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Abstract

Advancing age is the dominant risk factor for most of the major killer diseases in developed

countries. Hence, ameliorating the effects of ageing may prevent multiple diseases simulta-

neously. Drugs licensed for human use against specific diseases have proved to be effec-

tive in extending lifespan and healthspan in animal models, suggesting that there is scope

for drug repurposing in humans. New bioinformatic methods to identify and prioritise poten-

tial anti-ageing compounds for humans are therefore of interest. In this study, we first used

drug-protein interaction information, to rank 1,147 drugs by their likelihood of targeting age-

ing-related gene products in humans. Among 19 statistically significant drugs, 6 have

already been shown to have pro-longevity properties in animal models (p < 0.001). Using

the targets of each drug, we established their association with ageing at multiple levels of

biological action including pathways, functions and protein interactions. Finally, combining

all the data, we calculated a ranked list of drugs that identified tanespimycin, an inhibitor of

HSP-90, as the top-ranked novel anti-ageing candidate. We experimentally validated the

pro-longevity effect of tanespimycin through its HSP-90 target in Caenorhabditis elegans.

Author summary

Human life expectancy is continuing to increase worldwide, as a result of successive

improvements in living conditions and medical care. Although this trend is to be cele-

brated, advancing age is the major risk factor for multiple impairments and chronic dis-

eases. As a result, the later years of life are often spent in poor health and lowered quality

of life. However, these effects of ageing are not inevitable, because very long-lived people

often suffer rather little ill-health at the end of their lives. Furthermore, laboratory experi-

ments have shown that animals fed with specific drugs can live longer and with fewer age-

related diseases than their untreated companions. We therefore need to identify drugs

with anti-ageing properties for humans. We have used publically available data and a

computer-based approach to search for drugs that affect components and processes

known to be important in human ageing. This approach worked, because it was able to
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re-discover several drugs known to increase lifespan in animal models, plus some new

ones, including one that we tested experimentally and validated in this study. These drugs

are now a high priority for animal testing and for exploring effects on human ageing.

Introduction

Increasing life expectancy in developed countries is revealing advancing age as the primary

risk factor for numerous diseases [1]. Thus, identifying interventions that can ameliorate the

effects of ageing, and consequently delay, prevent or lessen the severity of age-related condi-

tions, are needed. Extensive research in laboratory animals has demonstrated that the ageing

process is malleable and that dietary, genetic and pharmacological interventions can improve

health during ageing, extend lifespan and combat pathologies [2]. Furthermore, humans who

live to advanced ages show lower late-life morbidity (disease burden) than those who die ear-

lier, indicating that compression of morbidity is achievable [3].

Although pharmacological interventions may prove to ameliorate the effects of ageing in

humans, development of new drugs for this purpose would present significant difficulties,

because of the need to treat healthy individuals in clinical trials over long periods for multiple

outcomes. For this reason, it is more feasible to repurpose drugs already approved for specific

diseases, or that passed their safety tests but failed against their original indication, than to tar-

get ageing itself with new drugs [4,5]. With this goal in mind, researchers have begun to con-

duct human clinical trials to assess the anti-ageing properties of drugs approved to treat

human medical conditions, and that extend lifespan and healthspan in animal models. Some

examples include the anti-diabetic drugs metformin (National Clinical Trial (NTC) number:

NCT02432287) [6] and acarbose (NCT02953093), the immunosuppressant sirolimus

(NCT02874924) and related compounds [7,8], and the nutraceutical resveratrol

(NCT01842399). Two natural metabolites, the NAD precursors nicotinamide riboside

(NCT02950441) and nicotinamide mononucleotide [9] are also being investigated. The devel-

opment of computational methods to complement and accelerate this approach, by prioritis-

ing approved drugs that could ameliorate human ageing, is needed.

Several bioinformatic methods have been developed to identify potential geroprotective

drugs. For instance, caloric restriction (CR) mimetics have been identified, by comparing

genes differentially expressed in rat cells exposed to sera from CR rats and rhesus monkeys

with gene expression changes caused by drugs in cancer cell lines [10]. Structural and sequence

information on ageing-related proteins have been combined with experimental binding affin-

ity and bioavailability data to rank chemicals by their likelihood of modulating ageing in the

worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster [11]. Drug-protein

interaction information has also been used to predict novel pro-longevity drugs for C. elegans,
by implementing a label propagation algorithm based on a set of effective and ineffective life-

span-extending compounds and a list of ageing-related genes [12]. A similar approach used a

random forest algorithm and chemical descriptors of ageing-related compounds from the

DrugAge database [13] together with gene ontology (GO) terms related to the drug targets

[14]. Enrichment of drug targets has been assessed for a set of human orthologues of genes

modulating longevity in animal models to identify new anti-ageing candidates [15].

Despite the increasing interest in drug-repurposing for human ageing, research has tended

to focus on predicting life-extending drugs for animal models. However, the translation from

non-mammalian species to humans is still a challenge, and certain aspects of ageing may be

human-specific. Only a few studies have focused on data from humans. For instance, Aliper
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et al. (2016) [16] applied the GeroScope algorithm [17] to identify drugs mimicking the signa-

lome of young human subjects based on differential expression of genes in signalling pathways

involved in the ageing process. Another study by Dönertas et al. (2018) [18] correlated a set of

genes up- and down-regulated with age in the human brain with drug-mediated gene expres-

sion changes in cell lines from the Connectivity Map [19].

