous codon usage bias in each group. In detail, the

groups I, II and III corresponded to lineages I, II and III,

respectively, and the groups IV, V and VI corresponded to

lineage IV of foreign countries, China (2007–2008) and China

(2013–2015), respectively. To identify synonymous codons with

over-representation or under-representation, the synonymous

codons with RSCU value of more than 1.6 and <0.6 were

considered as over-represented or under-represented ones,

respectively (21).

Analysis for evolutionary distance
between two di�erent gene samples by
RSCU data

To quantify the extent of similarity of codon usages between

the two gene samples, a similarity index for D(A,B) was

introduced into this study (31).

R(A,B) =

59
∑

i=1
ai × bi

√

59
∑

i=1
ai ×

59
∑

i=1
bi

D(A,B) =
1− R(A,B)

2

where R(A,B) is defined as a cosine value of an included angle

between A and B special vectors, meaning that the evolutionary

distance between gene A and gene B at the aspect of 59 RSCU

values, ai is defined as the RSCU value for a specific codon

in 59 synonymous codons of gene A, and bi is termed as the

RSCU value for the same codon of gene B. Here, the lower the

D(A,B) value is, the higher the extent of similarity of codon usage

patterns between gene A and gene B.

Codon adaptation index for PPRV genes

The codon adaptation index (CAI) analysis of PPRV coding

sequences were carried out depending on the CAIcal server

(32), which was considered to be an improved CAI calculation

measure, and estimated the expression level of a coding sequence

in the host cell. The CAIcal webserver, freely available at http://

genomes.urv.es/CAIcal, calculated the CAI for a group of viral

sequences using the specific host reference set and included

a complete set of tools related with codon usage adaptation.

The host reference set required to calculate the CAI can be

introduced in the codon usage database of the host. The

synonymous codon usage patterns of host as reference, the

synonymous codon usage bias with high extent represented the

highest relative adaptation to the host, and coding sequences

with higher CAI values should be regarded preferred over those

with lower ones (32). The synonymous codon usage frequencies

of Ovis aries (natural host of PPRV) were selected as the

reference set, and the related data was obtained from the Codon

Usage Database (33).

Statistical analysis

To better estimate the role of nucleotide usage bias at

different codon positions in the overall codon usage bias, the

Davies-Bouldin index (Rij) (34) was introduced in this work.

This index represented a ratio of within-group and between-

group distances, and was defined as:

Rij =
Xi + Xj

Mij

Mij =

√

(Ai − Aj)
2
+ (Ai − Aj)

2

Xi =

√

√

√

√

√

√

Ti
∑

i=1
(Bi − Ai)

2

Ti

and
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Xj =

√

√

√

√

√

√

√

Tj
∑

j=1
(Bj − Aj)

2

Tj

Xi is the standard deviation of the Euclidean distance

between each point (Bi) in the ith group and the centroid

(Ai) of the ith group; Xj means the standard deviation of the

Euclidean distance between each point (Bj) in the jth group and

the centroid (Aj) of the jth group, Tiand Tj standard for the

total numbers of points in the ith group and in the jth group,

respectively.Mij is the Euclidean distance between the centroids

(Ai and Aj) of the ith group and the jth group. The smaller the

Rij value is, the stronger the interaction between the two groups.

One-way ANOVA method was used to compare the means

of two or more groups containing numerical response data

using the software SPSS 16.0 for Windows, and significant

difference can be identified when p-value was <0.05. Linear

regression was used for modeling the relationship between a

scalar dependent variable and one independent variable using

the software GraphPad Prism 6 for Windows.

Results

Nucleotide usages in di�erent genes of
PPRV

To quantify nucleotide composition of the six genes of PPRV,

each base composition has been calculated for the 45 PPRV

strains. The mean contents of A, A1, U2 and A3% were the

highest in F gene (Figure 1A), the A, A1, U2, and U3% were the

highest in H gene (Figure 1B), the A, A1, A2, and C3% were the

highest in L gene (Figure 1C), the A, A1, U2, and C3% were the

highest in M gene (Figure 1D), the A, G1, U2 and G3% were

the highest in N gene (Figure 1E), and the A, G1, A2, and C3%

were the highest in P gene (Figure 1F). As shown in Figure 1,

there were significant differences in the overall nucleotide usages

and in the first, second and third codon positions of each PPRV

gene (P < 0.0001). Generally, the nucleotide usage patterns

represented the gene-specific compositional trends rather than

the similar compositional trends with the overall content of

nucleotides (Supplementary Table S2).

