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Abstract
The regulation of cerebral blood flow (CBF) is a complex and tightly controlled function ensuring delivery of oxygen and 
nutrients and removal of metabolic wastes from brain tissue. Cerebral vasoreactivity (CVR) refers to the ability of the nervous 
system to regulate CBF according to metabolic demands or changes in the microenvironment. This can be assessed through 
a variety of nuclear medicine and imaging techniques and protocols. Several studies have investigated the association of 
CVR with physiological and pathological conditions, with particular reference to the relationship with cognitive impairment 
and cerebrovascular disorders (CVD). A better understanding of the interaction between CVR and cognitive dysfunction in 
chronic and particularly acute CVD could help improving treatment and rehabilitation strategies in these patients. In this 
paper, we reviewed current knowledge on CVR alterations in the context of acute and chronic CVD and cognitive dysfunction. 
Alterations in CVR and hemodynamics have been described in patients with both neurodegenerative and vascular cogni-
tive impairment, and the severity of these alterations seems to correlate with CVR derailment. Furthermore, an increased 
risk of cognitive impairment progression has been associated with alterations in CVR parameters and hemodynamics. Few 
studies have investigated these associations in acute cerebrovascular disorders and the results are inconsistent; thus, further 
research on this topic is encouraged.
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Abbreviations
AD	� Alzheimer’s disease
BHI	� Breath-holding index
BHT	� Breath-holding test
CBF	� Cerebral blood flow
CT	� Computerized tomography
CVD	� Cerebrovascular disorders
CVR	� Cerebral vasoreactivity
EDV	� End diastolic velocity
fMRI	� Functional MRI
MCA	� Middle cerebral artery

MCI	� Mild cognitive impairment
MVF	� Mean velocity flow
NIRS	� Near-infrared spectroscopy
NVU	� Neurovascular unit
OSAS	� Obstructive sleep apnea syndrome
PET	� Positron emission tomography
PI	� Pulsatility index
PSD	� Post-stroke dementia
PSV	� Peak systolic velocity
PECT	� Photon emission computed tomography
SVD	� Small vessel disease
TCD	� Transcranial Doppler
VD	� Vascular dementia

Introduction

Cerebral circulation delivers oxygen and nutrients and 
removes metabolic products from the brain tissue to ensure 
neuronal health and brain function. The high metabolic 
needs of the brain require a large volume of blood flow, 
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comprising almost 20% of the total cardiac output. There-
fore, the regulation of cerebral blood flow (CBF) is a com-
plex and tightly controlled function (Aaslid 2006; Wolf 
2015; Ashby and Mack 2021). The main mechanisms 
modulating cerebral hemodynamics, with the aim of adapt-
ing CBF to the metabolic demand of the brain, are cerebral 
autoregulation, vasomotor reactivity and neurovascular cou-
pling (Claassen et al. 2021).

Cerebral autoregulation refers to the intrinsic abil-
ity of blood vessels to maintain CBF relatively constant 
within a wide range of values of systolic blood pressure 
(50–150 mmHg). Beyond these boundaries, CBF depends 
passively on perfusion pressure, thus entailing potentially 
harmful hypo- or hyperperfusion of cerebral tissue (Paul-
son et al. 1990). Cerebral autoregulation is accomplished 
through interactions and overlap of three different mecha-
nisms (Wolf 2015): metabolic regulation, mediated by the 
release of vasoactive substances when oxygen is needed; 
myogenic regulation, mediated by adaptation of vascular 
tone to transmural blood pressure; and neurogenic regula-
tion, mediated by sympathetic innervation of the vascular 
smooth cells. Interactions among these three components 
have been recently incorporated into the concept of neuro-
vascular unit (NVU), a complex multi-cellular and extra-
cellular structure consisting of endothelial cells, neurons, 
glia, smooth muscle cells, pericytes and extra-cellular 
matrix. NVU is involved in CBF regulation, blood–brain 
barrier functioning, immunological surveillance, trophic 
support and homeostatic cerebral balance. Neurovascular 
coupling adapts perfusion to increased metabolic demand 
in response to local changes in neural activity (Kugler et al. 
2021) and several studies suggest its key role in signaling, 
metabolism and brain homeostasis. Impaired autoregula-
tion has been identified in stroke and other neurovascular 
diseases (Immink et al. 2005), and functional MRI (fMRI) 
and positron emission tomography (PET) studies contrib-
uted at showing the derangement of NVU in patients with 
hypertension, ischemic stroke and chronic cerebrovascular 
disease (Wolf 2015).

