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Abstract

We present a macroscopic theory of electroencephalogram (EEG) dynamics based on the
laws of motion that govern atomic and molecular motion. The theory is an application of
Zwanzig-Mori projection operators. The result is a simple equation of motion that has the
form of a generalized Langevin equation (GLE), which requires knowledge only of
macroscopic properties. The macroscopic properties can be extracted from experimental
data by one of two possible variational principles. These variational principles are our
principal contribution to the formalism. Potential applications are discussed, including
applications to the theory of critical phenomena in the brain, Granger causality and Kalman
filters.

PACS code: 87.19.lj

1. Introduction
The electrical activity of the brain has intrigued scientists since the invention of the electroen-

cephalogram (EEG) [1,2]. Scalp and intracranial EEG's are now in widespread clinical use in the

diagnosis and management of epilepsy and other neurological disorders. These applications rely

on empirical correlations between certain EEG patterns with specific neurological disorders.

Intense interest exists in trying to understand EEG dynamics at a deeper level, so as to extract ever

more information about brain health and function. These efforts fall into two classes: those

which are largely empirical, based on traditional correlations between EEG patterns and clinical

observations, and those which are theory-based, where one has in mind a certain model of brain

dynamics and then one tries to interpret EEG patterns in terms of the theoretical model. In the

empirical class are recent efforts to correlate high frequency oscillations with epileptogenic tissue

[3]. In the theory-based class, the most celebrated approach is the cable theory of Hodgkin and

Huxley [4]. This theory can be scaled up using compartmental models to describe networks of

Published: 13 July 2009

PMC Biophysics 2009, 2:6 doi:10.1186/1757-5036-2-6

Received: 22 March 2009
Accepted: 13 July 2009

This article is available from: http://www.physmathcentral.com/1757-5036/2/6

© 2009 Hsu and Hsu 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 21
(page number not for citation purposes)

http://www.physmathcentral.com/1757-5036/2/6
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19594920
http://www.biomedcentral.com/info/about/charter/


PMC Biophysics 2009, 2:6 http://www.physmathcentral.com/1757-5036/2/6
thousands or even millions of neurons using high power computers. In the hands of a master,

much insight can come from such simulations [5]. However, these methods are computationally

intensive. They are not easily scaled to truly macroscopic levels and they are not amenable to the

clinical diagnostic situation where one wants to know, for specific EEG samples from specific

individuals, whether a certain brain pathology is present.

Mesoscopic and macroscopic level theories of EEG dynamics have also been proposed, each

based on a plausible basic postulate or mathematical model of the electrical activity of the brain

[2,6-8]. The methods of nonlinear dynamics (chaos theory) also fall into this class and have been

applied to seizure prediction [9,10].

It would be desirable to base a macroscopic theory of EEG dynamics on fundamental physical

principles, for instance, on the laws of motion that govern atomic and molecular motion. In this

paper, we discuss such a theory. The approach we take was developed by Zwanzig [11] and Mori

[12] to explain thermodynamic irreversibility (why entropy always increases). The result is a sim-

ple equation of motion that has the form of a generalized Langevin equation (GLE), which

requires knowledge only of macroscopic properties. The macroscopic properties can be extracted

from experimental data by one of two variational principles. Potential applications are discussed,

including applications to epilepsy research, the theory of critical phenomena in brains, Granger

causality and Kalman filters.

2. Theory
EEG dynamics results from the motion of microscopic charged particles in the brain. The charged

particles interact with other charged particles as well as with uncharged particles. The total

number of particles is astronomical, on the order of 1023. A macroscopic EEG electrode either on

the scalp or inserted into the brain detects voltages set up by the local distribution of the charged

particles. The changes in these voltages reflect the local flux of charged particles. The forces

exerted by the particles on each other are highly nonlinear. How can we possibly hope to derive

an equation of motion for the macroscopic EEG voltages? The most elegant solution is to apply

Zwanzig-Mori projection operators [11,12]. We follow the discussion of Zwanzig [13]; see also

Berne and Pecora [14] for more detailed discussions.

Let the voltage measured by electrode n at time t be represented as x(n, t) where n = 1 to N. If

the reference ground is taken to be infinitely far away, then x(n, t) is given by:

where N0 is the total number of charged particles, Qi is the charge of particle i,  is its position

at time t, and  is the position of the nth electrode. If the reference ground is chosen differently,
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then x(n, t) will be given by some linear combination of the terms on the right hand side of Eq

(1). The choice of reference ground does not affect what follows. Next, let x(n, t) represent the nth

component of an N-dimensional vector X(t). Hence, the voltage readouts from an N-channel

EEG are the N components of the vector X(t). For convenience, we will take X(t) to represent the

EEG voltage after the time average of the raw data has been subtracted out: X(t) = Xraw (t) - �(Xraw

(t))�.

In what follows, we will refer to the x(n, t)'s as the explicit degrees of freedom, while the 's

and all other degrees of freedom are the implicit or "bath" degrees of freedom. At this point, read-

ers who wish to skip some of the more mathematical discussion may jump to Eq. (17).

