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Abstract

Purpose

We introduce two validated single (SH) and dual hormone (DH) mathematical models that

represent an in-silico virtual patient population (VPP) for type 1 diabetes (T1D). The VPP

can be used to evaluate automated insulin and glucagon delivery algorithms, so-called artifi-

cial pancreas (AP) algorithms that are currently being used to help people with T1D better

manage their glucose levels. We present validation results comparing these virtual patients

with true clinical patients undergoing AP control and demonstrate that the virtual patients

behave similarly to people with T1D.

Methods

A single hormone virtual patient population (SH-VPP) was created that is comprised of

eight differential equations that describe insulin kinetics, insulin dynamics and carbohy-

drate absorption. The parameters in this model that represent insulin sensitivity were sta-

tistically sampled from a normal distribution to create a population of virtual patients with

different levels of insulin sensitivity. A dual hormone virtual patient population (DH-VPP)

extended this SH-VPP by incorporating additional equations to represent glucagon kinet-

ics and glucagon dynamics. The DH-VPP is comprised of thirteen differential equations

and a parameter representing glucagon sensitivity, which was statistically sampled from

a normal distribution to create virtual patients with different levels of glucagon sensitivity.

We evaluated the SH-VPP and DH-VPP on a clinical data set of 20 people with T1D who

participated in a 3.5-day outpatient AP study. Twenty virtual patients were matched with

the 20 clinical patients by total daily insulin requirements and body weight. The identical

meals given during the AP study were given to the virtual patients and the identical AP con-

trol algorithm that was used to control the glucose of the virtual patients was used on the

clinical patients. We compared percent time in target range (70–180 mg/dL), time in hypo-

glycemia (<70 mg/dL) and time in hyperglycemia (>180 mg/dL) for both the virtual patients

and the actual patients.
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Results

The subjects in the SH-VPP performed similarly vs. the actual patients (time in range: 78.1 ±
5.1% vs. 74.3 ± 8.1%, p = 0.11; time in hypoglycemia: 3.4 ± 1.3% vs. 2.8 ± 1.7%, p = 0.23).

The subjects in the DH-VPP also performed similarly vs. the actual patients (time in range:

75.6 ± 5.5% vs. 71.9 ± 10.9%, p = 0.13; time in hypoglycemia: 0.9 ± 0.8% vs. 1.3 ± 1%, p =

0.19). While the VPPs tended to over-estimate the time in range relative to actual patients,

the difference was not statistically significant.

Conclusions

We have verified that a SH-VPP and a DH-VPP performed comparably with actual patients

undergoing AP control using an identical control algorithm. The SH-VPP and DH-VPP may

be used as a simulator for pre-evaluation of T1D control algorithms.

Introduction

Mathematical models of the glucoregulatory system have been used within in-silico virtual

patient simulations for many years [1, 2]. The FDA-approved UVA/Padova simulator, which

was developed in 2008 (known as S2008 simulator), was one of the first simulators to model

glucose-insulin metabolism. In the S2008 simulator, 100 virtual adults, 100 virtual adolescents,

and 100 virtual children were generated by randomly drawing samples from the joint distribu-

tion of the parameters of the model [3]. At first, the 100 virtual adults were produced from a

given nominal insulin sensitivity value and then the virtual children and adolescents were gen-

erated with higher and lower insulin sensitivity values. Since 2008, many studies have used the

2008 version of the UVA/Padova simulator for open loop [1, 4] and AP [5, 6] computer analy-

ses. In 2013, due to hypoglycemia underestimation of the S2008 simulator, three new features

were integrated. Dalla Man et al. [3] incorporated the non-linear effect of insulin action for

glucose levels below a threshold. In addition, they added the glucagon kinetics and dynamics

models to simulate the counter-regulatory behavior of glucagon for glucose levels below a

threshold. They also modified the insulin-to-carb ratio as well as the correction factor for

better representation of postprandial glucose excursions. The new simulator was named the

S2013 simulator. Visentin et al. [7] validated the S2013 simulator with a database consisting of

two sets of 24 glucose profiles recorded during one open loop study and one AP study across

type 1 diabetes. Each glucose profile was controlled for 22 hours with two meal intakes. In

both control trials, the variations of the meal intakes were negligible at each meal event across

the patients. To validate the S2013 simulator, actual insulin profiles were given to the 100 vir-

tual adults and the closest virtual adults were selected whose clinical outcomes were similar to

the patients. Finally, the performance of the selected virtual adults were compared with the

patients in terms of percent time spent in hyper- and hypoglycemia along with low and high

blood glucose indices. They found better clinical consistency with the S2013, however unlike

the S2008 simulator, the S2013 simulator overestimated the percent time spent in hypoglyce-

mia significantly [7]. Later in 2016, to validate the S2013 simulator across type 1 diabetes and

to better model time spent in hypoglycemia, Visentin et al. [8] fit the simulator to the actual

dataset recorded from 47 people with T1D using a Bayesian approach. They found that the

insulin sensitivity was around 30% less than the nominal values, showing that the insulin

sensitivity of the S2013 simulator should be further modified to represent people with type 1
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diabetes. While the S2013 simulator has been used by various research institutions to validate

AP algorithms prior to running clinical studies, it is no longer commercially available and

there is a need in the field for alternative VPPs to validate AP control algorithms. The Cam-

bridge single-hormone simulator is another simulator developed for type 1 diabetes, which

consists of 18 virtual patients [9]. The simulator was validated with a clinical dataset during

overnight periods. In 2013, Haidar et al. [10] used the Cambridge simulator and developed a

single-hormone virtual patient population by fitting the glucoregulatory model to glucose data

of 12 young people with type 1 diabetes using a Markov chain Monte Carlo sampling method.