In the present study, we rank-ordered drugs according to their probability of affecting age-

ing, by measuring whether they targeted more genes related to human ageing than expected by

chance, by calculating the statistical significance of the overlap between the targets of each

drug and a list of human ageing-related genes using a Fisher’s exact test [20]. Additionally, to

enhance the power of the approach, we mapped the drugs’ gene targets and ageing-related

genes to pathways (KEGG, Reactome), gene ontology terms (biological processes, cellular

components, molecular functions) and protein-protein interactions, and repeated the analysis.

We found that, independently of the data source used, the analysis resulted in a list of drugs

significantly enriched for compounds previously shown to extend lifespan in laboratory ani-

mals. We integrated the results of 7 ranked lists of drugs, calculated using the different data

sources, into a single list, and we experimentally validated the top compound, tanespimycin,

an HSP-90 inhibitor, as a novel pro-longevity drug.

Results

Defining a dataset of drug-protein interactions and ageing-related genes

The drug-ageing association was inferred by comparing drug-gene interactions with gene-age-

ing associations. Fig 1 presents an overview of the procedure to prioritise the compounds. A

dataset containing the interactions between drugs and proteins was built based on data from

the STITCH database [21]. Only drugs targeting human proteins and successfully mapped to

the DrugBank database [22] using the UniChem resource [23] were kept (Fig 1A). The dataset

was composed of 18,393 interactions between 2,495 drugs and 2,991 proteins. More than half

of the drugs (51.1%) in the dataset are approved for human use, 18.6% are in some phase of

the approval process and 28.4% have been shown to bind to disease targets in experiments.

We obtained a set of ageing-related genes from the Aging Clusters resource [24]. A total of

1,216 ageing-related genes discovered in at least 2 among 4 categories of studies were selected.

These 4 categories are human genes: i) changing expression with age or CR in different tissues

ii) whose DNA methylation levels changes with age iii) associated with age-related diseases

and iv) in manually curated databases of genes linked with longevity in genetic studies [25],

associated with cellular senescence [26] or showing ageing-related effects in animal models in

addition to evidence for a causative role in human ageing [27].

Gene-based inference of drug-ageing associations

We determined if there was evidence supporting an association between drugs and ageing-

related genes by calculating the statistical significance of the overlap between the gene targets

of each drug and the ageing-related genes (Fig 1B). From the 1,147 drugs analysed, 19 were sta-

tistically enriched for ageing-related targets after multiple testing correction (Tables 1 and S1).

To assess the capability of the method to prioritise pro-longevity compounds, we compared

the list of top-ranked compounds with the DrugAge database [13]. Six out of the 19 drugs have

already been reported to significantly extend the lifespan of at least one model organism (S1

Text), while only 1 was expected by chance (p< 0.001). Additionally, using literature mining,

we identified studies showing the association with ageing of cAMP analogues [28], selenium

[29,30] and tanespimycin [31,32]. In contrast, we also found evidence for the DNA-mediated,

pro-ageing (anti-longevity) effects of doxorubicin [33], cisplatin [34] and hydrogen peroxide

Drug-repurposing to target ageing
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Fig 1. Overview of the methods used in this study to prioritise compounds likely to ameliorate ageing in humans.

A) STITCH chemicals were mapped into DrugBank drugs using the UniChem resource programmatically. B) The

significance of the drug-ageing inference was calculated using a Fisher’s exact test, which calculates the probability that

the overlap between two samples (ageing-related genes and drug targets) drawn from the same universe is due to

chance. This comparison was made at different biological levels. C) Diagram of the procedure to expand the “gene”

information into multiple biological levels. Ageing-related genes were mapped to other levels using an enrichment

analysis, while the drugs’ targets were cross-referenced with the list of genes defining each annotation.

https://doi.org/10.1371/journal.pcbi.1006639.g001
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[35]. We performed an interaction-based similarity analysis and found that the genotoxic

compounds clustered separately from the other drugs, suggesting that they have a similar

mechanism of action (S1 Text). Similarities were also identified regarding the mechanisms of

action of sorafenib and regorafenib, bexarotene and GW-501516, and lastly sirolimus and

ECGC, in agreement with a previous study [36].

Although drugs interact directly with proteins, proteins do not act alone and interact with

other proteins within pathways to perform different functions. Anti-ageing effects are likely to

be mediated through altered pathway activity and function, and we therefore investigated if we

could enhance the prediction of pro-longevity drugs using other biological annotations as

comparators. Therefore, we calculated the pathways and gene functions enriched in ageing-

related genes, together with the proteins that interact with them. A total of 82 KEGG and 54

Reactome pathways were enriched in this set of genes, as well as 1,177 biological processes, 69

cellular components and 103 molecular functions. In addition, we calculated that 676 proteins

interacted with the set of ageing-related genes. These terms, mapped at different biological lev-

els, were defined as the set of ageing-related terms (Fig 1C–left). Equivalently, drugs were then

associated with these terms through association with their targets using the list of genes defin-

ing each term according to the DAVID knowledgebase [37] and the biological database net-

work [38]. This mapping procedure resulted in a set of terms from each data source related to

each drug (drug-related terms) (Fig 1C–right).