To continue, if the microscopic particles of the system all obey the laws of physics, then the

dynamics of X(t) can be written:

Here L is the Liouville operator. The classical and quantum Liouville operators, respectively,

are defined as:

Here  and  are the coordinate and momentum of the ith particle, H is the total Hamilto-

nian, H is Planck's constant, and the square brackets denote the quantum commutator. In what

follows, one may choose the dynamics to be determined by either the classical or quantum Liou-

ville operator.

The Hamiltonian H in Eq (3) contains kinetic and potential energy terms for all the micro-

scopic particles in the system. The potential energy terms describe how every microscopic particle

interacts with every other microscopic particle. These terms are in general highly nonlinear. We

shall not need to know the details of these interactions. The Zwanzig-Mori approach only

requires that the microscopic dynamics obeys the form of Eq (2). The realm of validity for what

follows thus includes all of classical and quantum mechanics.

Equations (2)–(3) are formally correct but they are not useful for describing macroscopic sys-

tems in practice because we cannot possibly specify L for all N0  1023 microscopic particles. If we

could formally "average" or integrate Eq (2) over all the microscopic degrees of freedom  and
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 (that is, over all the implicit degrees of freedom) without integrating out the explicit degrees of

freedom contained in X(t), then we can transform Eq (2) into a useful equation of motion for

X(t). Here is where projection operators come in. Let  represent all the microscopic particle coor-

dinates and momenta (i.e., it represents a point in phase space), and let

. Define an inner product

where () gives a microscopic distribution of , not necessarily at equilibrium, and where the

asterisk denotes a complex conjugate. Here A and B are explicit or implicit degrees of freedom

which for the time being we will allow to be complex (i.e., they may have both real and imaginary

components). We will later show how to recover convenient expressions for purely real observa-

bles, such as the EEG voltages and their time derivatives. Note that Eq (4) is essentially a phase

space average of the product of A times B*.

Now imagine that we identify the vector A as the explicit degree of freedom, and we wish to

project or integrate out all other degrees of freedom from Eq (2). The projection operator with

respect to A is:

This operator integrates out all degrees of freedom of the system except those that affect A.

Applying this projection operator on Eq (2) will result in an equation of motion for A only. We

will not reproduce here the mathematical manipulations described in detail in Refs [12-14]. One

needs the operator identity:

We will take t0 to represent the initial time within an arbitrary time window. After some work,

for times such that t  t0, one arrives at the generalized Langevin equation (GLE):

where
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Here  has the interpretation of a frequency, F(t) is a "random force" due to the dynamics of

the implicit degrees of freedom, and () is referred to as a memory function that defines the

effect of prior values of A on its current time rate of change. Equation (7) is the desired equation

of motion for the explicit degrees of freedom. An important formal result is that

which states that the random force acting on the macroscopic observable A is not correlated with

A. This result is rigorously true and it underlies the foundation of the Onsager regression hypoth-

esis [14]. It will also suggest one of the variational principles by which we extract model param-

eters from experiment, as we will discuss shortly.

Other forms of the GLE may be derived from Eq (7). For convenience, let us rewrite Eq (7) as

where the open circle denotes a convolution and the terms in  and () have both been

absorbed into the convolution:

The macroscopic observable A(t) thus far is allowed to have both real and imaginary parts.

Now consider a purely real vector A(t) of the form:

We choose this form because the underlying dynamics is governed by the laws of physics, for

which the coordinate and momentum (here represented as the velocity) are independent degrees

of freedom. The coordinate X(t) is constrained such that
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In practice, recall that X(t) represents the N channels of EEG voltages. Hence, V(t) is the first

time derivative of X(t), which in practice can be constructed from experimental time series data

by taking finite differences, e.g., V(t)  [X(t + t) - X(t - t)]/(2t), where t is the EEG sampling

time.

Taking the formal time derivative of Eq (14) and inserting Eq (12), we find

Applying the constraint of Eq (15), we have

where , K = W21, G = W22 and FR(t) = F2(t). This equation may be written in more

expanded form as

Equation (17b) has the form of an equation of motion for a time-delayed damped harmonic

oscillator with force constant matrix K, friction constant matrix G and random force FR(t). The

purely real matrix K has convolution components K(m, n, ) giving the influence of x(n, t - ) on

x(m, t) with time delay . That is, a fluctuation in the nth macroscopic coordinate of magnitude

x(n) at a certain point in time, results in a force on the nth macroscopic coordinate of magnitude

-K(m, n, )xn at a time  later. Similarly, G() is a purely real time-delayed friction matrix with

components G(m, n, ) giving the frictional force of  on the mth macroscopic coordinate

with time delay .