Cerebral vasoreactivity

Cerebral vasoreactivity (CVR) refers to the ability of the 
nervous system to regulate CBF according to the metabolic 
requirements or chemical variations of the microenviron-
ment (Wolf 2015; Claassen et al. 2021).

The evaluation of CVR is of great interest as an index of 
"hemodynamic reserve"(HR) in patients with cerebrovascu-
lar disease. The HR consists of potential residual vasodila-
tory capacity plus the possibility of increasing the rate of 
oxygen extraction from the blood compartment in critical 
CBF conditions (i.e., cerebral oligemia/ischemia) (Sette 

et al. 1989). The evaluation of vasoreactivity in a subject is 
obtained by provoking a transient vasodilatory stimulus and 
by measuring the variation of CBF. In the presence of a con-
dition of 'maximal vasodilation' (i.e., severe hypoperfusion/
oligemia), the flow variation obtained will be minimal or 
near to zero. Under physiological conditions, the variations 
in flow obtained are an indication of the entire vasomotor 
capacity of the subject's hemodynamic reserve.

Arterial pCO2 represents a powerful vasomotor stimu-
lus for the resistance arteries of the cerebral circulation. 
CBF rises in response to increased pCO2 and decreased 
pH, whereas pO2 has opposite effects (Smoliński and 
Członkowska 2016). Small arterioles are extremely sensi-
tive to the vasodilator effect of elevated arterial pCO2, with 
sigmoidal relationship, i.e., linear coupling for pCO2 values 
between 40 and 60 mmHg and non-linear relationship for 
values outside these limits (Wolf 2015). In particular, the 
maximal value of vasoreactivity index occurs for pCO2 val-
ues of 48 mmHg (Claassen 2007) and increases of 1 mmHg 
of blood pCO2 are accompanied by 2.5–5% increased flow 
rate values in the middle cerebral artery (MCA) compared 
to basal values (Ide et al. 2003).

Several nuclear medicine and imaging techniques are 
currently used to measure cerebral hemodynamics and 
test the response of cerebral vessels to vasoactive stimuli. 
PET allows direct measuring of CBF and is considered the 
gold standard to investigate CVR. However, other tools are 
available, such as near-infrared spectroscopy (NIRS), sin-
gle photon emission computed tomography (SPECT), fMRI, 
computerized tomography (CT) with xenon-enhancement, 
and transcranial doppler sonography (TCD) (Herzig et al. 
2008; Rijbroek et al. 2009; Herrera et al. 2016). Despite 
limited anatomical definition, blood-oxygen-level-depend-
ent (BOLD) fMRI imaging allows rather precise regional 
specificity, displaying increased signal as the consequence 
of reduced deoxyhemoglobin concentration (Herrera et al. 
2016). TCD is a sufficiently reliable, inexpensive, widely 
available and non-invasive technique for measuring hemo-
dynamic parameters of main intracranial arteries (Herrera 
et al. 2016) such as peak systolic velocity (PSV), diastolic 
velocity (EDV), mean velocity (MV), and pulsatility index 
(PI) (Bishop et al. 1986; Lindegaard et al. 1987; Valdueza 
et al. 1999). Despite some intrinsic limitations, TCD with 
transient vasodilator stimuli has been widely used in clini-
cal practice to assess CVR, reduction of MV indicating 
decreased global or regional CBF, and high PI pointing on 
increased microvascular resistance (Chen et al. 2022). Thus, 
CVR can be estimated by measuring changes of flow veloci-
ties in response to vasodilator stimuli in the main cerebral 
arteries as an indirect indication of changes in CBF (Pou-
lin and Robbins 1996; Bathala et al. 2013). Several studies 
demonstrated the reliability of TCD in estimating cerebral 
hemodynamics and CBF variations compared with nuclear 
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and functional imaging (Valdueza et al. 1997; Herrera et al. 
2016), but only few reports compared blood flow velocities 
measured by TCD with CBF measured by PET in patients 
with symptomatic carotid artery stenosis, with rather vari-
able results (Rijbroek et al. 2009).