Nucleotide usage bias of viral gene by
information entropy

According to the variations of nucleotide content at

different codon positions of PPRV genes (Figure 1), information

entropy was performed to quantify nucleotide usage bias at

gene levels and the bias at the three nucleotide positions

of codons in viral gene. There were significant differences

in the nucleotide usage biases at gene levels, the 1st, 2nd,

and 3rd codon positions, respectively (Figure 2). As shown

in Figure 2, the overall nucleotide usage bias in H gene was

the highest (Figure 2A), the nucleotide usage bias in the 1st

position in L gene was the highest (Figure 2B), the nucleotide

usage bias in the 2nd position in N gene was the highest

(Figure 2C), and the nucleotide usage bias in the 3rd position

in L gene was the highest (Figure 2D). Nucleotide usage biases

at gene levels and at different codon positions quantified by

information entropy showed that the nucleotide mutations in

different viral coding sequences resulted in the evolutionary

dynamics. Although nucleotide usage biases at gene levels

and at different codon positions represented a gene-specific

characteristic (Supplementary Table S3), information entropy

can comprehensively quantify the trends of nucleotide usage bias

caused by four nucleotide contents and confirm the low extent of

nucleotide substitution rates in the six genes of PPRV.

Synonymous codon usage bias of PPRV
coding sequences

The RSCU analysis were carried out to quantify the extent

of synonymous codon usage bias in the six coding sequences

of PPRV (Supplementary Tables S4–S9). All over-representative

synonymous codons were not the codons associated with G/C

end or A/U end, and most synonymous codons containing CpG

had a weak tendency to be selected by PPRV genes (Table 1).

Interestingly, compared to those synonymous codons of lineage

I (Supplementary Table S8), the synonymous codons (UGU for

Cys and CAU forHis) were never selected by theN gene of PPRV

lineages II, III and IV, indicating that the synonymous codon

usage was one of the evolutionary dynamics associated with

PPRV. PPRV coding sequences had a weak tendency to select

synonymous codons containing CpG dinucleotides (RSCU <

1.0, Supplementary Tables S4–S8), except CGU for Arg in P gene

(Supplementary Table S9). The comparisons of RSCU data for

the coding sequences of groups IV, V and VI represented a

stable Synonymous usage pattern in lineage IV PPRV strains

of other countries, China (2007–2008) and China (2013–2015)

(Supplementary Table S4–S9), suggesting that the synonymous

codon usage pattern could sustain the difference between

lineages of PPRV rather than that of outbreaks or countries.

In addition, we adopted RSCU method for analyzing the usage

pattern of the three stop codons. Despite the three canonical stop

codons with the same biological function (gene translation end),

the stop codon UGA was only selected by H gene and UAA was

selected by P gene. Moreover, F and L genes strongly tended to

select UAG as stop codon, M and N genes strongly tended to

select UAA as stop codon, and UGA was never selected by F, L,

M, and N genes of PPRV. These phenomena indicate that the
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FIGURE 1

Nucleotide content of PPRV coding sequences and di�erent codon positions. U, C, A, and G% are the overall nucleotide content of coding

sequence; U1, C1, A1, and G1% are nucleotide content in the first codon position; U2, C2, A2, and G2% are nucleotide content in the second

codon position; U3, C3, A3, and G3% are nucleotide content in the third codon position. The One-way ANOVA method is used for estimating

the di�erences of nucleotide usage patterns. (A) F gene, (B) H gene, (C) L gene, (D) M gene, (E) N gene, (F) P gene. When p-value <0.05, it

means a significant di�erence between the given groups. Of note, because all analyses of One-Way ANOVA in this figure produce p-values

<0.001, they are remarked as “***”.
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FIGURE 2

The analysis of nucleotide usage bias of PPRV coding sequences performed by information entropy. (A) the overall nucleotide usage bias at

gene levels, and significant di�erences of the overall nucleotide usage biases among the six coding sequences; (B) the nucleotide usage bias at

the first codon position, and significant di�erences of nucleotide usage bias at the first codon position among the six genes; (C) the nucleotide

usage bias at the second codon position, and significant di�erences of nucleotide usage bias at the second codon position among the six

genes; (D) the nucleotide usage bias at the third codon position, and significant di�erences of nucleotide usage bias at the third codon position

among the six genes. The One-way ANOVA method is used for estimating the di�erences of nucleotide usage biases among the six genes, and

p-value <0.001 remarks as “***”.

PPRV coding sequences had evolved lineage- and gene-specific

synonymous codon usage patterns.