In this paper, the glucoregulatory model used is similar to the Cambridge glucoregulatory

model, except the insulin kinetics model is different. Our preliminary testing on the virtual

populations showed that the insulin kinetics model published in Hovorka et al. [11] better

reflects the physiological characteristics of adults with T1D.

The goal of this paper is to present two new open source VPPs that use statistical sampling

to create an unlimited number of virtual patients. We present the mathematical model of both

the dual-hormone VPP (DH-VPP) and the single-hormone VPP (SH-VPP). In the models,

the most sensitive inter-subject parameters were statistically sampled to create the VPPs. The

parameters associated with the insulin and glucagon sensitivity factors within the models were

the parameters that were statistically sampled within the mathematical models. We describe

how we validated the VPPs using glucose data, insulin data, and meal data collected from

adults with type 1 diabetes during 3.5-day outpatient AP studies that involved self-selected

meals, typical activities of daily living, and in-clinic aerobic exercise at 60% of the participant’s

maximal VO2. We matched each virtual patient with one of the true patients from the AP

study, matching them by their nearest TDIR and their weight. We then used the same control

algorithm that was used in the AP outpatient studies [12–14] to control the glucose of the vir-

tual patients under the identical meal scenarios that were given during the outpatient studies.

We compared the clinical outcome measures from the outpatient study with those done on the

VPP in-silico studies to validate the VPP. The SH-VPP and DH-VPP that are presented in this

paper are made available through source code in Matlab as online supplementary material (S2

File) or by downloading the latest code from the Artificial Intelligence for Medical Systems

(AIMS) lab GIT repository at https://github.com/petejacobs/T1D_VPP.

Materials and methods

The SH-VPP and DH-VPP were generated based on glucoregulatory models consisting of

insulin and glucagon kinetics and dynamics models and a glucose kinetics model. The

SH-VPP was generated by statistically sampling the most sensitive inter-subject parameters of

the insulin dynamics model. To generate the DH-VPP, the parameters of the insulin and glu-

cagon dynamics models as well as one parameter in the glucose kinetics model were statisti-

cally sampled. Both VPPs were validated with experimental data.

Glucoregulatory model

The glucoregulatory models presented in this section have been previously published. The

block diagram of the glucoregulatory model used in this study is shown in Fig 1. The single-

hormone glucoregulatory model used in the SH-VPP is comprised of three main compart-

ments: an insulin kinetics model, an insulin dynamics model and a glucose kinetics model.

The DH-VPP is identical to the SH-VPP except that for the DH-VPP, two additional compart-

ments were included: a glucagon kinetics and a glucagon dynamics model. Aerobic exercise

can cause hypoglycemia in people with T1D [15] and it may be important for AP control algo-

rithms to incorporate exercise detection and modified dosing to help avoid exercise-induced
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hypoglycemia [12, 16]. We have integrated an aerobic exercise model [17] into both the SH

and DH-VPPs. Lastly, we have incorporated a meal absorption model into both VPPs.

The insulin kinetics model demonstrates the relationship between the subcutaneously

administered insulin and plasma insulin concentration. In this study, we employed an insulin

kinetics model developed by Hovorka et al. [11]. This model is outlined below:

_S1 ¼ uI �
S1

tmax

_S2 ¼
S1

tmax
�

S2

tmax

_I ¼
S2

tmaxVI
� keI

ð1Þ

where S1 and S2 represent the masses of insulin [mU/kg] in two subcutaneous compartments,

uI represents the rate of insulin infusion [mU/kg/min], I represents the plasma insulin concen-

tration [mU/L], and tmax, VI and ke are the time-to-maximum absorption [min], distribution

volume [L/kg] and elimination rate [min-1] of insulin. The insulin dynamics model, which

describes the action of plasma insulin on glucose, was presented by Hovorka et al. [11]:

_X1 ¼ � ka1X1 þ Sf 1ka1I

_X2 ¼ � ka2X2 þ Sf 2ka2I

_X3 ¼ � ka3X3 þ Sf 3ka3I

ð2Þ

where X1 [min-1], X2 [min-1] and X3 [unitless] represent the effect of insulin on glucose distri-

bution, disposal and suppression of Endogenous Glucose Production (EGP). Sf1 [min-1 per

mU/L], Sf2 [min-1 per mU/L] and Sf3 [per mU/L] are the insulin sensitivity factors and are the

most sensitive inter-subject variables for describing variability in the glucoregulatory system of

people with T1D. Selection of new insulin sensitivity factors enables us to generate new sub-

jects within the VPPs. The variables ka1, ka2 and ka3 [min-1] are used as both appearance rates

of insulin into the action compartments as well as the elimination rates of the insulin effects.