In clinical practice, several tests are available to evalu-
ate CVR. The CO2 reactivity test measures cerebral vaso-
motor response after approximately 90-s inhalation of CO2 
mixtures (3–7%), allowing a simple, non-invasive, reliable 
and reproducible method (Ringelstein et al. 1992), which 
requires rather sophisticated technological setting. Aceta-
zolamide test requires intravenous infusion of 500–2000 mg 
of the carbonic anhydrase inhibitor, acetazolamide, which 
causes transient, marked, cerebral acidosis and vasodilation 
(Wolf 2015). This test is widely used for its simplicity and 
the lack of need of patient’s collaboration; however, it is 
less accurate and reproducible compared to the former, and 
it is not devoid of undesirable side-effects such as arterial 
hypertension, headache, nausea and perioral dysesthesia. 
Moreover, acetazolamide injection may induce counterpro-
ductive hyperventilation, partially neutralizing the vasodila-
tor effect of the drug (Ringelstein et al. 1992; Wolf 2015). 
Furthermore, standardized examination protocols are lacking 
for both CO2 inhalation and acetazolamide administration. 
Finally, breath-holding test (BHT) exploits hypercapnia gen-
erated by 30-s apnea to calculate a response index defined 
as breath-holding index (BHI). BHI is a non-invasive, easy 
to perform, well-tolerated and widely accepted test (Markus 
and Harrison 1992; Kidwell et al. 2001), despite the limited 
change of pCO2 (approximately 3–4 mmHg), the need for 
patient collaboration and the reduced reproducibility of this 
approach.

Alterations of CVR in aging and neurological 
disease

Aging is physiologically accompanied by changes of cer-
ebral autoregulation mechanisms with the decrease of CBF 
and blood volume flow and the reduction of elasticity of 
small intracranial arteries (Zavoreo et al. 2010). This phe-
nomenon has been associated with vascular changes depend-
ing on age-related atherosclerotic processes, which reduce 
arterial wall flexibility. Moreover, other cardiovascular risk 
factors such as hypertension, hyperlipemia, diabetes, coro-
nary heart disease and smoking may contribute at reducing 
capability of cerebral vessels to react at vasodilator stim-
uli or increased metabolic demand (Gröschel et al. 2007; 
Staszewski et al. 2021).

Data from the literature show the impairment of CVR in 
several neurological disorders. Although the role of CVR 
impairment in the pathogenesis of neurodegenerative dis-
orders has not been defined at present, one can hypothesize 

that reduced cerebrovascular reserve might further con-
tribute at deteriorating disease progression (Smoliński and 
Członkowska 2016; Marcic et al. 2021).

In this narrative review, we focused on the impact of 
CVR on cerebrovascular diseases and cognitive impact. To 
this end, papers published in English, without publication 
date limit, were searched in Pubmed and Web of Science 
databases, using keywords related to: (i) brain circula-
tion (e.g., “cerebral vasoreactivity”, “brain hemodynam-
ics”, “cerebral blood flow”); (ii) cerebrovascular diseases 
(e.g., “cerebrovascular disease”, “stroke”, “carotid steno-
sis”, “small vessel disease”, etc.) (iii) cognitive impaire-
ment (e.g., “cognitive impairement”, “cognitive decline”, 
“dementia”, “MCI”, etc.). Search strategy included a com-
bination of keywords, using the Boolean operators “AND” 
and “OR”. Search fields were restricted to the abstract, title, 
and keywords. Included papers were original peer-reviewed 
scientific journal articles, editorials, case studies, letters 
or reviews. Studies not examining the correlation between 
CVR, cognitive functions and CVD were excluded. Two 
independent reviewers [MS and GS] screened the titles 
and abstracts of all studies to identify potentially relevant 
articles. Duplicates were manually removed. Full texts of 
all included studies were then obtained and reviewed. The 
following 5 parameters were reviewed from the retrieved 
articles by two independent reviewers: (1) study character-
istics; (2) participant characteristics; (3) tools for measuring 
CVR; (4) measure of cognitive function; and (5) main find-
ings. Quantitative analysis and assessment of the risk of bias 
were not performed due to the narrative design of the study. 
The quality assessment was appraised by two independent 
reviewers (MS, EB); disagreements between evaluators were 
resolved through discussion.