Phylogenetic analysis

According to phylogenetic analysis via neighbor-joining

model, although the lineage IV was not monophyletic, this

lineage was able to be separated from other three lineages

(Figure 3). Furthermore, the PPRV strains isolated from China

(2013–2014) could be classified into a distinct clade in lineage

IV, while the strains firstly emerged in China (2007–2008) were

grouped into another distinct clade in lineage IV (Figure 3).

To some degree, the genetic diversity of PPRV strains isolated

from China displayed the geographic trace in comparison of

that of PPRV strains (KJ867542, NC_006383, KJ867541 and

KC594074) isolated from non-Asia region. In addition, the

PPRV strains with lineage III owned the isolated evolutionary

pathway, compared with those of lineages I, II and IV. However,

the two PPRV strains with lineage I displayed the obvious genetic

divergence at the genome level (Figure 3).

Although the PPRV strains from China (2007–

2008), China (2013–2015) and other countries generally

shared a similar synonymous codon usage pattern

(Supplementary Tables S4–S9), the differences of synonymous

codon usage clarified the genetic divergence of the three groups

[China (2007–2008), China (2013–2015) and other countries].

D(A,B) analysis also found highly similar extent of synonymous

codon usage in viral genes of the three groups (Table 2) based

on the data derived from the Supplementary Tables S4–S9.
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TABLE 1 The over-/under-representative synonymous codons in the

six transcriptions of PPRV genome.

Over-representative

synonymous codons

Under-representative

synonymous codons

F UCA for Ser, CCA for Pro,

GGG for Gly

CCG for Pro, ACG for Thr, GCG

for Ala, GGU for Gly, CGC, CGA

and CGG for Arg

H UCA for Ser, AGA and AGG

for Arg

UCG for Ser, ACG for Thr, GCG

for Ala, CGU, CGC and CGA for

Arg

L AGA and AGG for Arg UCG for Ser, ACG for Thr, GCG

for Ala, CGU and CGC for Arg

M UCA for Ser, CCC for Pro,

UGC for Cys and AGA for

Arg

UCC and UCG for Ser, CCG for

Pro, ACG for Thr, GCG for Ala,

UGU for Cys, CGU and CGG for

Arg

N UCA for Ser, AGA and AGG

for Arg, and GGU for Gly

UUA for Leu, AGC for Ser, ACG

for Thr, GCG for Ala, CGU, CGC,

CGA and CGG for Arg

P GUC for Val and AGA for Arg GUA for Val, UCG for Ser, ACG

for Thr, GCG for Ala, CGC, CGA

and CGG for Arg

The extent of the overall codon usage similarity of lineage

IV between other countries and China (2013–2015) was

generally higher than that between other countries and China

(2007–2008) or between China (2007–2008) and China (2013–

2015) (Table 2). In addition, the extent of overall codon usage

similarity of M and N genes between other countries and China

(2007–2008) was less than that between China (2007–2008)

and China (2013–2015) (Table 2). These results reflected that

genetic divergence in synonymous codon usage of viral genes

of PPRV lineage IV was complex and synonymous codon usage

was able to alleviate the adverse effect by nucleotide mutation in

viral genes.

PPRV presenting host-specific codon
adaption patterns

The CAI analysis were performed to estimate the correlation

between the synonymous codon usage bias and the expression

efficiencies of gene samples of PPRV, implying that the

strong codon adaptation of the viral genes fit the host

(Ovis aries) cellular machinery. Based on the classification

of gene types, a strong significant difference was found

(Supplementary Table S3), implying that the six viral genes

of PPRV might have different gene expression levels in

the host cells. Generally, the viral gene (N gene) had the

highest expression level, while F gene owned the lowest

FIGURE 3

Phylogenetic relationships of PPRV genome sequences.

Representation is a neighbor-joining tree of 45 PPRV genome

sequences generated in this work. The phylogenetic tree is

unrooted. The scale bar is given in numbers of substitutions per

site. Bootstrap resampling (1,000 replications) support values are

represented at the nodes.

one (Supplementary Figure S1), suggesting that PPRV had

developed gene-specific codon usage patterns for adaption to

the codon usage of host cellular environment. Based on the

classification of lineages, significant differences were discovered

among the four lineages of PPRV (Figure 4), suggesting that the

six genes had developed lineage-specific codon usage patterns.

To better compare the synonymous codon usage pattern

between PPRV and its natural host (Ovis aries) based on RSCU

data for Ovis aries (21), the six genes of PPRV generally shared
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TABLE 2 Evolutionary distances among strains of PPRV lineage IV

isolated from China (2007–2008 and 2013–2015) and other countries.