Recall that X(t) represents the EEG voltages. Hence Eq (17) tells us that we can think of EEG

dynamics as being driven by three kinds of forces: one due to interactions between neurons at

the sites of the electrodes (the K-term), another due to frictional forces (the G-term), and a third

due to random environmental noise (the FR(t)-term). The influence of the enormous number of

implicit degrees of freedom are hidden in microscopic expressions for the K(), G() and FR(t)

terms as expressed through Eqs (8)–(10). In certain highly idealized situations, one may be able

to estimate these functions quantitatively. In the general case, however, Eqs (8)–(10) are compu-

tationally intractable. Nonetheless, the functions K(), G() and FR(t) also represent macroscopic

properties of the system, and it should be possible to extract them from experiment. What we need

is a way to relate these functions to experimental data, preferably by a variational principle.
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There are two obvious approaches to a variational principle by which K(), G() and FR(t) may

be extracted from experiment: (I) minimization of the amplitude of the random force FR(t) and

(II) minimization of correlation of the random force with the macroscopic coordinate.

2.1. Variational principle I: minimization of random force amplitude

Equation (17) represents a way of dividing up the total ''force'' acting on the macroscopic observ-

ables into three components: (1) that due to explicit interactions between the macroscopic

observables, represented by the term in K, (2) that due to frictional dissipation, represented by

the term in G and (3) that due to environmental fluctuations, represented by the term in FR(t).

One may plausibly argue that one should ascribe as much of the total force as possible to the

explicit interactions between the macroscopic observables, and as little as possible to environ-

mental fluctuations. In this case, one may define an error functional which adds up all the square

amplitudes of FR(t) over the entire time interval under observation, t = [ta, tb], with the goal of

minimizing it:

To minimize this error functional, one may take each value of K(m, n, ) and G(m, n, ), for

each m, n and , as an independent parameter, and vary them so as to make EI(ta, tb) as small as

possible. To do this, first insert Eq (17) into Eq (18), to express EI(ta, tb) in terms of X(t), ,

, K(), and G(). Next, insert experimental values for X(t),  and  into EI(ta, tb). One

may then minimize EI(ta, tb) with respect to K() and G() by standard algorithms [15]. Because

EI(ta, tb) is quadratic in K() and G(), one is guaranteed a unique solution. This procedure rep-

resents our first variational principle.

For future reference, we list the derivatives of EI(ta, tb) with respect to the K(m, n, )'s and G(m,

n, )'s. These equations are useful in global minimization algorithms [15]:

Alternatively, after some experience, if one finds that K(m, n, ) and G(m, n, ) tend to decay

exponentially, possibly with some oscillations, then one may try to save some computational

effort by parameterizing K(m, n, ) and G(m, n, ), for example, using
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The minimization of EI(ta, tb) would then be with respect to AK(m, n), bK(m, n), K(m, n), etc.

The drawback here is that the minimization algorithm would require an iterative algorithm suit-

able for nonlinear fits, and a unique solution is not guaranteed [15].

2.2. Variational principle II: minimization of random force correlation

To formulate our second variational principle, consider Eq (11), which states that the random

force should not be correlated with any macroscopic observable when averaged over the phase

space available to the microscopic degrees of freedom, as defined in Eq (4). One may hypothesize

that this phase space average may be replaced by an average over time. This hypothesis is known

as the ergodic hypothesis. Note that in Eq (4), we do not assume the phase space average is neces-

sarily an equilibrium average. If for some possibly non-equilibrium distribution function, the

ergodic hypothesis holds true, then we may take the assumption that the bath random force is

not time-correlated with macroscopic observables as the basis for our second variational princi-

ple. There are subtleties in this approach which must be treated with care.

It is generally not possible to be certain whether an experimental system is ergodic or not. For

instance, the explicit degrees of freedom may happen to be trapped in a portion of phase space

that is separated from other regions of phase space by very high free energy barriers. Even if over

time the explicit degrees of freedom sample all of the phase space available within this bounded

region, we can never know that there are not other regions that would have been equally sam-

pled, were it not for the impenetrable energy barriers separating the regions. In this case, we can

still define the random force term in Eq (17) to be such that it is not time-correlated with the mac-

roscopic observables. If the random force were correlated with a macroscopic observable, then of

course it would not really be random.

In what follows, we will assume that the bath degrees of freedom are ergodic. We will be care-

ful, however, not to invoke the ergodic hypothesis for correlations between two explicit degrees

of freedom, because we wish to allow for the possibility that the explicit degrees of freedom are

non-ergodic and far from equilibrium.

To proceed, let us define a time averaged correlation function with the time average being over

a time period [ta, tb], with ta  t0  tb:

K m n A m n b m n m nK K K( , , ) ( , )exp ( , ) cos ( , )   = −[ ] [ ] (21)

G m n A m n b m n m nG G G( , , ) ( , )exp ( , ) cos ( , )   = −[ ] [ ] (22)

C n m t d x n t x m x n t x m
t

t

a

b

( , , ) ( , ) ( , ) ( , ) ( , )= + ≡∫    0 (23)
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Let C(n, m, t) represent the (n, m) matrix element of a matrix C(t). Evaluate Eq (17b) at time

t + t0, multiply both sides by X(t0), and integrate over t0 over the range [ta, tb]. We will assume that

K(), G() and FR(t) do not depend on the time t0, i.e., we assume these functions are stationary.