Drug-ageing association based on protein-protein interactions, gene

ontology and pathways

Analogously to the gene-based association analysis, we calculated for each biological level if

the overlap between ageing-related terms and drug-related terms was statistically significant

Table 1. Drugs significantly enriched for ageing-related targets. The names of the drugs previously shown to extend lifespan in animal models are in bold and geno-

toxic molecules are in italic. The columns k(l) and m(n) are consistent with the diagram in Fig 1B. OR stands for odd-ratios and adj.p-value is the p-value adjusted for mul-

tiple testing.

Drug name Status k(l) m(n) OR p-value adj.p-value

Resveratrol Investigational 66(150) 388(2221) 2.52 2.09E-08 1.82E-04

Sunitinib Approved 18(12) 436(2359) 8.11 4.92E-08 2.15E-04

Genistein Investigational 41(80) 413(2291) 2.84 6.40E-07 1.86E-03

Simvastatin Approved 39(77) 415(2294) 2.80 1.53E-06 3.35E-03

Tanespimycin Investigational 15(12) 439(2359) 6.71 2.64E-06 4.62E-03

Regorafenib Approved 12(7) 442(2364) 9.16 4.43E-06 6.45E-03

Epigallocatechin gallate Investigational 42(93) 412(2278) 2.50 5.96E-06 7.44E-03

Doxorubicin Approved 34(67) 420(2304) 2.78 7.20E-06 7.87E-03

Selenium Approved 14(12) 440(2359) 6.25 9.44E-06 9.17E-03

Celecoxib Approved 23(36) 431(2335) 3.46 1.58E-05 1.38E-02

Indole-3-carbinol Investigational 13(11) 441(2360) 6.32 1.83E-05 1.46E-02

Hydrogen peroxide Investigational 59(165) 395(2206) 2.00 2.85E-05 2.07E-02

GW-501516 Investigational 9(5) 445(2366) 9.56 6.23E-05 3.82E-02

Bexarotene Approved 10(7) 444(2364) 7.60 6.98E-05 3.82E-02

Dorsomorphin Experimental 10(7) 444(2364) 7.60 6.98E-05 3.82E-02

Sorafenib Approved 23(41) 431(2330) 3.03 7.25E-05 3.82E-02

Sirolimus Approved 37(88) 417(2283) 2.30 7.42E-05 3.82E-02

Cisplatin Approved 34(78) 420(2293) 2.38 8.39E-05 4.07E-02

cAMP Experimental 36(86) 418(2285) 2.29 1.00E-04 4.60E-02

https://doi.org/10.1371/journal.pcbi.1006639.t001
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using a Fisher’s exact test. This procedure generated 6 lists of ranked compounds in addition

to the gene-based analysis (S1 Table). Notably, when we evaluated the correlation between the

ranking of compounds in the different lists (Fig 2A), we observed a moderate correlation

(Kendall’s coefficient of concordance W = 0.58, p-value = 1.02E-266). The highest correlations

were observed between the results from biological processes and cellular components (Ken-

dall’s tau = 0.51, p-value < 2.2E-16), while the lowest was observed between cellular compo-

nents and genes (Kendall’s tau = 0.16, p-value = 3.289E-11).

Because in any enrichment analysis there is a potential for research bias, we performed ran-

dom permutations to simulate the enrichment of each drug for a different set of terms at each

level. None of the top-ranked drugs in each list ranked higher than in the analysis in more

than 1.7% of the simulations (Table A in S1 Text). We also quantified the capability of the

strategy to prioritise pro-longevity compounds by calculating for each list the fraction of

known pro-longevity compounds (ranked by p-value) among the fraction of drugs considered

in each analysis (Fig 2B). The enrichment for pro-longevity compounds was quantified by cal-

culating the area under the curve (AUC) generated by plotting these two variables. The maxi-

mum AUC was obtained when biological processes (AUC = 0.69) was used as the comparator

(Fig 2 in S1 Text). The use of genes showed the lowest enrichment when non-statistically sig-

nificant drugs are considered (AUC = 0.59), which suggests that the use of higher biological

levels to calculate the inference improves the prediction capabilities, and that the use of genes

leads to a loss of power to rank drugs targeting a low proportion of ageing-related genes,

which is observed in Fig 2B as a loss of enrichment after 25% of the drugs were ranked. We

evaluated if the AUCs were statistically significant by calculating the AUC from the simula-

tions generated to quantify the research bias. The p-value for each curve was calculated by

determining the number of simulated results with an AUC equal or higher than the analysis.

All lists showed a higher enrichment than expected by chance (AUC > 0.5 and p-value < 0.05,

Table B in S1 Text). When we only considered the first 20 top-ranked drugs, we observed that

using biological processes or cellular components to perform the comparison showed the high-

est proportion of pro-longevity drugs (45%), while only 2 pro-longevity drugs (10%) were

found among the top 20 drugs when KEGG pathways were used.

