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Abstract: Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The
transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the
TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for
TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor
cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to
angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression
and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing
sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly
decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We
conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings,
but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as
TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized
treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.

Keywords: TNFα; TNFR1; TNFR2; lung cancer; immunotherapy; immune checkpoint inhibition
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1. The Pleiotropic Immunological Biology of TNFα

About 60 years ago, it was reported that bacterial endotoxin administration to mice
resulted in the release of a serological protein with necrotic anti-tumor activity at high
concentrations. Due to the latter characteristic, this protein was termed tumor necrosis
factor (TNF) [1] and considered a breakthrough for cancer therapy. Today, the TNF su-
perfamily consists of 19 members and 29 TNF receptors [2]. Within this family, functional
TNFα is represented by a trimer of 17.35 kDa monomers, folded into a rigid bell-shaped
“jelly roll” composed of antiparallel filaments [3]. It exists in two forms: a transmembrane
form (tmTNFα) next to a soluble (sTNFα) form. The latter one is cleaved from tmTNFα by
the metalloproteinase TNF-alpha-converting enzyme (TACE). Upon X-ray crystallography
analysis, TNFα was demonstrated to bind to TNF receptors 1 and 2 (TNFR1 and TNFR2),
represented by a 55 and 75 kDa type I and type II transmembrane protein, respectively [4,5].
The structural pleiotropism of TNFα and its receptors endows it with a multifaceted role
linked to both anti- and pro-inflammatory assets as well as apoptotic assets. The complexity
of these findings tempered the original enthusiasm for TNFα as a breakthrough molecule
for cancer therapy.

1.1. The Pro-Inflammatory Character of sTNFα versus tmTNFα

Soluble TNFα is mainly secreted by activated macrophages [6] and to a lesser extent,
by T lymphocytes, natural killer (NK) cells, neutrophils, endothelial and cardiac muscle cells,
fibroblasts, and osteoclasts [7,8]. By comparison, tmTNFα is expressed constitutively on the
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surface of a broad range of immune cells such as alveolar and non-alveolar macrophages [9],
monocytes [10], lymphocytes [11], dendritic cells (DCs), and NK cells [12]. In addition, its
expression has been reported on non-immune cells such as adipocytes [13] and tumor cells [14].

In general, sTNFα is rapidly released upon trauma or infection, as it is bestowed
with a determining role in immunoregulatory processes such as immune ontogeny, in-
flammation, and apoptosis [7]. As a soluble pro-inflammatory cytokine, it primarily acts
at sites remote from the TNFα-producing cells to support the production of downstream
pro-inflammatory cytokines along with the recruitment, activation, and regulation of in-
flammatory cells such as macrophages. To illustrate, when macrophages are activated
by Toll-like receptors, they secrete sTNFα, which subsequently regulates macrophage
differentiation in an autocrine fashion [15]. Hence, TNFα neutralizing antibodies have
been shown to reduce the production of several pro-inflammatory cytokines and growth
factors such as interleukin-1 (IL-1) and granulocyte-macrophage colony-stimulating factor
(GM-CSF) [16]. Of note, sTNFα has an intrinsic pleiotropic activity as it is also involved in
anti-inflammatory responses that aim to restore homeostasis [17].

In comparison, tmTNFα is an important mediator of immune-cell crosstalk. To illus-
trate, when DCs express tmTNFα, the latter can interact with TNFR2 on NK cells, resulting
in increased NK cell proliferation and cytotoxic activity [18]. Moreover, tmTNFα can act in
a dual manner upon its interaction with TNFR: either as a ligand or as a receptor through
an “outside-to-inside” signaling pathway known as “reverse signaling”. There is evidence
that, as a ligand, it is mainly involved in host defense mechanisms against infections [19],
while the receptor-like form appears to have a role in modulating immune cell activation.
To elaborate, tmTNFα expressed by activated T cells can bind to TNFR2, expressed by
monocytes, leading to monocyte activation with subsequent secretion of interleukin-10
(IL-10) and sTNFα. Additionally, endogenous IL-10 was shown to downregulate T cell
contact-mediated sTNFα production by monocytes, suggestive for an autoregulatory loop
involving both sTNFα and tmTNFα [19–21]. What is more, T cells can also activate mono-
cytes by expressing TNFR2 that can trigger reverse signaling via tmTNFα, expressed by
the monocytes. Hence, both TNFα isoforms are significantly involved in the regulation of
the inflammatory response [22].

1.2. Two Distinct Receptors Fine-Tune TNFα’s Biological Effects

TNFR1, also known as tumor necrosis factor receptor superfamily, member 1A (TN-
FRSF1A) or CD120a, is expressed on almost all host cells including various tumor cell
types [23–26] and tumor-associated endothelial cells [27]. In contrast, TNFR2 (TNFRSF1B
or CD120b) is predominantly located on the surface of immune cells, such as NK cells,
macrophages [28], regulatory T cells (Tregs), suppressive myeloid cells [29], and endothelial
cells [30]. As indicated by "+" in Figure 1, sTNFα shows a significantly higher affinity for
TNFR1 than tmTNFα, while the opposite holds true for TNFR2 [31,32].