The glucagon kinetics model, which represents the absorption rate of subcutaneously injected

Fig 1. Block diagram of the glucoregulatory model.

https://doi.org/10.1371/journal.pone.0217301.g001
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glucagon into plasma, was designed by Lv et al. (16):

_X1g ¼ � ðk1g þ kge1ÞX1g þ ug

_X2g ¼ k1gX1g � k2gX2g

_X3g ¼ k2gX2g � kge2X3g

ð3Þ

where X1g and X2g represent subcutaneous glucagon mass compartments and X3g is plasma

glucagon mass, all measured in mg/kg. ug is the glucagon basal rate [mg/kg/min] infused from

the glucagon pump. k1g and k2g are constant transfer rates [min-1]. kge1 and kge2 are elimina-

tion rates of glucagon from the inaccessible and accessible (plasma) compartments, respec-

tively [min-1]. The glucagon dynamics model which describes the interaction between the

plasma glucagon concentration and the EGP was previously described by Jacobs et al. [14]:

_Y ¼
106 � kc � SfGG

VdGG
X3g � kcY ¼ kgX3g � kcY

Z ¼ _Y
_Z ¼ kgk2gX2g � kgkge2X3g � kcZ

ð4Þ

Y represents the effect of glucagon on EGP. We use the variable Z in Eq 4 to describe the

glucagon model in [14] in state-space form. kc is the clearance rate of glucagon from the

remote compartment [min-1], SfGG is the glucagon sensitivity factor [(ng/L)-1.min-1] and VdGG

is the glucagon volume of distribution [L/kg]. Similar to the insulin sensitivity factors, SfGG is

another sensitive inter-subject parameter and is used to generate the dual-hormone VPP. The

glucose kinetics model, which estimates blood glucose with respect to insulin and glucagon

actions and non-insulin mediated glucose uptake, was presented in Hovorka et al. [11] and

Jacobs et al. [14]:

_Q1 ¼ � X1Q1 � Fc
01
� FR þ k12Q2 þ UG þ EGP0ð1 � X3 þ Y þ kg3ZÞ

_Q2 ¼ X1Q1 � k12Q2 � X2Q2

ð5Þ

where Q1 and Q2 are the masses of glucose in the accessible (plasma) and non-accessible (rap-

idly-equilibrating interstitial) compartments, respectively [mmol/kg]. EGP0 is the basal endog-

enous glucose production at a theoretical zero insulin concentration [mmol/kg/min]. Fc
01

and

FR are the non-insulin mediated glucose uptake and the renal glucose clearance rate, respec-

tively [mmol/kg/min]. For the SH-VPP, the Y and Z variables in Eq 5 are zero since no exoge-

nous glucagon is considered to be given to the single-hormone virtual patient UG represents

the glucose absorption rate from meals [mmol/kg/min]:

UG ¼
DGAGðt � t0Þe

�
t� t0

tmax;G

t2
max;G

ð6Þ

where, tmax,G is the time-to-maximum appearance rate of glucose in Q1 [min], AG is the

carbohydrate bioavailability [unitless], t0 is the meal announcement time [min] and DG is the

estimated carbohydrate intake [mmol/kg]. Note that, for the in-silico simulations, DG is con-

verted from grams to mmol/kg to be compatible with the variables of the glucose kinetics

model.
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Integration of exercise into the glucoregulatory model

Previously, we showed how an exercise model described by Hernandez-Ordonez et al. [17]

could be incorporated into a VPP [14, 18, 19]. In the current paper, we include this exercise

model in both the SH-VPP and DH-VPP and validate these populations relative to clinical

data sets. We used the Hernandez et al. model to enable exercise to impact the peripheral insu-

lin uptake, the peripheral glucose uptake, and the hepatic glucose production components of

the model. Specifically, in the insulin dynamics model in Eq 2, the three insulin sensitivity fac-

tors (Sf1, Sf2 and Sf3) are increased during the exercise bout as shown below in Eq 7.

Sf 1� EX ¼ MPGUMPIUSf 1

Sf 2� EX ¼ MPGUMPIUSf 2

Sf 3� EX ¼ MHGPSf 3

ð7Þ

where, MPGU represents a percentage increment with respect to the basal peripheral glucose

uptake (35 mg/min); MPIU represents an increment of peripheral insulin uptake and MHGP

represents a percentage increment with respect to the basal hepatic glucose production (155

mg/min). These parameters are defined below:

MPGU ¼ 1þ
ΓPGUA � PAMM

35

MPIU ¼ 1þ 2:4� PAMM

MHGP ¼ 1þ
ΓHGPA � PAMM

155

ð8Þ

where, PAMM represents the percentage of active muscular mass. In the testing described fur-

ther below, the value of PAMM was set to 50% because the study participants were running on

a treadmill with moderate intensity. Smaller values of PAMM (� 25%) were reported in [17,

20] for two-legged exercises. ΓPGUA and ΓHGPA are the glucose uptake and production from

the active tissues respectively, and are assumed to have identical values during short-duration

exercise according to Eq (9).