Since our method is based solely on interactions, it should be able to prioritise both pro-

and anti-longevity drugs (as we observed in Table 1). For this reason, and although the number

of drugs reported to decrease lifespan in animal models is smaller than the set of pro-longevity

Fig 2. Comparison between the results using different data sources. A) Correlation between the ranked list of compounds. Boxes are coloured by the Kendall’s

correlation coefficient. Enrichment curves for B) pro-longevity drugs and C) anti-longevity drugs. The results of each data source are displayed in lines with different

colours. The enrichment expected by chance is shown as a diagonal line with AUC = 0.5.

https://doi.org/10.1371/journal.pcbi.1006639.g002
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drugs, we decided to repeat the enrichment analysis using anti-longevity drugs (Fig 2C). As

expected, (because of the dataset size) the enrichment for anti-longevity drugs was lower than

for pro-longevity drugs (Fig 2 in S1 Text). The highest AUC was observed when cellular com-

ponents was used (AUC = 0.63), while using genes showed the lowest enrichment for anti-lon-

gevity drugs (AUC = 0.54).

Because there are various cutoff values that can be selected to define the dataset of drug-

protein/protein-protein interactions and enriched GO terms/pathways, we also repeated the

analysis using different confidence scores (for STITCH and STRING) and p-value cutoff (for

Gene Ontology and Pathways), to explore its influence on the performance of the method. In

the case of the enrichment for pro-longevity drugs, we do not observe a major change in the

AUC when higher or lower confidence scores were used (Fig 2 in S1 Text), while the selection

of a lower p-value cutoff leads to the same (GO:CC and KEGG) or lower (GO:MF and Reac-

tome) enrichment and the use of higher p-value cutoff to a decrease (GO:MF and Reactome)

or increase (GO:CC and KEGG) in the AUC. A similar lack of trend was observed in the

enrichment for anti-longevity drugs. In general, the cutoffs that we used initially (p-value of

0.05 and confidence score of 700) maximised the enrichment for pro-longevity drugs when

genes, Reactome pathways and molecular functions were used.

Considering the lack of overlap between the ranked lists using the different data sources, we

decided to integrate the results into a single list accounting for the complexity of multitiered

effect of drugs by calculating their ranking average in the different analyses. The combination

generated a list equally enriched as the maximum AUC obtained by the previous analysis

(AUC = 0.69). Among the top 10 drugs with the best average ranking (Tables 2 and S1), we

found 3 drugs that have extended lifespan in animal models (trichostatin [39], geldanamycin

[10] and celecoxib[40]). Half of these 10 drugs are classified as kinase inhibitors, while 8 are

indicated as anti-cancer drugs and 7 are approved for human use.

The HSP-90 inhibitor tanespimycin as a novel pro-longevity drug

Leading the joint ranking was tanespimycin, also known as 17-AAG, a well-characterized

HSP-90 inhibitor that has been shown to activate the transcription factor HSF-1 and induce a

heat shock response [32]. As a proof-of-principle, we decided to investigate whether tanespi-

mycin could activate HSF-1 and extend lifespan in the nematode worm C. elegans. To test the

efficacy of tanespimycin dosing in C. elegans, we grew worms expressing mCherry under the

Table 2. Top-ranked compounds using multiple levels of biological action. The names of the drugs previously shown to extend lifespan in animal models are in bold.

The numeric values represent the ranking of the drugs when different sources of data (columns) are used. The last column is the ranking average (Avg.) for each drug in

the 7 ranked lists.

Drug name Status Genes PPI Gene ontology Pathways Avg.

BP CC MF KEGG Reactome

Tanespimycin Investigational 5 26 57 43 44 39 9 31.86

Imatinib Approved 63 3 21 34 12 66 38 33.86

Sunitinib Approved 2 1 59 31 31 56 63 34.71

Trichostatin Experimental 83 41 19 54 13 41 52 43.29

Geldanamycin Investigational 32 37 87 76 47 13 21 44.71

Sorafenib Approved 16 68 11 15 8 155 42 45.00

Dasatinib Approved 41 12 43 81 62 49 35 46.14

Erlotinib Approved 27 6 93 85 71 64 7 50.43

Etoposide Approved 23 11 20 90 32 120 67 51.86

Celecoxib Approved 10 2 33 42 34 180 70 53.00

https://doi.org/10.1371/journal.pcbi.1006639.t002
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control of an HSF-1 responsive promoter [41] on solid media plates containing various doses

of tanespimycin. Worms were exposed to tanespimycin continuously from the first larval stage

(L1) of development, or exclusively from the first day of adulthood. Worms grown continu-

ously on tanespimycin plates exhibited a dose-dependent activation of the HSF-1 transcrip-

tional reporter, starting at 25 μM and peaking at 100 μM (Fig 3A and 3B). Similarly, exposure

to tanespimycin plates exclusively in adulthood resulted in significant activation of the HSF-1

reporter at 50 and 100 μM concentrations. No markers of toxicity were observed in any treat-

ment groups, except for the 100 μM larval group, which were developmentally delayed by 24