The result is:

which may be written in more expanded form as

where

Here CRX(t) is the time correlation between the random force and the macroscopic observa-

bles, when averaged over time. If we take the bath random force to be ergodic, then the time aver-

aged correlation CRX(t) from Eq (25) is equal to the phase space averaged correlation (F(t), X(t0))

from Eq (11), and therefore CRX(t) should be equal to zero. Minimizing the square amplitude of

every element of the matrix CRX(t) over the time interval [ta, tb] represents our second variational

principle.

The careful reader will note that Eq (24) is not quite the same as the typical equation of

motion for the time correlation function, as defined in standard texts [13,14]. In the standard

derivations, an equation of motion that is identical in form as Eq (24) is derived but the time

correlation functions involve an average over phase space, not over time. One then invokes the

ergodic hypothesis to equate these phase space averaged correlation functions with time averaged

correlation functions. However, we wish to avoid making the ergodic hypothesis for the explicit

degrees of freedom. In our derivation, we invoke the ergodic hypothesis only for the bath degrees

of freedom.

To continue, define an error functional that consists of the sum of the square of every element

of the matrix CRX(t), summed over all the elements of the matrix and over every instant in time

in the time interval [ta, tb]:

   C t K C t G C t C tRX( ) ( ) ( ) ( )= − − + (24a)

 C t d K C t d G C t C t
t t

RX( ) ( ) ( ) ( ) ( ) ( )= − − − − +∫ ∫t t t t t t

0 0

(24b)

C t F t XRX R( ) ( ) ( ) .= 0 (25)

E t t dt Tr C t C tII a b

t

t

RX RX
T

a

b

( , ) ( ) ( )= ⎡
⎣

⎤
⎦∫1

2
 (26)
Page 9 of 21
(page number not for citation purposes)



PMC Biophysics 2009, 2:6 http://www.physmathcentral.com/1757-5036/2/6
Here Tr signifies a matrix trace and T a matrix transpose. To minimize the error functional of

Eq (26), one may take each value of K(m, n, ) and G(m, n, ), for each m, n and , as an inde-

pendent parameter, and vary them so as to make EII(ta, tb) as small as possible. To do this, first

insert Eq (24) into Eq (26), to express EII(ta, tb) in terms of C(t), , , K(), and G(). Next,

insert experimental values for C(t), ,  into EII(ta, tb). One may then minimize EII(ta, tb)

with respect to K() and G() by standard algorithms [15]. Because EII(ta, tb) is quadratic in K()
and G(), one is guaranteed a unique solution. This procedure represents our second variational

principle.

For future reference, we also list the derivatives of EII(ta, tb)with respect to the K(m, n, )'s and

G(m, n, )'s. These equations are useful in global minimization algorithms [15]:

Alternatively, after some experience, if one finds that K(m, n, ) and G(m, n, ) tend to decay

exponentially, possibly with some oscillations, then one may try to save some computational

effort by parameterizing K(m, n, ) and G(m, n, ), for example, using

The minimization of EII(ta, tb) would then be with respect to AK(m, n), bK(m, n), K(m, n), etc.

The drawback here is that the minimization algorithm would require an iterative algorithm suit-

able for nonlinear fits, and a unique solution is not guaranteed [15].

3. Discussion
The mathematical or physical model that one chooses to represent EEG dynamics influences how

one interprets experimental observations. The model itself acts as a filter which biases one's inter-

pretations. It is desirable therefore that these models be based on fundamental physical princi-

ples. The model we present here is suitable for interpreting electrophysiological data acquired

from extracellular recordings. It is a macroscopic level model which complements more micro-

scopic Hodgkin-Huxley type models. The assumptions that we make are fourfold. First, we
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assume that the underlying dynamics obeys the laws of either classical or quantum physics. This

assumption is quite safe for biological systems.

Second, we assume that the total system under consideration is isolated and free from external

influences, which allows us to write the Liouville operator in Eq (2) as being free of an explicit

time dependence, i.e., the overall system is stationary. If there is an external driving force, such as

environmental stimuli driving a learning experience, then the Liouville operator will have an

explicit time dependence and the operator identity of Eq (6) is no longer valid. On the other

hand, one could always subsume the external degrees of freedom into the Liouville operator, to

make the external degrees of freedom part of the total system under consideration. It does not

matter how many degrees of freedom are subsumed into the Liouville operator in this way, since

we integrate them out anyway. One could in principle claim to include the entire universe in

one's Liouville operator, in which case, neglecting relativistic and other cosmological effects, one

recovers the time independence of the Liouville operator and the derivation of Eq (17) proceeds

as above.

Thirdly, we have made the ergodic assumption for the bath degrees of freedom, which

assumes that the bath degrees of freedom can quickly (on time scales much faster than the time

scales of the explicit degrees of freedom) explore all of the phase space available to the bath.