CVR and cognitive impairment

Several studies demonstrated the correlation between altera-
tion of brain vessel reactivity and impaired cognitive func-
tions in patients with cognitive derangement. Arterioloscle-
rosis, amyloid angiopathy, atherosclerosis and lipohyalinosis 
have been associated with impaired cerebral hemodynamic 
and cognitive impairment (Chen et al. 2022). Alterations 
of cerebral vessel resistance using TCD, in particular the 
PI, and evaluation of CVR to hypercapnia using BHI have 
been consistently associated with cognitive decline and are 
indicative of cognitive impairment in Alzheimer’s disease 
(AD) and vascular dementia (VaD) (Keage et al. 2012). Sev-
eral authors investigated the possible correlation between 
altered cerebral hemodynamic and cognitive functions in 
mild cognitive impairment (MCI) or AD. In general, low 
intracranial arterial MVF, increased vascular resistance 
(PI) and reduced vasoreactivity have been identified in 
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these pathological conditions with respect to healthy sub-
jects (Silvestrini et al. 2006; Lim et al. 2018; Cipollini et al. 
2019; Chen et al. 2022). Moreover, it has been suggested that 
TCD may predict clinical progression of cognitive decline, 
higher PI and lower BHI in the middle cerebral artery being 
associated with stronger risk of conversion to dementia in 
subjects with MCI, with significant correlation between 
decreased BHI and reduced MoCA score (Silvestrini et al. 
2006; Lim et al. 2018). Eventually, TCD may help differen-
tiating individuals with MCI from healthy subjects (Zavoreo 
et al. 2010; Chung et al. 2017). Taken together, these data 
suggest that early cerebral microvascular abnormalities in 
the brain may anticipate the occurrence of significant cogni-
tive impairment, and possibly precede the development of 
structural brain lesions identifiable on conventional imaging 
(Chen et al. 2022).

Several other factors have been shown to play a role along 
with CVR impairment in cognitive decline, including aging, 
altered brain energy demand, and hypoperfusion. Detailed 
analysis of these factors is beyond the scope of this work, 
exhaustive reviews on the relationships between hypoper-
fusion, brain energy demand and cognitive decline being 
available in the recent literature (Popa-Wagner et al. 2014, 
2015; Ciacciarelli et al. 2020).

CVR in cerebrovascular diseases

Most studies investigating the relationships between 
impaired cerebral hemodynamic, CVR and cognitive impair-
ment were carried out on subjects affected by cerebrovas-
cular disorders. Research focused on presymptomatic sub-
jects (carotid stenosis) (Silvestrini et al. 1996; Silvestrini 
et al. 2000; Markus and Cullinane 2001; Cheng et al. 2012; 
Zavoreo et al. 2013; Viticchi et al. 2021), acute ischemic 
stroke (Alvarez et al. 2004; Uzuner et al. 2013; Salinet 
et al. 2015, 2019; Altmann et al. 2016; Chi et al. 2020) and 
chronic cerebrovascular disorders (Provinciali et al. 1990; 
Matteis et al. 1998; Kidwell et al. 2001; Shiogai et al. 2002; 
Sabayan et al. 2012; Turk et al. 2016; Kisler et al. 2017; Bian 
et al. 2019; Staszewski et al. 2021).