Fig 3. Pro-longevity effect of tanespimycin in C. elegans. A) Representative fluorescent images of day 6 adult, hsp-16.2p::mCherry transcriptional reporter worms,

grown on plates containing 0.1% DMSO (vehicle) or different concentrations of tanespimycin (17-AAG) continuously from the first larval stage, or exclusively from the

first day of adulthood onward. B) The relative fluorescent intensity of hsp-16.2p::mCherry worms grown on plates containing 0, 1, 10, 25, 50, or 100 μM tanespimycin

(17-AAG) continuously from the first larval stage or exclusively from the first day of adulthood onward. Values plotted are the mean of at least 5 animals, and error bars

represent the standard deviation from the mean. Statistical significance relative to the DMSO control group was calculated by ONE-WAY ANOVA with Tukey post

analysis pairwise comparison of groups. � = p< 0.05, �� = p< 0.01, ��� = p< 0.001. C) Lifespan at 20˚C of N2 worms grown on plates containing 0.1% DMSO or

100 μM Tanespimycin (17-AAG) from the first day of adulthood onward in the presence of empty vector control or hsp-90(RNAi). Statistical significance was calculated

by Log-rank (Mantel-Cox) text. ��� = p< 0.001. Treatment groups: 0.1% DMSO (n = 102, 14 censored, median lifespan = 17 days), 100 μM tanespimycin (n = 107, 9

censored, median lifespan 21 days), 0.1% DMSO + hsp-90(RNAi) (n = 69, 30 censored, median lifespan = 15 days), 100 μM tanespimycin + hsp-90(RNAi) (n = 92, 22

censored, median lifespan = 15 days). D) Relative hsp-90 mRNA levels 48 hours following exposure to empty vector control or hsp-90(RNAi). Levels of hsp-90 mRNA

were normalized to the geometric mean of three house-keeping genes (cdc-42, rpb-2, and pmp-3). Values plotted are the mean of 3 biological replicates and error bars

represent standard deviation. Significance levels were calculated as in Fig 3B.

https://doi.org/10.1371/journal.pcbi.1006639.g003
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hours and had a significantly reduced brood size (S1 Fig), consistent with chronic HSP-90

inhibition [42]. Together, these data demonstrate that tanespimycin activates HSF-1 in C. ele-
gans and that treatment exclusively in adulthood is not associated with overt toxicity.

We next sought to determine whether tanespimycin treatment could extend lifespan in C. ele-
gans. To circumvent potential longevity effects arising from delayed development and reproduc-

tion, we exposed worms to 100 μM tanespimycin plates from the first day of adulthood.

Tanespimycin treatment significantly extended median and maximal lifespan compared to vehi-

cle-treated controls (Fig 3C). To determine whether the effects of tanespimycin on lifespan

require hsp-90, we also exposed worms to tanespimycin treatment in the presence of hsp-90
(RNAi). Consistent with previous reports, [43] hsp-90(RNAi) treatment significantly reduced

hsp-90 mRNA levels compared to empty vector treated controls (Fig 3D), and significantly short-

ened C. elegans lifespan (Fig 3C) [43]. Furthermore, upon depletion of HSP-90, tanespimycin

treatment no longer increased lifespan compared to vehicle controls (Fig 3C). These data suggest

that tanespimycin treatment extends lifespan in an hsp-90 dependent manner, but that severe

depletion of HSP-90 is toxic to animals, despite the activation of protective stress responses.

Discussion

This study was designed to infer and rank drugs matched to ageing at multiple levels of biologi-

cal activity using a simple statistical test. In an initial gene-centric analysis, 19 drugs were identi-

fied as candidates expected to modulate ageing in humans. A major finding was that 6 of the

statistically significant drugs, resveratrol, genistein, simvastatin, epigallocatechin gallate, cele-

coxib and sirolimus, have already shown lifespan-extending properties in experimental studies

in model organisms. This statistically significant enrichment suggests that, despite its simplicity,

the method is able to prioritise pro-longevity compounds. We then expanded the analysis to

higher levels of biological complexity, and again found a statistically significant enrichment for

pro-longevity drugs in all cases. The results of the analysis at different levels showed a moderate

correlation. Compounds ranked high on average included trichostatin, geldanamycin and cele-

coxib, 3 drugs with pro-longevity effects in animal models [10,39,40]. The compound ranked

highest on average was tanespimycin, an HSP-90 inhibitor, shown to acts as a senolytic agent by

killing human senescent cells without affecting the viability of healthy cells [31] and to amelio-

rate disease phenotypes in Drosophila models of Huntington’s disease and spinocerebellar ataxia

[32]. We found that tanespimycin treatment extended median (23%) and maximum (16%) life-

span in C. elegans, through its target HSP-90, possibly through the induction of cytoprotective

pathways. Tanespimycin must act through more than one mechanism as a geroprotector,

because cellular senescence has not been reported to occur in C. elegans.
Evidence from the literature supports the senolytic action of other drugs that we identified

as potentially geroprotective. Dasatinib, a kinase inhibitor ranked 7th on average, has been

reported to induce apoptosis in senescent preadipocytes [44]. Combination of dasatinib and

quercetin, which also inhibits HSP-90, induced apoptosis in senescent murine mesenchymal

stem cells and mouse embryonic fibroblasts in vitro, improved cardiovascular function in aged

mice, and decreased bone loss and age-related symptoms in progeroid mice [44].