_Γ PGUA ¼ �
1

30
ΓPGUA þ

1

30
Γ PGUA ð9Þ

GPGUA represents the peripheral glucose uptake by active tissue in steady state and is a function

of PVO2max according to the following equation:

Γ PGUA ¼ 0:006ðPVO2maxÞ
2
þ 1:2264ðPVO2maxÞ � 10:1958 ð10Þ

where, PVO2max is the percentage of the maximum oxygen consumption during exercise. It

was calculated using the metabolic equivalents (MET) as shown below:

PVO2max ¼
MET

METmax
ð11Þ

where METmax is the maximum energy expenditure estimated during a VO2max test. The val-

ues of MET and METmax were estimated in the clinical evaluations described further below

with the heart rate and accelerometry data recorded by a Zephyrlife BioPatch. The MET esti-

mation was further personalized by incorporating anthropometric characteristics of each indi-

vidual [21]. During non-exercise periods, MPGU, MPIU and MHGP are close to one, and insulin

sensitivity factors do not change.
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Clinical data

Real-world meal scenarios (Table A in S1 File) were used from 20 patients with T1D who

underwent two separate 3.5-day randomized outpatient AP trials. In one trial, glucose levels

were controlled with insulin and in the other, glucose levels were controlled with both insulin

and glucagon. Subjects were enrolled at the Oregon Health and Science University and the

control algorithm used was the OHSU-FMPD controller [13, 16]. Participants in the study

spent the first and fourth day of the study at the hospital eating known meals and participating

in aerobic exercise at 60% of their maximal VO2. The in-clinic exercise bouts lasted for 45 min-

utes and were performed 2 hours after lunch. Table 1 summarizes the characteristics of the

participants of the study. For more information about the study and participants, refer to Cas-

tle et al. [12] and clinicaltrials.gov (Clinical trial reg. no. NCT02862730).

Single-hormone VPP

A Single-hormone VPP was generated for running single-hormone simulations. The nominal

values given for Sf1, Sf2, and Sf3 from Eq (2) were derived for people without T1D [11]. We

updated Sf1, Sf2 and Sf3 to represent the sensitivity of insulin for people with T1D. TDIR was

used to personalize insulin sensitivity for each virtual patient. TDIR is the amount of insulin

required by a person with diabetes during 24 hours. Insulin sensitivity is inversely proportional

to TDIR. Insulin sensitivity is a measure of how sensitive the body is to insulin. Generally, sub-

jects with higher weight have higher TDIR because a larger body oftentimes requires more

insulin. To consider a range of TDIR values that relate to different insulin sensitivities, we cre-

ated a sensitivity composite (Sc) that ranged from 0.1 to 2; this sensitivity composite was multi-

plied by the nominal values of Sf1, Sf2 and Sf3 in Eq (2) to generate a range of basal insulin

values. Basal insulin (Ibasal) for each sensitivity composite was determined through simulations

where the basal insulin rates at each value of Sc yielded a steady state glucose level of 115 mg/

dl. The units of Ibasal is mU/kg/min, which is also shown in Eq 1. To convert the units of Ibasal
to U/hr., we multiplied Ibasal by a fixed weight of 76.3 kg obtained from the average weight

across a clinical dataset of people with T1D, shown in Table 1. The daily basal requirement

was then computed as Ibasal × 24. This total daily basal insulin requirement (basal-TDIR) did

not include insulin given for meals. The TDIR, which includes meals and basal insulin, was

estimated by multiplying the TDIR by a factor of 1.8 which was empirically validated on an

Table 1. Baseline characteristics of the participants in the AP study [12].

Value Range

Age (years) 35.0 ± 4.7 27–45

Sex Female 14 (70%)

Male 6 (30%)

Weight (kg) 76.3 ± 14.6 55.6–104.7

Height (cm) 172.0 ± 10.1 156.0–189.0

HbA1c (%) 7.6 ± 0.8 6.0–9.1

TDIR (units) 42.3 ± 16.0 18.0–93.0

Duration of Diabetes (year) 20.2 ± 8.0 8.0–37.0

Maximum HREx (bpm) 182.4 ± 9.0 170.0–199.0

Maximum METEx 11.7 ± 2.5 6.5–16.5

HREx: heart rate during exercise; METEx: metabolic equivalent during exercise. Data is reported as mean ± standard

deviation.

https://doi.org/10.1371/journal.pone.0217301.t001
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OHSU clinical dataset across people with T1D, implying that our VPP obtained 44.4% of their

daily insulin from meals and 55.6% of their daily insulin from basal. Walsh et al. [22] intro-

duced a similar impact of basal-TDIR on TDIR. They showed that the basal-TDIR is approxi-

mately 48% of the TDIR.