Carotid stenosis

Cerebral perfusion is rather variable in subjects affected by 
carotid occlusive disease, and appears related to the degree 
of collateral blood supply rather than severity of stenosis 
(Silvestrini et al. 2000). Many subjects with steno-occlusive 
carotid disease develop compensatory vasodilation of ipsilat-
eral arteries together with collateral circulation, and patients 
with high grade carotid stenosis display reduced CBF in the 
ipsilateral brain hemisphere, particularly in MCA border-
line regions, that may revert towards normal values after 

revascularization therapy (Schroder et al. 2019). In these 
subjects, further vasodilator stimulus by hypercapnia will 
produce absent or markedly reduced vasodilator response 
(Silvestrini et al. 1996). The reduction of CVR is associated 
with increased risk of ipsilateral stroke or TIA in patients 
with carotid occlusion and, to a lesser extent, asymptomatic 
carotid stenosis (Viticchi et al. 2021). This suggests that 
assessment of CVR may help identifying high-risk patients 
who may benefit from revascularization.

There is also clear evidence for the association between 
carotid stenosis and the onset and progression of cognitive 
impairment, even in subjects with severe asymptomatic 
carotid stenosis (Cheng et al. 2012; Zavoreo et al. 2013; 
Viticchi et al. 2021), as if carotid stenosis might facilitate 
cognitive dysfunction through the combination of increased 
incidence of acute cerebrovascular lesions, microemboliza-
tion, chronic hypoperfusion, and impairment of CVR (Vit-
icchi et al. 2021). Indeed, impaired cerebral hemodynamics 
may lead to altered regional functional connectivity, particu-
larly in the fronto-parietal network, in turn inducing cogni-
tive dysfunction (Cheng et al. 2012).

Consequently, revascularization procedures have been 
hypothesized recently as a way to restore hemodynamically 
induced cognitive impairment. Further randomized clinical 
trials on large cohorts are required, however, to define the 
effectiveness and timing of medical and surgical/endovascu-
lar approaches to this issue (Viticchi et al. 2021).

Acute ischemic stroke

Cerebral hemodynamic impairment plays a significant 
pathophysiological role in the acute phase of cerebral 
ischemia, and somehow predicts stroke severity, progression 
and long-term outcome. The correlation between impair-
ment of CVR and the occurrence of acute ischemic stroke 
in patients with severe internal carotid artery stenosis has 
been convincingly confirmed (Gur et al. 1996; Silvestrini 
et al. 1996, 2000; Markus and Cullinane 2001; Cheng et al. 
2012; Viticchi et al. 2021). However, the role of altered CVR 
in patients with acute ischemic stroke without significant 
carotid stenosis has not been clarified at present.

Hemodynamic factors and cerebral hemodynamic reserve 
have been related to the final infarct volume, unfavorable 
long-term outcome and most neurologic complications after 
acute stroke (Alvarez et al. 2004). Thus, cerebral hemody-
namic parameters are progressively compromised according 
to stroke severity: moderate and severe stroke are accom-
panied by greater CBF asymmetries between the affected 
and unaffected hemisphere, derangement of autoregula-
tion mechanisms in the affected hemisphere, and bilateral 
NVU impairment (Salinet et al. 2019). Furthermore, studies 
demonstrated depressed CBF response to neural activation 
and CO2 (Salinet et al. 2015), and impaired vasoreactivity 
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appears coupled with poorer functional outcome (Salinet 
et al. 2019). Other reports showed the association between 
cerebral hemodynamic alterations and cognitive perfor-
mances in patients with acute cerebral ischemia. In the case 
of lacunar infarcts, the increase in PI has been correlated to 
impairment of executive functions (Sivakumar et al. 2017). 
The increase of PI measured proximally to the blood vessels 
reflects the increased distal vascular resistance and conse-
quent reduction of diastolic flow that may depend on altera-
tions of microcirculation secondary to subcortical ischemic 
events (Uzuner et al. 2013). With this respect, studies on 
animal models showed the dysfunction of capillary pericytes 
as the consequence of oxygen radical production in ischemia 
(Yemisci et al. 2009). This may lead to vascular contraction 
and hypoperfusion, in turn causing functional alterations of 
connectivity within associative networks (Chi et al. 2020). A 
recent pilot study, however, did not support such hypothesis, 
and suggested that hemodynamic alterations may contribute 
at worsening cognitive performances transiently, during the 
first 3–6 months following acute subcortical ischemia (Sum-
inistrado et al. 2017).