Importantly, we have avoided making the ergodic hypothesis for the explicit degrees of freedom,

and thus our principal theoretical result, Eq (17), is capable of describing systems far from equi-

librium.

The fourth assumption is comprised of either variational principle I or II, either of which

allows us to extract the model parameters from experimental data. Variational principle I tries to

explain as much of the dynamics as possible using the macroscopic observables, ascribing as little

as possible to the influence of random unseen forces. Variational principle II does not assume

that the random forces are small in amplitude, but rather that they are not correlated with the

dynamics of the macroscopic observables.

We feel that variational principle II is better justified, as there is no reason to suppose that ran-

dom environmental noise should generally be small. Variational principle II requires us to make

either the ergodic hypothesis for the bath random forces, or one must take the definition of a ran-

dom force to mean that it is not correlated with macroscopic observables, either within a phase

space average or in a time average. If experimentally we find that the random force is in fact cor-

related with a macroscopic observable, then we would know that there is an unidentified degree

of freedom in the experimental system that is important to the dynamics of the identified mac-

roscopic observables. Such a scenario can arise if there are neurons very far from the experimental

electrodes that strongly drive the observed neurons, but that are too far from any electrode to be

directly observed. In this case, there very well may be strong correlations between the macro-

scopic observables and the presumptive random force term. Thus, difficulty in minimizing the
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error functional EII(ta, tb) may sometimes signify that we have not identified all the key macro-

scopic observables. We may need to insert a few more electrodes in other parts of the brain.

In this case, if it is not possible to insert more electrodes into the brain or if we do not know

where to insert them, what we can do is to take shorter time intervals of observation, given by [ta,

tb], and to extract the K's and G's for each time interval individually, a different set of K's and G's

for each time interval. If the time intervals are short enough, then it will be possible to make EII(ta,

tb) as small as one likes, simply because there will be fewer data points to be fitted with a given

number of free fitting parameters. The K's and G's will then vary across time intervals. These var-

iations reflect the influence of the unseen variables.

3.1. Nonlinear interactions

It may seem curious that Eq (7) is linear in the macroscopic variables X(t) and  even though

we have made no assumptions about linearity in the microscopic variables, the 's and 's. The

reason is a subtle one but important to understand. In Eq (2), every component of the vector X(t),

x(n, t), is itself a vector in Hilbert space which can be expanded in terms of an infinite basis set

of eigenfunctions j of the Liouville operator L:

Higher order functions, such as x(n, t)2, x(n, t)3, etc, have their own expansion coefficients in

terms of these eigenfunctions, and the expansion coefficients will not necessarily have a simple

relationship to those for x(n, t). What this means is that in Hilbert space, higher order functions

of the macroscopic variable x(n, t) are considered additional dimensions in the abstract space. If

they are important for describing the dynamics of X(t), then one will not be able to satisfy one's

variational principle and EII(ta, tb) will be in some sense too large. Difficulty in satisfying the var-

iational principle thus can signal either that there are important unseen variables at play or that

there are nonlinear dependences on the macroscopic variables. In the latter case, one remedy

would be to define a vector Z(t) with components zN+k(n, t) = x(n, t)k. One can include higher

order terms up to whatever order k one likes, in order to capture some of the nonlinear depend-

ences. To generalize even further, one could begin including other functions as well, for example,

sigmoidal functions for modeling nonlinear neuronal responses. Regardless of what one

chooses, the vector Z(t) will evolve according to the Liouville equation:

The rest of the development follows as before, and one finds a corresponding equation of

motion for Z(t):

X t( )

qi


pi

x n t a n tj j
j

( , ) ( , ) ( )=
=

∞

∑  Γ
1

(31)

d
dt

Z t Z t LZ t( ) ( ) ( )≡ = (32)
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One can still appeal to either variational principle I or II to extract the K's and G's from exper-

iment data.

In general, there is no simple prescription for determining which macroscopic observables are

important nor the best nonlinear forms for the interactions between the macroscopic observa-

bles. The choices that one makes will depend on the specifics of one's experimental setup (where

one has inserted electrodes) and on one's intuition about how best to model explicit interactions.

Nonetheless, the form of Eq (17) or Eq (33) constrains the mathematical model to one that is

consistent with the laws of physics, and the variational principles I and II guarantee the best fit

of one's model to experimental data.

As an example, consider the situation where there are two intracranial electrodes, and where

the neurons near one electrode interact with neurons near the other through both a linear term

and a sigmoidal term. There may also be a frictional force acting at each site. A reasonable set of

equations of motion may then look like this:

One may then appeal to either variational principle to obtain the K's and G's, and even  if

one wishes. The Zwanzig-Mori approach thus allows for a very flexible approach to the mathe-

matical modeling of macroscopic observables. One does one's best to set up an equation of

motion, with a certain set of fitting parameters, and then one appeals to the variational principle

of one's choice to extract these fitting parameters from experiment. The variational principle

guarantees the best description of the experimental data, given one's choice of a mathematical

model.