Fig 2 shows the relationship between the Sc value and the TDIR. Based on the mean TDIR

from a clinical dataset of approximately 45 units/day, an Sc of 0.4 was chosen as the insulin

sensitivity modifier across subjects with T1D. Selection of an Sc of 0.4, results in a correspond-

ing reduction of insulin sensitivity of people in our VPP such that they have a 60% lower insu-

lin sensitivity than people without T1D. A similar relationship between the insulin sensitivity

of people with and without T1D was investigated by Rickels et al. [23] in a euglycemic clamp

study. It is important to note that this Sc of 0.4 for generating a large VPP was determined

using an average weight of 76.3 kg. obtained from a clinical data set of people with T1D.

Under the section “Validating VPPs under real-world meal scenarios” we will show how to

generate Sc values for individual patients with specific weights.

Next, virtual patients with T1D were created by statistically sampling from the distributions

of the updated insulin sensitivity factors given an ad-hoc 75% correlation between Sf1 and Sf2,

and 25% correlation between Sf2 and Sf3. In addition, the weight of the virtual patients was

sampled from a normal distribution, with mean of 76.3 kg and standard deviation of 14.6 kg

that was obtained based on the clinical data described further above.

After sampling the parameters of each virtual patient, the physiologic feasibility of each vir-

tual patient was evaluated through two tests:

1. Steady-state glucose levels of each virtual patient in the absence of insulin should exceed

300 mg/dl.

Fig 2. Estimated TDIR across Sc values. Sc of 0.4 was selected as the insulin sensitivity modifier for people with T1D

for generating VPPs of people with an average weight of 76.3 kg.

https://doi.org/10.1371/journal.pone.0217301.g002
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2. Delivery of high-dose insulin (15 unit/hr) to each virtual patient should result in a low

steady-state glucose level (typically less than 100 mg/dl from the baseline steady-state

glucose).

A total of 99 virtual individuals out of 100 passed the above criteria. Fig 3 shows the histo-

gram of the TDIR values of the single-hormone VPP.

Dual-hormone VPP

For generating DH-VPP, we first followed the instructions of generating single-hormone VPP

and reduced insulin sensitivity factors (Sf1, Sf2 and Sf3) by 60%. Then, we changed the most

sensitive inter-subject parameters (EGP0, Sf1, Sf2 and Sf3, SfGG, kc and kg3) of the glucoregula-

tory model across each subject. Similar to the single-hormone VPP, we assumed a normal dis-

tribution of these parameters and we randomly sampled from these distributions to create a

new virtual patient. To determine the physiologic feasibility of the randomly drawn parame-

ters, each parameter set was required to pass four clinically-relevant criteria, listed below.

1. Steady-state glucose levels in each virtual patient in the absence of insulin should exceeds

300 mg/dl.

2. Delivery of high-dose insulin (15 U/hr) to each virtual patient should result in a low steady-

state glucose level (typically less than 100 mg/dl from the baseline steady-state glucose).

3. Delivery of high-dose glucagon (20 mcg/kg/hr) to each virtual patient should result in a sig-

nificant rise in glucose within 2 hours of the dose, greater than 50 mg/dl above the baseline

steady-state glucose [18].

4. Delivery of a small dose of glucagon (0.2 mcg/kg/hr) to each virtual patient should not

result in a response greater than 100 mg/dl above baseline steady-state glucose [18].

A total of 90 out of 100 virtual patients passed the below criteria and were selected for the

dual-hormone VPP. Fig 3 shows the histogram of the TDIR values of the DH-VPP. Table 2

Fig 3. Histogram of the TDIR values of the clinical patients (left), SH-VPP (middle) and DH-VPP (right).

https://doi.org/10.1371/journal.pone.0217301.g003
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shows all the numerical values of the parameters of the glucoregulatory models. The parame-

ters that were statistically sampled to create the virtual patient populations are shown along

with their standard deviations.

Validating VPPs under real-world meal scenarios

To validate the VPPs, we matched clinical patients with T1D with their virtual twin from the

virtual patient population. In this section, we describe how we matched real-world patients

with T1D with their virtual twin. The 99 single-hormone virtual patients and 90 dual-hormone

virtual patients described above are the patients that should be used typically to run simula-

tions on a glucose control algorithm. For the purpose of validation, we generated 20 new vir-

tual patients that were created to match actual patients with T1D by weight and TDIR. The

only difference between the methods described above and those used to match the clinical

patients with their virtual twin was the determination of Sc values. Unlike the methods

described above whereby the Sc vs. TDIR relationship (Fig 2) was generated using the average
weight of patients (76.3 kg from Table 1), the Sc vs. TDIR for the validation data was generated

individually for each clinical patient using their actual weight. Meal scenarios describing daily

meal content and pattern of consumption were acquired from a previous clinical study assess-

ing single hormone and dual hormone artificial pancreas technologies [12]. Twenty 3.5-day

meal scenarios from the single-hormone clinical trial and twenty 3.5-day meal scenarios from

the dual-hormone clinical trial were collected and used to deliver to the virtual patient popula-

tion (Table A in S1 File). Virtual patients were matched to clinical study participants by closest

match of TDIR and weight. Matching a virtual patient to a study participant was done by first

creating a TDIR vs. sensitivity component (Sc) graph like the one shown in Fig 2 using the par-

ticipant’s actual weight. The Sc that most closely corresponded to a given participant’s TDIR

was determined and a temporary set of 100 virtual patients was generated using the methods

described above under the sections Single-hormone VPP and Dual-hormone VPP. Then, the