D(A,B) D(A,C) D(B,C)

F gene 0.0027 0.0013 0.0027

H gene 0.0020 0.0028 0.0042

L gene 0.0003 0.0005 0.0007

M gene 0.0033 0.0011 0.0020

N gene 0.0050 0.0010 0.0022

P gene 0.0024 0.0018 0.0061

Ameans strains isolated from other countries.

B means strains isolated from Tibet in China (2007–2008).

C means strains isolated from other provinces in China (2013–2015).

a similar synonymous codon usage pattern with Ovis aries.

However, some rare synonymous codons in Ovis aries were

preferably selected by PPRV genes, including UCA (Ser) and

AAU (Asn) in F gene, UCA (Ser) in H gene, UUG (Leu), UCA

(Ser) and AAU (Asn) in L gene, CUA (Leu) and UCA (Ser) in M

gene and UCA (Ser) in P gene. These synonymous codons likely

mediated and regulated the relevant viral genes translation due

to its low corresponding tRNA abundance in the host.

As shown in Supplementary Figure S1, the high level of

adaptation of viral synonymous codon usages to that of the

host implied that PPRV coding sequences can be translated at

relatively high efficiencies. The Davies-Bouldin index (Rij value)

indicated that despite the obvious effects of nucleotide usage

biases at different codon positions on the overall codon usage

bias of PPRV coding sequences, nucleotide usage biases at the

first and second codon positions played more vital roles than

that at the third codon position in the codon usage bias for the

coding sequences (Table 3).

Discussion

The high mutation rate of nucleotide usages in PPRV

genome results in viral expansion both in geographical range

and in the hosts it infects (35). It has been reported that some

negative-sense single-stranded RNA viruses (such as Marburg

virus and human metapneumovirus) contain all U- or A-

ended codons to encode amino acids, because this synonymous

codon usage pattern exhibited great association with its two

nucleotides in high proportion in their genomes (36, 37).

However, the nucleotide compositional patterns of the six

coding sequences of PPRV were more complex than the

generally analyzed AU and/or GC-rich compositions of most

microorganisms. The gene-specific nucleotide usage pattern,

the stable nucleotide usage patterns at the first and second

codon positions and the various nucleotide usage patterns at

the third codon position were obviously the genetic features

of PPRV genes. This further suggests that the synonymous

codon usages can be considered as the evolutionary dynamics,

alleviating the effects of nucleotide usage variation in viral

genes on amino acid composition of viral protein. Previous

studies have supported these PPRV genetic features and that

the PPRV nucleotide variation throughout the complete genome

proved genome plasticity, which might explain the viral ability

to emerge and adapt in new geographic regions and hosts (5,

38). Although nucleotide usage variation finally influences the

biological functions of viral proteins, synonymous codon usages

play a non-negligible role in viral biological functions to achieve

the viral evolutionary origins and adaption to new hosts (39–

42). For some microorganisms, including viruses, an AU-rich

or GC-rich nucleotide composition was strongly correlated with

their synonymous codon usage bias, in other words, an AU-rich

genome tended to select synonymous codons with A/U ended,

while a GC-rich genome strongly selected synonymous codons

with G/C ended (21, 36, 43–45). If synonymous codon usage

bias reflected such trends as mentioned above, the mutation

pressure would play a dominant role in the codon usages.

During the evolution of the negative-sense single-stranded

RNA virus, mutation pressure remained the key factor that

influenced the codon bias than natural selection in viral genes

(46, 47). However, synonymous codon usage bias of PPRV

coding sequences showed no AU or GC end, suggesting that

the mutation pressure caused by nucleotide usage variation

was not predominant in the PPRV evolutionary pathway. The

frequencies of CpG and UpA dinucleotides played important

roles in RNA virus replication and virulence, and nucleotide

usage frequencies caused by dinucleotide usages meant selection

pressures independent of coding capacity and profoundly

influenced host-pathogen interactions (48–50). The rich CpG

motif in genes can enhance immune response of the host against

pathogens (51–54). Viral genes of PPRV should avoid selecting

synonymous codons containing CpG dinucleotides. As for the

respiratory syncytial virus, codon-optimized F gene with low

level of CpG dinucleotides had higher expression of F, replicated

more efficiently in vivo, and was more immunogenic (55). With

poor CpG dinucleotides in the viral genes, PPRV can avoid

stimulating strong immune responses of the host for immune

escape. This suggests that apart from mutation pressure, other

evolutionary dynamics related to natural selections played roles

in the evolution of PPRV. Similar phenomena had been reported

in influenza virus and foot-and-mouth disease virus (21, 44).