3.2. Piece-wise linear approximation
Alternatively, one can ignore all macroscopic observables that are not linear functions of the x(n,

t)'s and simply take sequential time intervals [ta, tb] to be short enough that EI(ta, tb) or EII(ta, tb)

is satisfactorily small. How short this time interval has to be is however short is necessary to

obtain a value of EI(ta, tb) or EII(ta, tb) that is below one's desired threshold. In this case, one is

assuming that the dynamics is linear within each time interval [ta, tb], but not necessarily linear

   Z t K Z t G Z t F tR( ) ( ) ( ) ( )= − − + (33)

   
 

x t K x t K x t K x t

G x t
1 11 1 12 2 12 2

11 1

( ) ( ) ( ) tanh[ ( )]

( )

’= − − −
− +


FF t1( )

(34)

   
 

x t K x t K x t K x t

G x t
2 21 1 22 2 21 1

22 2

( ) ( ) ( ) tanh[ ( )]

( )

’= − − −
− +


FF t2( )

(35)
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across time intervals. This approach is the piece-wise linear approximation. It is worthwhile con-

sidering when it is valid.

If the underlying microscopic dynamics obeys classical dynamics (i.e., Newtonian physics),

then there is no loss of generality in making the piece-wise linear approximation, at least as far

as the validity Eq (17) is concerned. The reason is that the force exerted on a classical particle is

proportional to the slope of a potential energy function at a single point on that surface, with that

point being given by the instantaneous coordinate of the particle X(t). For a short enough period

of time, one can perform a Taylor expansion of the potential energy surface about the instanta-

neous coordinate of the particle, expand to just the quadratic order term, and ignore the higher

order terms. The force, since it is proportional to the slope of the potential energy surface, is then

always piece-wise linear in X(t).

In contrast, the instantaneous force on a quantum wavepacket depends on the shape of the

potential energy surface over the instantaneous spatial extent of the entire wavepacket. If this

wavepacket extends over a substantial patch of the potential energy surface, then an accurate Tay-

lor expansion of the potential energy surface may have to include terms higher than just the

quadratic order term. Thus quantum dynamics may not always be accurately described by a

piece-wise linear assumption.

Fortunately, biological systems are typically far from the quantum regime, and in this case, we

can always simply take the time intervals [ta, tb] shorter and shorter until we satisfy our variational

criterion. Piece-wise linear analysis (also known as instantaneous normal modes) has been sur-

prisingly successful in describing even highly nonlinear dynamics, including that of liquids [16-

20].

Once we have obtained the K's and G's, we can interpret interactions between groups of neu-

rons with these functions. Which neuronal groups are linked by either the K's or G's? What are

the time scales for the time delays? In particular, the eigenstates and eigenvalues of the K-matrix

would be of high interest, as these eigenstates represent spatiotemporal patterns created by the

interaction between the explicit degrees of freedom, i.e., these eigenstates may represent ''mem-

ory traces''.

To explore this idea, first ignore the convolutions in Eq (17) and consider the eigenstates of K

where the eigenvalues are purely real and positive. These eigenstates are oscillatory states which

reside in free energy "wells". In terms of the EEG, one will see "standing wave" oscillations dis-

tributed over the spatial distribution of the respective eigenstates. These are stable states that can

be used to store information. In contrast, eigenstates of K where the eigenvalues are purely real

and negative are unstable states which map onto free energy "barriers". In terms of the EEG, these

states are evanescent states which do not recur, or at least not in a periodic way. These unstable
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states are not useful for storing information because they are transitory and one cannot reliably

design a trajectory to return to such states.

Because K is purely real but not necessarily symmetric, it can also have pairs of complex-val-

ued eigenstates which have eigenvalues that are also complex. In each pair, the eigenvalues and

eigenstates are complex conjugates of each other. The EEG dynamics represented by these pairs

is that of a "traveling wave" that travels between the real and imaginary parts of the eigenstates.

For instance, if one eigenstate is  with complex eigenvalue 1 = R + iI, then the

other eigenstate is  with eigenvalue 2 = R - iI. In terms of the EEG dynamics, one

will see activations of EEG voltages that morph continuously between the spatial distribution

represented by  and that represented by . If R > 0, then these states are stable and can also

be used to store information.

The presence of the convolution between K() and X(t) in Eq (17) opens up the possibility of

super-eigenstates that are not only spatially distributed, but also extended in time. To see how

these arise, define a super-vector X(t) by concatenating (M+1) consecutive N-dimensional X-vec-

tors:

The number M is determined by the number of time steps that contribute to the convolutions

involving the K and G matrices. A super-vector FR(t) can be defined in an analogous way, as well

as N(M + 1) × N(M + 1) dimensional super-matrices K and G. Equation (17) can then be written

without convolution operators as:

The eigenstates of K now span not only space but also time over an interval given by M = Mt.

We suggest that those eigenstates of K that are stable represent spatiotemporal memory traces.