TDIR of each of the temporary virtual patients was compared to the participant’s TDIR and

finally the desired virtual patient whose TDIR was the closest was identified. By using this

approach, we ensured that both weight and TDIR of each actual patient were used to identify

the closest virtual patient. This approach was repeated for all 20 actual patients from each

clinical study trial and the 20 closest virtual twins were identified. We then used the same

OHSU-FMPD control algorithm that was used in the outpatient AP studies to control the glu-

cose levels of each of the 20 virtual patients under the dual-hormone and single-hormone meal

scenarios. The control algorithm was implemented in Java and has been previously described

Table 2. The numerical values of the parameters of the glucoregulatory models.

Parameters Values Parameters Values Parameters Values Parameters Values

Fc
01

0.0097 VG 0.16 k12 0.066 tmax,G 40

tmax 55 ke 0.138 VI 0.12 AG 0.8

ka1 0.006 ka2 0.06 ka3 0.03 k1g 0.0065

kge1 0.0772 kge2 0.0357 VdGG 0.19 kge1 0.0772

Sf1 (× 10−4) 21 ± 5.9 Sf2 (× 10−4) 3.5 ± 1.4 Sf3 (× 10−4) 214 ± 5.9 EGP0 (× 10−2) 1.61 ± 0.15

SfGG (× 10−2) 1.7 ± 0.47 kc (× 10−2) 6.0 ± 1.95 kg3 140 ± 39.9 k2g 0.02777

Data is shown as the mean and standard deviation for the variable parameters.

For the SH-VPP, only Sf1, Sf2, Sf3 were sampled across the virtual subjects.

For the DH-VPP, only Sf1, Sf2, Sf3, SfGG, kc, kg3 and EGP0 were sampled across the virtual subjects.

https://doi.org/10.1371/journal.pone.0217301.t002
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[13, 14]. The glucose profiles of the virtual patients were compared with the related actual glu-

cose profiles controlled by the same controller during the in-vivo trial. For the in-silico simula-

tions, the system was further challenged by introducing a randomly selected -30% to 30% meal

uncertainty applied to each carbohydrate intake at each meal scenario. Since insulin is known

to vary during the day [24], circadian variability of insulin sensitivity was introduced to the

insulin sensitivity parameters (Sf1, Sf2 and Sf3) within each virtual patient by varying these

parameters with respect to time of day using Eq (12):

SfiðtÞ ¼ S�fi � ð1þ 0:3sinð
2p

24� 60=Ts
� tþ 2p� RNDÞ; i ¼ 1; 2; 3 ð12Þ

where, RND is a random variable generated from a uniform distribution between 0 and 1; Ts

is the sampling interval (5 minutes). Sfi
� denotes the nominal value of each of the insulin sensi-

tivity factors. The phase of the circadian insulin sensitivity was randomly initialized at the start

of the study using the RND command, and this phase was fixed for all virtual patients. This

approach helped us to compare the performance of all virtual patients similarly as the phase

shift remained constant. We additionally modeled glucose sensor noise using the glucose sen-

sor noise model described by Facchinetti et al. [25, 26]. During this study, meal scenarios and

exercise sessions were imposed on the virtual subjects as determined by the existing study

data. And as described under the section ‘Integration of exercise into the glucoregulatory

model’, the nominal insulin sensitivity (Sf
�) in Eq 12 is changed during exercise according to

Eq 7. It is increased during the exercise period and returned to the original value at the end of

exercise.

Evaluation metrics and statistical analysis

We assessed accuracy of the VPP by comparing the primary outcome measures of the VPP

with primary outcome measures acquired during the clinical study. The primary outcome

measures for the validation of VPPs included the percent time in hypoglycemia (<70mg/dl)

and the percent time in target range (70–180 mg/dl). The secondary outcome measures for val-

idation of the VPPs included the percent time in hyperglycemia (>180mg/dl) and the low and

high blood glucose indices [27]. We report errors in the clinical outcome metrics (e.g. time in

range, time in hypoglycemia, time in hyperglycemia) as mean absolute error (MAE) whereby

error in the VPP outcome metrics are calculated relative to the outcome metrics obtained

from the clinical study. To assess the statistical difference between the simulated and the actual

glucose profiles, the student t-test was used, with significance level set to 5%.

MAE ¼
1

M

XM

i¼1
jOutcomeclinical � Outcomesimulationj ð13Þ

Where M is the number of meal scenarios used in the validation step of the VPPs. The MAE

was computed for each of the outcome metrics.