Flaviviridae family had a big epidemic around the world

and their members had developed host- and vector-specific

codon usage patterns to maintain successful replication and

transmission chains within multiple hosts and vectors (56, 57).

Some members of Picornaviridae family also demonstrated that

the natural hosts played important roles in viral synonymous

codon usages (13, 21). In the family Paramyxoviridae, codon

usage patterns remained specific for each viral species and were

markedly different among diverse hosts (58). CAI analysis for

the six coding sequences of PPRV reflected good fitness of
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FIGURE 4

CAI analysis for PPRV coding sequences of di�erent lineages in relation to its host performed by CAIcal server. CAI is frequently used as a

measure of gene expression and to assess the adaptation of viral genes to their hosts, which indicates the influence of natural selection. The

higher CAI value is, the more adaptation of synonymous codon usage of the target coding sequence is to its host. (A) F gene, (B) H gene, (C) L

gene, (D) M gene, (E) N gene, (F) P gene. “*” means significant di�erence between the two di�erent lineages with p-value <0.05 performed by

One-way ANOVA method, “**” means significant di�erence between the two di�erent lineages with p-value <0.01 performed by One-way

ANOVA method, “***” means significant di�erence between the two di�erent lineages with p-value <0.001 performed by One-way ANOVA

method.
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TABLE 3 Roles of nucleotide usage bias in the overall codon usage

bias of PPRV genes.

Rij(CAI,total) Rij(CAI,N1) Rij(CAI,N2) Rij(CAI,N3)

F gene 0.096 0.087 0.092 0.098

H gene 0.037 0.037 0.037 0.038

L gene 0.021 0.021 0.020 0.022

M gene 0.040 0.038 0.040 0.045

N gene 0.045 0.042 0.044 0.048

P gene 0.038 0.037 0.040 0.040

The word ‘total’ means the overall nucleotide usage bias; ‘N1’ means nucleotide usage

bias in the first codon position; ‘N2’ means nucleotide usage bias in the second codon

position; ‘N3’ means nucleotide usage bias in the third codon position.

the virus to the host and high levels of viral gene expression

in terms of codon usage pattern. Additional evidence has

confirmed that usage of synonymous codons in protein coding

sequences is necessarily biased and the overall codon usage

pattern could match the tRNA pool of the host organism

(27, 59–65). Since synonymous codon usage bias reflected

tRNA abundance in host cells, and synonymous codon usage

patterns of RNA virus, which was well fitted to its hosts, and

might influence viral translation efficiencies (66–68). Even in

the same genome, the synonymous codon usage patterns vary

significantly among genes given their different expression levels,

biological functions and tissue-specific patterns (69–71). Of

note, some synonymous codons are preferentially selected over

others at higher frequencies, resulting in synonymous codon

usage bias, and is found in almost all available genomes. This

biased synonymous codon usage is not neutral but involved

in nucleotide usage bias (72, 73), mRNA stability (74, 75),

translation accuracy, efficiency (76, 77), and protein folding

formation (78).

In China, the first emergence of PPR occurred in Tibet

China (2007) (79). Another outbreak of PPR occurred in wild

small ruminants in Tibet China (2008) (79). PPR outbreak was

not further reported until December 2013 in Xinjiang Yili (80).

Although this epidemic was effectively controlled through a

series of effectivemeasures, PPR hadwidely and rapidly intruded

into 21 provinces due to the movement of small ruminants

(81). Although the two PPR epidemics in China presented

genetic divergence in nucleotide usage bias and synonymous

codon usage bias in viral genes, the two groups still had shared

lineage-specific features in synonymous codon usage pattern.

Since PPRV contains the gene for the RNA-dependent RNA

polymerase NS5B in its genome and the polymerase does not

have proofreading activity reading, PPRV haves a high error

rate leading to genetic heterogeneity and the formation of

quasispecies. Synonymous codon is regarded as a linker between

nucleotide and amino acid usages, resulting in enhancing

fault tolerance of PPRV proteins caused by viral quasispecies

to some degree. Moreover, synonymous codon usage bias

derived from the homeostasis between natural selection and

mutation pressure is a universal phenomenon across the

genomes of microorganisms and profoundly influences genomic

evolution (36, 56).

Previously, the major bottleneck limiting in better

understanding of the genetic features of PPRV was their

dependence on nucleotide usage variation. Although nucleotide

usage variation can be regarded as evolutionary dynamics of

PPRV genome, synonymous codon usage patterns of PPRV

coding sequences carry more genetic information, including

viral adaptation to hosts, viral gene expression, and effects on

the biological functions of viral protein.
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