3.3. Criticality, neural and thermodynamic
Of increasing interest in neurodynamics is the idea that the brain may poise itself near a critical

point [21-23]. Near this neural critical point, neuronal elements may exhibit spatiotemporal pat-

terns of correlated activation that span many length scales and time scales, from the length scales

of just a few neurons to that encompassing macroscopic brain regions, and from time scales of

individual action potentials (millisecs) to the much longer time scales of a completed thought
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(seconds to minutes, and possibly to even longer times). For neural systems, criticality can be

defined in terms of the connectivity of the system [24,25]. It has been shown that a neural system

at critical connectivity exhibits maximal information storage capacity, and optimal information

transmission and processing [21,22,24,26-28]. Because the survival of an animal depends on

how well its brain processes, stores and retrieves information, we have hypothesized that biolog-

ical neural systems must maintain themselves at or near critical connectivity [29]. If this hypoth-

esis is true, then failure to remain at or near critical connectivity may represent neurological

disease, for instance, epilepsy [30]. If this hypothesis is false, it cannot be too far wrong, and it

would be important to characterize how far a neural system can be from critical connectivity

before it fails to be useful as an information processing system.

It would be of great interest to have a reliable measure of connectivity in the intact brain, as

measured by clinically available electrodes either on the scalp of a human subject, placed on the

surface of the brain, or inserted into the brain. For practical reasons, all such systems monitor

only a tiny subset of all neural activity in the intact brain. An important consequence is the sub-

sampling problem, where monitoring of only a portion of the total system is likely to misrepresent

the true state of the system, including the possibility of mistaking a critical system for a subcritical

or supercritical one [31]. It appears that one needs to monitor on the order of 25% of the total

system in order to have some hope of a reliable measurement of system connectivity, at least

using current measures of connectivity (Priesemann V; Personal communication, 2009).

Can the projection operator approach afford a more reliable measure of criticality, and can it

connect the neural concept of criticality to the more traditional thermodynamic concept [32]?

We do not know as yet, but the conceptual framework of the projection operator approach is sug-

gestive of an approach to this problem. The reasoning is as follows.

The vector of macroscopic observables, X(t), can be regarded as a generalized coordinate of an

abstract neural ''super-particle'' that exists in a very high-dimensional space. The coordinate

reflects the collective movement of a macroscopic number of microscopic charged ions and mol-

ecules in a very complicated, nonlinear way, as given by Eq (1). Notwithstanding the complexity

of the microscopic dynamics, it is a characteristic of critical phenomena to span all length and

time scales [32], and thus one may ask, if we define a heat capacity for the macroscopic neural

super-particle, will it behave in the same way as the heat capacity of the microscopic system if

either system is at or near its critical point? The answer is yes, it should, and therefore the critical

point of the microscopic system should be identical to that of the macroscopic system. The heat

capacity of the neural system should diverge at the critical point in the same way, with the same

critical exponent.

To explore this idea, note that changes in the internal energy U(t) of the oscillator are driven

by the force -K � X(t), and so incremental changes in this energy are given by
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If we take the kinetic energy to be  and the temperature to be related to

the kinetic energy through

where T(t) is the instantaneous temperature, N is the total number of EEG channels and kB is

Boltzmann's constant [33], we can then define a dimensionless internal heat capacity as

Using Eq (40), we may then investigate divergences of the heat capacity near phase transitions

including the critical point. Other thermodynamic quantities of interest may be similarly defined

[34]. A caution is that more sophisticated definitions of temperature than Eq (39) may be needed

for systems that are not at thermal equilibrium.

One can also begin to think of EEG dynamics in terms of established particle dynamics con-

cepts. What does the free energy surface U(t) look like on which brain dynamics moves? Are there

deep energy wells that trap neural super-particle trajectories? Are there frequent hops between

energy wells? What proportion of time is spent inside a well vs on an energy barrier? How high

are the energy barriers to transitions between free energy wells? Can one hope to bring into play

such landmarks of physical chemistry as transition state theory and other reaction rate theories?

What happens in disease, for example, in epilepsy? Do the energy wells become shallower? Is

there less friction? We have previously taken small steps in investigating these questions [35], but

a great deal more is possible. Our prior experience shows that the calculations required to utilize

variational principle II are feasible.

3.4. Causality
According to Newtonian physics, the force exerted by one body on another acts instantaneously,

with no time delay. Projection operator theory shows us that if the force exerted by one macro-

scopic body on another is mediated through many microscopic degrees of freedom, the response

of the second body may be delayed in time. This time delay is represented by the convolution in

Eq (17). The macroscopic time delay is intuitively obvious from our daily experience, and does

not surprise us. The time delay is suggestive of but not proof of causality. Can causality be dem-

onstrated using the Zwanzig-Mori equation of Eq (17)?