Results

Fig 3 show the histogram of the patients, SH-VPP and DH-VPP. The range of the TDIR values

of SH-VPP started at 20 units and ended at 120 units. The peak of the histogram was around

40–45 units showing that the TDIR values of the SH-VPP were well-scaled regarding the aver-

age TDIR value shown in Table 1. A similar range is also observable in DH-VPP. The peak of

the histogram occurred for TDIR values between 40–45 units, however the minimum TDIR

spanned to smaller levels for several virtual patients simulating the situations where certain

individuals with T1D may require less insulin.
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Figs 4 and 5 show the comparison between the simulated and the actual glucose profile for

one representative subject in SH and DH trials. Overall, the dynamic responses of the simu-

lated glucose profiles during meal events and exercise bouts were similar to the actual one.

Higher resolution figures comparing the simulations with clinical data are provided in Figs A

and B in S1 File.

Tables 3 and 4 show the clinical study outcomes in comparison with the in-silico control sim-

ulation outcomes of the VPPs. Table 3 shows results from the single-hormone study and Table 4

shows results from the dual-hormone study. The tables also show the statistical analysis of each

outcome and a p-value indicating whether the VPP outcome was statistically different than the

clinical outcome using a two-tailed t-test analysis. For all outcome measures, the SH-VPP was

not statistically different than the true population. The time spent in hyperglycemia was slightly

underestimated by the SH-VPP, which was not significant but was trending towards significant

(p = .08). The MAE of time spent in hyperglycemia was high for SH-VPP showing that the meal

model should be further improved to better represent glucose levels above 180 mg/dl. The out-

come measures for the DH-VPP during the in-silico AP simulation are not statistically different

than the outcome measures for the actual patients during the AP clinical study as shown in

Table 4, however the HBGI is trending towards being significant (p = .06).

Discussion and conclusion

In this paper, we described the design of two T1D virtual patient populations that can be used

to evaluate single-hormone and dual-hormone control algorithms within automated drug

Fig 4. Simulated vs. actual glucose and insulin profiles of one representative subject in single-hormone trial. Both experiments were initialized at 8:00

am. Carbs are shown with circles. Filled circles show the start of exercise. Higher resolution data from this study is shown in Fig A in S1 File.

https://doi.org/10.1371/journal.pone.0217301.g004
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delivery systems for helping people with T1D better manage their glucose levels. These virtual

populations were validated against clinical data acquired from real-world patients with T1D

[12]. The results showed no significant difference between the performance outcome measures

of the VPPs and the true patients when treated with an automated control algorithm interven-

tion and when given identical meals. In this study, we were able to validate the VPP on a

Fig 5. Simulated vs. actual glucose, insulin and glucagon profiles of one representative subject in dual-hormone trial. Both experiments were

initialized at 8:00 am. Carbs are shown with circles. Filled circles show the start of exercise. Higher resolution data from this study is shown in Fig B in S1

File.

https://doi.org/10.1371/journal.pone.0217301.g005

Table 3. Outcome metrics of the single-hormone VPP across the selected virtual patients.

Single Hormone VPP Clinical Results Simulated Results p-value MAE (%)

Time in hypoglycemia (%) 2.8 ± 1.7 3.4 ± 1.3 0.23 2

Time in hyperglycemia (%) 22.9 ± 8.8 18.4 ± 5.3 0.08 9.6

Time in range (%) 74.3 ± 8.1 78.1 ± 5.1 0.11 8.4

LBGI 3.1 ± 1 3.5 ± 0.9 0.24 1.2

HBGI 6.2 ± 1.7 5.9 ± 1.2 0.47 1.9

https://doi.org/10.1371/journal.pone.0217301.t003

Table 4. Outcome metrics of the dual-hormone VPP across the selected virtual patients.

Dual Hormone VPP Clinical Results Simulated Results p-value MAE (%)

Time in hypoglycemia (%) 1.3 ± 1 0.9 ± 0.8 0.19 1.1

Time in hyperglycemia (%) 26.7 ± 11.4 23.5 ± 5.7 0.21 8.8

Time in range (%) 71.9 ± 10.9 75.6 ± 5.5 0.13 8.3

LBGI 2.3 ± 1.3 1.9 ± 0.8 0.30 1.3

HBGI 7.2 ± 2.3 6.2 ± 1.1 0.06 1.9

https://doi.org/10.1371/journal.pone.0217301.t004
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clinical data set whereby patients with T1D were matched with their in-silico virtual twin by

TDIR and weight. Both real patients and virtual patients were given the same meals and exer-

cise regimen while their glucose was controlled using the same control algorithm. It is impor-

tant to emphasize that, while we used just one control algorithm to validate the VPPs, this does

not mean that these VPPs are compatible with just a single control algorithm. Any control

algorithm can now be used with the VPPs. We have simply used a single control algorithm to

validate that when virtual patients and actual patients are given comparable amounts of insu-

lin, glucagon, meals, and exercise, the glycemic outcome metrics between the virtual and actual

patients are not statistically different.