Three of the top 10 compounds from the combined ranked list have previously been pro-

posed as anti-ageing candidates for humans using bioinformatic analysis. Specifically, tanespi-

mycin, geldanamycin and trichostatin were among the 24 drugs predicted by Dönertas et al.

(2018) [18] and Calvert et al. (2016) [10]. In contrast, we did not observe any overlap with the

top results from Fernandes et al. (2016)[15] possibly due to the use of a different drug-protein

interaction database (DGIdb [45]) or source of ageing data. Even though our method focused

on predicting drugs affecting human ageing and not ageing of animal models, we noticed that
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three of the drugs in our final list (Table 2) also overlap with the results of Ziehm et al 2017 [11]

(i.e. sorafenib, imatinib, dasatinib) and one with the results of a previous study conducted by

Snell et al 2018 [46] (i.e. erlotinib), meaning that 70% of our top 10 drugs candidate drugs have

been previously predicted to influence longevity by other drug-repurposing methods for ageing.

Similar enrichment-based methods that combine multiple levels of biological information

have been used for drug-repurposing for Rheumatoid arthritis, Parkinson’s disease and Alz-

heimer’s disease [47,48], but not, to our knowledge, to identify anti-ageing drugs. Using anno-

tated databases, our method evaluated the enrichment for pro- and anti-longevity effects of all

compounds analysed, rather than only those with significant scores, and we observe that in all

cases pro- and anti-longevity compounds are ranked higher than expected by chance. Unfor-

tunately, the research bias towards publishing the results of experiment that lead to an exten-

sion of the animal model lifespan instead of drugs causing negative or no effect on longevity,

makes it difficult to assess the specificity of the method (false discovery rate) or to implement

machine learning models using a balanced positive and negative set. Although tanespimycin

acts as a senolytic [31], and has been predicted to be geroprotective by two previous studies

[10,18], we have demonstrated its effect on longevity experimentally.

A limitation of this study is that it is based on previous knowledge about drug-protein inter-

actions, which for non-commonly studied drugs is incomplete. This may explain why we

observed many anti-cancer and well-known drugs in our results. While we assessed this bias

using permutations and we found no significant effect on our results, further research is

needed to increase the drug-protein interactome data using, for example, high-throughput

technologies like those currently available for kinases [49]. While we combined the results

from the different data sources using a strategy based on ranks, we hypothesise that integration

of these results using other methods may lead to a list with a higher enrichment for pro-lon-

gevity drugs. Additionally, further experimental testing is required on the lists produced in

this study, particularly those generated by using gene ontology terms, which presented the

highest enrichment for pro-longevity drugs. An inherent limitation of inferred associations is

that they do not provide information about the directionality of the effect, which in this case

means that it is unknown if the drugs will ameliorate ageing or the opposite. While we indi-

rectly assessed this using an interaction-based similarity analysis between the drugs, resulting

in clusters or pairs of drugs with similar mechanism of action, experiments should be con-

ducted to determine the effects of each drug on ageing. Finally, a practical limitation is that we

validated the results of this study using experiments in animal models although we used

human data to perform the analysis. Although testing the effects of drugs on human ageing is

challenging, progress is starting to be made. A clinical trial conducted by Mannick et al. (2018)

[8] showed that pharmacological inhibition of the mammalian target of rapamycin in humans

by dactolisib plus everolimus enhances the response of elderly people to immunisation against

influenza and reduces the rate of subsequent infections. Moreover, a recent short-term clinical

trial of sirolimus established its safety in healthy individuals [50]. Similarly, supplementation

of nicotinamide ribose, identified as a possible CR mimetic, stimulated NAD+ metabolism in

healthy individuals aged 55 to 79 years [51]. Some mechanisms of ageing may be confined to

humans and their near relatives, and ideally, the bioinformatic findings should be evaluated in

humans, initially through genetic epidemiology and ultimately through clinical trials.

Methods

Data sources

Drug-protein interaction dataset. Chemical-protein interactions were extracted from

the Search Tool for Interactions of Chemicals (STITCH) database 5.0 [21]. We chose this
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resource because it acts as a probabilistic network, by collecting interactions from multiple

sources, including experiments, databases and a text-mining algorithm. Individual scores for

each source are combined into an overall confidence score using a naive Bayesian formula

defined as Score ¼ 1 �
Q

ið1 � SiÞ, where Si represents the confidence score for the source i.