 U t X K X t( ) ( )= − ⋅ [ ] (38)
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2
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In this regard, it is instructive to consider Granger causality [36], which is finding increasing

application in neuroscience and many other areas. In Granger causality, one assumes that the

value of X(t + t) at time t + t depends on all prior values at earlier times. One then asks if X(t +

t) also depends on prior values of another vector Y(t). To answer this question, one can con-

struct two time series:

One solves for G in Eq (41) by minimizing an error functional over some time interval [ta, tb]:

Similarly one solves for H1 and H2 by minimizing the error functional

If EXY (ta, tb) is significantly less than EX (ta, tb) by some statistical measure, then one says that

Y(t) Granger causes X(t).

The Zwanzig-Mori formulation can be applied to demonstrate causality in an analogous way.

The Granger error terms RX(t) and RXY(t) correspond to random force fluctuations in the Zwan-

zig-Mori equation. The error functionals of Granger causality in Eqs (43) and (44) are equivalent

to the Zwanzig-Mori error functional EI(ta, tb), corresponding to our variational principle I. That

the Zwanzig-Mori equation contains both a coordinate and a velocity term is not a major differ-

ence, as within the Granger formulation, one could simply take the velocity as another degree of

freedom, in effect, another coordinate.

However, within the Zwanzig-Mori formalism, one also has the option of appealing to varia-

tional principle II. This variational principle may be more useful for noisy systems. For noisy sys-

tems, it is not justifiable to assume that the random force contribution to dynamics should be as

small as possible. Random environmental forces may in fact be dominant. Nonetheless, one can

still define the random force to have no time correlation with the macroscopic observables, for

reasons discussed above. Thus, we feel that variational principle II has advantages over varia-

tional principle I.

3.5. Prediction and control: relation to Kalman filters

Kalman filters are also beginning to find application in engineering applications of neural pre-

diction and control [37]. The idea here is to understand how a system responds to externally

X t t G X t R tX( ) ( ) ( )+ = +  (41)

X t t H X t H Y t R tXY( ) ( ) ( ) ( )+ = + + 1 2  (42)

E t t dt R t R tX a b X X
t

t

a

b
( , ) ( ) ( )= ⋅[ ]∫ (43)

E t t dt R t R tXY a b XY XY
t
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a

b
( , ) ( ) ( )= ⋅[ ]∫ (44)
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applied perturbations so that one can apply the perturbations in a rationally planned way so as

to achieve a desired response.

Zwanzig-Mori theory also allows one to probe system response to external perturbations. Let

the system observables be described by a vector X(t) and let the external perturbations be

described by a time-dependent vector Y(t). On the experimental system, one may apply a variety

of representative test perturbations Y(t). One then constructs a vector Z(t) containing both vec-

tors X(t) and Y(t):

Going through all the steps as before, we find the Zwanzig-Mori equation for Z(t)

Appealing to either variational principle I or II, we can extract all the K's or G's in Eq (46) as

a result of the test perturbations. There will be off-diagonal elements of the K's and G's that

describe the effect of a given test perturbation Y(t) on the future dynamics of X(t). Knowing these

elements allows one to predict the future response of the system to any variation of the test per-

turbations.

3.6. Related approaches

Hänggi and coworkers have also taken advantage of the Zwanzig-Mori formulation of the GLE to

construct a hierarchy of statistical measures of system memory [38]. These measures have been

applied to a patient with photosensitive epilepsy with striking results [39]. The Zwanzig-Mori

approach has also been applied to construct a renormalized kinetic theory of dense fluids [40].

In terms of other theoretical approaches for deriving macroscopic equations of motion based

on microscopic dynamics, a moment expansion method is also possible. In this approach, one

defines moments of the macroscopic observables, e.g.,  where m and n are positive

integers and where the angular brackets signify a phase space average over a distribution func-

tion, which need not be an equilibrium distribution function. Taking time derivatives and apply-

ing microscopic laws within the angular brackets results in coupled differential equations linking

the dynamics of the different order moments of X(t). In general, the lower order moments will

depend on higher order moments, and one needs a way of closing the moment expansion [e.g.,

see Refs [41,42]].

Yet another method is to expand the distribution function in terms of a "basis set", and then

derive equations of motion for the expansion coefficients. It is possible to allow the basis func-

Z t
X t

Y t
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tions themselves to change in time by appealing to the Dirac-Frenkel variational principle [43],

which resembles our variational principle II. Indeed, the Dirac-Frenkel variational principle was

the motivation for variational principle II. The variationally optimized "mobile basis set"

approach has been applied to quantum dynamics [44,45] and can also be applied to statistical

mechanics. A suggestion for workers who wish to try this mobile basis set approach is that one

should expand the square root of the distribution function in a basis set, not the distribution

itself, or else one would not be able to maintain normalization simultaneously with energy con-

servation.

3.7. Summary
The Zwanzig-Mori formalism is a simple and flexible mathematical framework for interpreting

macroscopic dynamics even in the presence of significant environmental noise. Its range of appli-

cability is very broad, including the dynamics of all natural systems governed by classical or

quantum physics. It is based on sound physical principles, and it allows one to extract model

parameters from experimental data using one of two variational principles. These variational

principles are our principal contribution to the formalism.
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