For further evaluating the VPPs, we compared the performance of the SH-VPP with the

free version of the single-hormone UVA/Padova simulator. In this comparison, we only used

10 of the real-world meal scenarios because the UVA/Padova simulator deletes meal events

that occur within 30 minutes of a prior meal. For the purpose of comparison, we eliminated 10

of the 20 meals, which had meal events occurring within 30 minutes of each other. For each of

the 10 selected meal scenarios, a relevant UVA/Padova virtual subject was identified based on

weight and TDIR, similar to the selected virtual patients descried above. Because the single-

hormone UVA/Padova simulator does not have an exercise model, we could only compare

the performance of the UVA simulator with the VPP population at the second day, when no

exercise took place in the study. Table 5 shows the comparison between the single-hormone

VPP, the single-hormone UVA/Padova simulator and the clinical data across the 10 selected

meal scenarios. Both simulators agreed closely on average with the clinical data for the time in

range outcome measure and time in hyperglycemia. However, they misestimated the time in

hypoglycemia compared to the clinical data. The MAE of the UVA simulator relative to the

clinical data for time in range was 33.4%, which was significantly higher than the MAE of

the SH-VPP, which was 15.8%. The MAE for the percent time in hypoglycemia of the UVA/

Padova simulator relative to the clinical data was comparable with the SH-VPP showing

slightly higher error (0.76% for UVA/Padova vs. 1.7% for SH-VPP).

While the SH-VPP and the DH-VPP on average resulted in a good match with the clinical

data, the MAE was higher than we would prefer for the percent time in range and the percent

time in hyperglycemia. This indicates that for certain individuals, there was not always a good

match between the in-silico model and the weight/TDIR matched clinical participant. There

are several reasons why this was the case. First, for the clinical study we did not know the true

meal amount consumed by the patient and instead could only estimate based on their input

during the clinical study. This is why we imposed a +/- 30% variability in the carbohydrate

consumed by the virtual patients at each meal. This meal estimation uncertainty will inevitably

cause error between the participant and the in-silico matched patient. Second, there was

uncertainty of the time when clinical study participants delivered their rescue carbs for times

when their glucose dropped below 70 mg/dl. In our simulations, the virtual patient was given a

rescue carbohydrate 10 minutes after glucose dropped below 70 mg/dl. For the clinical partici-

pant, the rescue carbohydrate delivery could have been given at a different time, which would

Table 5. Comparison between the simulators and the clinical data across the 10 selected meal scenarios.

Simulators/outcomes Time in hypoglycemia (%) Time in hyperglycemia (%) Time in range (%)

Clinical data 0.77 24.72 74.51

SH-VPP 2 (0.01) 15.4 (0.11) 82.6 (0.16)

UVA/Padova 0 (0.02) 30.4 (0.62) 69.6 (0.67)

Data is shown as the mean, and the p-value in parenthesis for the comparison.

https://doi.org/10.1371/journal.pone.0217301.t005

An open-source simulator for evaluation of type 1 diabetes control algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0217301 July 25, 2019 14 / 17

https://doi.org/10.1371/journal.pone.0217301.t005
https://doi.org/10.1371/journal.pone.0217301


contribute to error. Third, it is known that insulin sensitivity can vary throughout the day. We

modeled this insulin sensitivity variability by varying each virtual patient’s insulin sensitivity

by +/- 30% throughout the day. This potentially inaccurate estimation of circadian insulin sen-

sitivity variability could further explain the error observed. Fourth, the exercise model that we

used in the VPP was validated on continuous and non-intermittent aerobic exercise with con-

stant PVO2 [17]. We further assumed in the exercise model that the PAMM was 50% for all

subjects. However, we know that there was some variability in the exertion of the subjects

throughout the exercise sessions and it is probable that the PAMM for all of the subjects was

not exactly 50%. This would have been a cause for further error observed. Palumbo et al. [28]

describe how PVO2max can be adapted to a patients’ specific physiology and adapt based on

duration and intensity of exercise. In the future, we will need to do a similar type of adaptation

to better model the impact of exercise duration, type, and intensity on glycemic control. A fur-

ther reason for differences between the VPPs and the clinical subjects was that the VPP used a

model of the CGM noise that was derived using the Dexcom G4 glucose sensor, whereas the

data collected from the clinical study was done using the Dexcom G5 sensor. Despite these var-

ious factors that contributed to individual differences between the virtual patients and the clin-

ical study participants, we remain confident that on average the SH-VPP and DH-VPP are

sufficiently accurate for use in designing and evaluating AP control algorithms prior to an

actual clinical study. The average outcome measures from the clinical study were not statisti-

cally significantly different than those of the in-silico study. And the MAE was lower than

other stimulators that have been used in the past to evaluate AP control algorithms prior to

in-vivo studies. In the future, we plan to leverage the clinical data set to try to improve our

models by using system identification approaches such as Markov Chain Monte Carlo

(MCMC) approaches. While the goal of the current work was to use the clinical data to esti-

mate the accuracy of the VPP, we can certainly try to achieve a closer match to the clinical

data by identifying each individual’s insulin sensitivity, carbohydrate sensitivity, and exercise

model parameters.

In conclusion, two new single and dual-hormone VPPs were presented and validated

against a clinical data set. On average, there was not a significant difference in outcome mea-

sures between the clinical data and the in-silico data, indicating that both VPPs may be used

for pre-clinical evaluation of AP algorithms.
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