Eventually, animal studies and neuropathological find-
ings in humans confirm that relevant angiogenesis occurs 
in post-stroke brain tissue (Buga et al. 2014). The impact 
of post-stroke angiogenesis on CVR has not been defined 
completely at present, despite the theoretical observation of 
partial increase of the cerebrovascular bed. Future studies 
are advised to identify whether these newly generated ves-
sels develop normal response to stimuli modulating CVR.

Chronic cerebrovascular disorders

A conspicuous body of research focused on the association 
between impaired CVR and cerebral small vessel disease 
(SVD). Microangiopathy represents a prominent cause of 
lacunar stroke and vascular dementia (VaD) (Staszewski 
et al. 2021). SVD is a dynamic and progressive pathology 
involving several components of the NVU, generating dys-
function of signaling pathways that may be responsible for 
CBF deregulation in VaD (Kisler et al. 2017). TCD with 
BHI showed the reduction of CVR in patients with SVD 
with respect to control subjects (Staszewski et al. 2021). 
Moreover, the results of meta-analyses demonstrated that 
alteration of cerebral hemodynamic in VD patients is more 
pronounced that AD (Sabayan et al. 2012). Thus, patients 
with SVD and chronic cerebrovascular pathology display 
increased rate of blood flow and higher PI in the larger 
intracranial arteries, which correlate with the severity of 
cognitive impairment, the vascular Hachinski scale score, 
and the degree of leukoaraiosis at MRI (Kidwell et al. 2001; 
Turk et al. 2016). Kindwell and collaborators (2001) also 
showed that the PI is an independent predictor of SVD, 
with specificity and sensitivity values of 89% and 86% for 

periventricular hyperintensities and 70% and 73% for deep 
matter hyperintensities. In addition, other studies showed 
the association between multi-infarct leukoencephalopa-
thy and CVR alteration as measured by acetazolamide test 
(Shiogai et al. 2002) or in response to apnea (Provinciali 
et al. 1990; Matteis et al. 1998). In particular, reduction of 
CVR as measured by BHI seems directly associated with the 
severity of leukoaraiosis, and patients with lower BHI and 
moderate-to-severe SVD (grade 2–3 at the Fazekas scale) 
display lower performances at the MoCA as well as other 
tests measuring executive functions (Turk et al. 2016; Bian 
et al. 2019). BHI might, therefore, be helpful for evaluating 
the alterations of CVR in subjects suffering from leukoaraio-
sis, and represent an indicator of cognitive dysfunction in 
these patients.

Obstructive sleep apnea syndrome (OSAS) is a frequent 
disease in aging and a well-described condition associated 
with CVR impairment. OSAS is a disorder characterized by 
recurring episodes of obstruction and partial or complete 
collapse of the rhino‐oropharynx during sleep. These are 
caused by anatomical upper airway alteration combined with 
impaired ventilatory control or alteration of neurofunctional 
control of rhino- and oropharyngeal muscles. The episodes 
lead to intermittent oxygen desaturation and are associated 
with sleep fragmentation, cerebrovascular and cardiovas-
cular disease, excessive daytime sleepiness and cognitive 
dysfunction. A comprehensive review by Beaudin et al. 
(2017) addressed the impact of OSA on cardiovascular and 
cerebrovascular regulation. A more recent comparative study 
carried out by our group (Piraino et al. 2019) on 40 patients 
suffering from moderate-to-severe OSAS (AHI ≥ 15) showed 
the tendency to increased BHI and the significant reduction 
of IMT after continuous positive airway pressure (CPAP) 
treatment, therefore suggesting that CPAP treatment may 
improve CVR and reduce endothelial inflammation.