Later, because the Bayesian combination of scores can overestimate the effect of small individ-

ual contributions, the score is corrected for the probability of observing an interaction by

chance. The overall confidence score ranges from 0 to 1, where a value of 0.4 or greater is con-

sidered as medium confidence, and a score equal to or higher than 0.7 is regarded as high con-

fidence. To obtain a reliable set of interactions, we removed all interactions with a confidence

score lower than 0.7. The database also maps the direction of each interaction, i.e. whether

chemical acts on the protein or if the protein modifies the chemical (e.g. transformation of the

chemical during a catalytic reaction). To confine the analysis to the actions of chemicals on

proteins, only the cases where the chemical activates or inhibits a protein were retained. To

focus on drugs in development or approved for human use, we filtered the chemicals in

STITCH by the drugs in DrugBank 5.0 [22] using UniChem [23]. The InChi key for each drug

was retrieved from PubChem (http://pubchemdocs.ncbi.nlm.nih.gov/pug-rest) and used to

obtain the DrugBank identifiers via UniChem (https://www.ebi.ac.uk/unichem/info/

webservices). The names of the drugs were obtained from the DrugBank vocabulary file, and

the development status was acquired using the structure external links file. Finally, we mapped

the Ensembl identifiers for each protein into HUGO Gene Nomenclature Committee

(HGNC) approved gene names using Ensembl Biomart (version 91) [52]. All the chemicals

included in this dataset will be referred as “drugs” or “compounds” throughout this article.

Drug-related terms. We mapped the targets of each drug in the drug-protein interaction

dataset to multiple biological levels by using the information about the genes that define each

level analysed. We downloaded the gene-centric definitions of GO terms and Reactome path-
ways from the DAVID knowledgebase [37]. Genes on each KEGG pathways were obtained

using the biological database network (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php)[38].

Protein-protein interactions were mapped directly using the STRING database [53]. Only pro-

teins interacting with the set of ageing-related genes with a confidence equal of higher than 0.9

were considered.

Ageing-related genes. Genes present in manually-curated databases are more susceptible

to research and reporting bias than those found in objective searches. Instead of selecting a set

of ageing-related genes from a particular study or database, we used genes linked with ageing

from the Ageing Clusters resource (https://gemex.eurac.edu/bioinf/age/). This repository con-

tains the results of a network-based meta-analysis of human ageing genes [24] that considered

35 different datasets. The author classified the genes into the following 4 categories: curated

ageing-related genes from databases such as GenAge [27], LongevityMap [25] and CSGene

[26]; genes differentially expressed with age, regimes of CR or healthy ageing; age-related

changes in the methylation of cytosine guanidine dinucleotides (CpGs) in the DNA; and genes

associated with age-related diseases from databases such as the Human Gene Mutation [54] or

the Human Phenotype Ontology [55]. To improve the reliability of the set of ageing-related

genes and reduce research bias we considered only the genes present in at least two categories.

Ageing-related terms. Using the set of ageing-related genes we performed gene-based

enrichment analysis to infer the function and pathways associated with ageing. Gene Ontology
(BP, CC, MF) terms were calculated using the enrichGO function from the clusterProfiler

package [56], using the Benjamini and Yekutieli [57] method for adjustment, a conservative

correction that does not rely on the assumption that the test statistics are independent. The

adjusted p-value cutoff was set to 0.05 and for biological processes we consider the top 500

terms enriched. Enriched KEGG pathways were determined using the enrichKEGG function
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from the clusterProfiler package, using the same parameters used for the gene ontology enrich-

ment. Reactome pathways were calculated using the function enrichPathway from the Reacto-

mePA package [58]. Protein-protein interactions, were obtained using STRING [53] database.

Statistical analysis to rank the drugs

Independently of the biological level, the drug-ageing associated was inferred by calculating

the statistical significance of the drug-related terms and ageing-related terms using a Fisher’s

exact test. Drugs were associated with ageing at the following biological levels: gene, pathways

(KEGG, Reactome), functions (GO:BP, GO:CC, GO:MF) and indirect protein interactions.

The universe was defined as all the terms on each level associated with at least one drug. Thus,

drugs with a lower p-value modulate a higher proportion of ageing-related terms than that

expected by chance. To control for the false discovery rate, we used the Benjamini and Yeku-

tieli adjustment [57]. A p-value lower than 0.05 after multiple testing correction was consid-

ered significant.

Measuring the impact of research bias

Some drugs have been more studied than others, which could bias the results towards drugs

with a higher proportion of discovered targets. To evaluate the impact of this research bias, we

randomly selected the same number of terms that were used as ageing-related terms 1,000

times, and we repeated the statistical analysis. Then we counted the times the statistically sig-

nificant drugs appeared on the same or lower ranking. We expected that drugs associated with

many terms would rank higher independently of the random set generated.

Enrichment for pro- and anti-longevity drugs

Each of the drug lists generated were ranked by the p-values obtained from the statistical analy-

sis. Then, we transformed the ranking of the drug into a value ranging from 0 to 1. A set of 142

pro-longevity drugs and 30 anti-longevity drugs present in the DrugAge and DrugBank data-

bases were used to determine the occurrence and ranking of pro- and anti-longevity com-

pounds in the lists, respectively. The ranking was then scaled into a value between 0 to 1. The

AUC between the variables describing the pro-longevity drugs and drugs analysed was calcu-

lated using the function AUC from the DescTools package (https://cran.r-project.org/package=

DescTools). To measure its statistical significance, we calculated the AUC of the lists previously

generated to measure the research bias, and we counted the number of simulations with an

equal or higher AUC.

Experimental procedure

Worm husbandry and lifespan. N2 and TJ3002 (zSi3002[hsp-16.2p::mCherry::unc-54;

Cbr-unc-119(+)] II) ] hermaphrodite worms were maintained as previously described [59] at

20˚C on 60 mm NGM plates. Plates were seeded with Escherichia coli (OP50) grown overnight

in LB media. RNAi was essentially performed as previously described [60] with the slight mod-

ifications that bacterial cultures were induced with 5 mM IPTG for 3 hours following over-

night growth in LB, and tetracycline was not included in plates or bacterial cultures.

Tanespimycin dose-response test. Tanespimycin (Fisher Scientific) was solubilized in

DMSO to stock concentrations of 1, 10, 25, 50, and 100 mM. 1 ml of DMSO or tanespimycin

solutions were added to each litre of NGM media just prior to plate pouring to reach final con-

centrations of 1, 10, 25, 50, and 100 μM in plates. Plates were kept away from light, stored at

4˚C, and used within 2 weeks of pouring. TJ3002 reporter worms were synchronised by
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bleaching and added to 0.1% DMSO or tanespimycin plates as L1s or as day 1 adults. Worms

were transferred to fresh plates every day and then imaged on day 6 of adulthood using a Zeiss

Apotome fluorescent microscope and Hamamatsu Orca Flash 4.0 camera. Brightness and con-

trast were adjusted linearly, and equally, for all images, using Adobe Photoshop CS6. Fluores-

cence intensity was measured under different conditions using ImageJ. Significance testing of

differences in fluorescence intensity were calculated by ONE-WAY ANOVA with Tukey pair-

wise comparison of groups using GraphPad Prism.

Lifespan assays. Gravid N2 adults were bleached to release eggs, and L1 larvae were

allowed to hatch overnight in M9 buffer without food. L1 worms were then added to plates

seeded with bacteria expressing an RNAi control vector (L4440) and containing 0.1%

DMSO. Worms were added to plates at a density of approximately 50 worms per plate. On

the first day of adulthood (50h post plating L1s), worms were transferred to new 0.1%

DMSO plates or 100 μM tanespimycin plates, seeded with L4440 or bacteria expressing

dsRNA against hsp-90 (hsp-90(RNAi)). Worms were transferred to fresh plates every day

during the first 7 days of adulthood and every other day thereafter. Worms were scored for

survival every two days by gently prodding animals repeatedly with a platinum wire. Ani-

mals that failed to exhibit signs of movement or pharyngeal pumping were scored as dead.

Animals that displayed internal hatching of progeny (“bagging”) or prolapse of intestine

through the vulva (“rupturing”) were censored from our analysis. Median lifespans and sig-

nificance testing between lifespans of different treatment groups were performed in Graph-

Pad Prism using a Log-rank (Mantel-Cox) test.

Real-time quantitative PCR in C. elegans. Approximately 50 worms per treatment group

were collected and snap frozen in 20 μl of M9 buffer, 48 hours after exposure to empty vector

control or hsp-90(RNAi). Worms were lysed in Trizol reagent and RNA was extracted using a

Qiagen RNeasy micro-kit. 1 μg of RNA was used to generate cDNA using BioRad iScript

supermix, and real-time quantitative PCR of resulting cDNA (diluted 1:10 with nuclease free

water) was performed using BioRad SsoAdvanced Universal SYBR green supermix and a

BioRad CFX96 Real-time quantitative PCR system. Quantification of relative mRNA levels

was performed using the standard curve method and hsp-90 levels were normalized to the geo-

metric mean of three housekeeping genes (cdc-42, rpb-2, and pmp-3). All kits and master

mixes were used as per manufacturer’s instructions. The primers used were as follows:

hsp-90 forward–GACCAGAAACCCAGACGATATC

hsp-90 reverse–GAAGAGCACGGAATTCAAGTTG

cdc-42 forward–TGTCGGTAAAACTTGTCTCCTG

cdc-42 reverse–ATCCTAATGTGTATGGCTCGC

rpb-2 forward–AACTGGTATTGTGGATCAGGTG

rpb-2 reverse–TTTGACCGTGTCGAGATGC

pmp-3 forward–GTTCCCGTGTTCATCACTCAT

pmp-3 reverse–ACACCGTCGAGAAGCTGTAGA
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S1 Text. Description of the anti-ageing properties and similarities of top candidate drugs.

Research bias and influence of the cutoff selection.
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S1 Fig. Exposure to high doses of 17-AAG early in life can delay development and reduce

brood size. A) Proportion of the population that had reached adulthood 52 and 76 hours post

seeding of L1 worms to plates containing 0.1% DMSO or increasing concentrations of

17-AAG. B) Total number of progeny produced by worms exposed to 0.1% DMSO or increas-

ing concentrations of 17-AAG from the first larval stage (L1) onward or from the first day of

adulthood. The number of progeny produced by individual worms on days 1 to 5 of adulthood

was counted and combined. 10 worms were scored per treatment group and values plotted are

the mean. Error bars denote standard deviation. Statistical significance was calculated by one-

way ANOVA with Tukey pairwise comparison of groups. ��� = p< 0.001.
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