Association between CVR and brain regions 
and functions

In recent years, evidence has accumulated on the associa-
tion between impaired cerebral hemodynamics and cognitive 
functions in patients suffering from neurological disorders, 
in particular cerebrovascular diseases, as if reduction of cer-
ebral blood flow and brain perfusion may contribute to cog-
nitive derangement (Mori et al. 1994; Firbank et al. 2011). 
Dementia associated with CVD is rather common, affecting 
25–30% of elderly stroke survivors as post-stroke dementia 
(PSD), which frequently meets criteria for VaD (Allan et al. 
2011). Cognitive impairment in VaD is frequently sustained 
by damage of the frontal–subcortical circuits (Kalaria and 
Ihara 2013). The frontal lobe is particularly vulnerable to 
vascular-based pathology (Jobson et al. 2021), and previous 
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studies reported that 50% of stroke survivors display deficits 
of executive functions, regardless the severity or subtype of 
cerebrovascular event. A further potential link for develop-
ing PSD is the preferential location in the frontal lobe of 
white matter vascular pathology supported by astrogliosis 
or clasmatodendritic changes in microvessel with irrevers-
ible astrocyte injury, disruption of gliovascular interactions 
and blood–brain barrier (Chen et al. 2016). Previous studies 
showed that medullary arteries and the telencephalic white 
matter of the frontal lobe are particularly susceptible to cer-
ebral hemodynamic disturbance (Ihara et al. 2010), and that 
a correlation exists between reduced cerebral blood flow 
and these pathological changes, as if cerebral hypoperfusion 
might represent a direct cause of vascular pathology (Qin 
et al. 2010) in particular in elderly subjects. Indeed, there is 
evidence that clasmatodendrosis occurs acutely after induc-
tion of cerebral hypoperfusion in non-human primates (Chen 
et al. 2016), and that impairment of cognitive performances 
within the first three months post-stroke might predict future 
recovery (Park et al. 2015).

Executive functions are essential for regulating goal-
oriented behaviors and responding to new and novel set-
tings, by combining working memory, planning, orienta-
tion problem-solving, self-monitoring and error correcting. 
Recent studies suggest that executive dysfunction in stroke 
patients produces reduced performances in both basic and 
complex activities of daily living and compromises reha-
bilitation outcomes (Zinn et al. 2007; Chung et al. 2013). 
Therefore, one can speculate that stroke outcome and post-
rehabilitation improvement might benefit from precocious 
identification and management of executive dysfunction as 
well as by rapid therapeutic management by compensatory 
and stimulating approaches (Zinn et al. 2007).

Conclusions and perspectives

Table 1 summarizes the main characteristics of cerebral 
vasomotor reactivity in aging, cerebrovascular disease 
and cognitive impairment. In conclusion, the relationship 
between impaired cerebral hemodynamics, in particular 
CVR, and executive functions has been clearly defined in 
chronic cerebrovascular disease subjects but is rather limited 
in acute stroke patients. Future research in this field should 
be focused on defining the interactions between impaired 
cerebral hemodynamic parameters and executive functions 
in the acute phase of cerebral ischemia, and the potential 
predictive role of these changes on long-term functional 
outcomes after acute ischemic stroke. Thus, cerebral hemo-
dynamic should be monitored over time following acute 
ischemic stroke to investigate its possible predictive role on 
response to neurorehabilitation and long-term functional 
outcome. Eventually, differences in cerebral hemodynamic Ta
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changes should be investigated with respect to location and 
severity of acute stroke, to plan personalized therapeutic 
strategies, and the relationships between impaired hemody-
namic parameters and other cardiovascular risk factors on 
cognitive outcome should be defined. This would allow the 
results of experimental and human studies to be translated 
into clinical practice and help select the best parameters to 
identify high-risk patients, predict functional outcome, and 
monitor patients over time.
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