In terms of biological effects, high affinity binding to TNFR1 (and not TNFR2) has
been demonstrated to result in DC activation and subsequent stimulation of antigen
specific CD8+ T cells [33]. That TNFR1-knockout (ko) mice show resistance to colitis
development [34] further confirms its involvement in the differentiation of inflammatory
T cells. In comparison, activation of TNFR2 in lymphoid cells leads to inflammatory
responses as well as T cell activation, thymocyte proliferation, GM-CSF production [7], and
NK cell-mediated IFN-γ production [35]. Yet, its main role seems to be linked to restoration
of homeostasis and promotion of an immunosuppressive environment, as TNFR2 gene ko
models show elevated inflammatory responses [33,34,36]. To illustrate, TNFR2 signaling
has been shown to promote Treg differentiation, proliferation, and suppressive function,
while TNFR1 does not affect Treg cell expansion [37–39]. Moreover, upon activation of
both TNFRs, TNFR2 is more liable to receptor shedding than TNFR1 [40–42]. The shedded
soluble TNFRs have been shown to serve as decoy receptors for sTNFα to control its innate
immune activation threshold. Hence, more pronounced TNFR2 shedding is in line with its
immune restorative function [43,44].
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Next to their roles in immune cell proliferation and activation, triggered TNFR1 and
TNFR2 can also induce apoptotic and necrotic cell death. In the case of TNFR1, this is the
result of the interaction between the receptors’ death domain (DD) and the adapter protein
TNF receptor-associated death domain (TRADD). Upon interaction of DD-TRADD, the
activation of cysteine-aspartyl-specific proteases (caspases) is stimulated [45,46]. Although
TNFR2 lacks a DD, it has been reported to cause activation-induced cell death (AICD), e.g.,
in mature CD8+ T cells [36]. As outlined in Figure 1, the different outcomes upon TNFR1
and 2 triggering result from their distinct downstream signaling [47]. Although both exploit
the NF-κB pathway for transcriptional activation of inflammatory and anti-apoptotic
genes [48], the “classical” NF-κB pathway is mainly activated upon sTNFα binding to
TNFR1 [31], while the “alternative pathway” is preferentially but not exclusively primed
upon TNFR2 binding [28,49,50]. Additionally, both TNFRs can regulate gene expression
by activating at least two members of the MAP kinase (MAPK) family, such as P38 [51,52]
and JNK [53], and this via a series of protein phosphorylations (MEKK). Notably, the
TNF superfamily member lymphotoxin alpha can, in its soluble homotrimer form (LTα3),
also bind to both TNFRs with an affinity profile comparable to that of sTNFα [54,55]. In
terms of biological effects, sTNFα and LTα3 have been reported to show equal mitogenic
stimulation capacities upon TNFR binding, yet sTNFα was shown to be more potent to
mediate gene regulation and cytotoxicity.
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Figure 1. Pathways activated by soluble TNFα (sTNFα) and transmembrane TNFα (tmTNFα) upon
binding to TNFRs. Downstream signaling via TNFR1 is most effective upon high-affinity (+++)
binding to sTNFα. In the case of TNFR1, this can lead to caspase8/3-mediated apoptosis through
signaling via its death domain (DD), recruitment of TRADD, and subsequent recruitment of FADD
or TRAF2. The latter could also result in activation of pro-inflammatory signals via the "classical
NF-κB" pathway, and is primarily activated via TNFR1 (red arrows). Upon high-affinity (+++) binding
of tmTNFα to TNFR2, TRAF2 is triggered, which preferentially results in NF-κB activation via the
alternative pathway (blue arrows) to activate the expression of proliferation and survival related genes.
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Both sTNFα and tmTNFα bind with low-affinity (+) to TNFR2 and TNFR1 respectively. TNF-
alpha-converting enzyme (TACE), responsible for the conversion of sTNFα from tmTNFα and of
soluble TNFRs [56]. For completeness, the alternative TNFR ligand lymphotoxin alpha 3 (LTα3),
with its affinity binding profile to TNFR1 and 2, is depicted as well. This figure was created with
BioRender.com (accessed on 4 June 2021).

In conclusion, the presence of two functional isoforms (soluble and transmembrane)
next to two receptors with specific expression, affinity, and downstream signaling avenues
collectively serves the pleiotropic job description of TNFα. As regulator of cytotoxic, pro-,
and anti-inflammatory functions, it is evident that TNFα can play a critical role in the
development of chronic inflammatory diseases as well as cancer, as outlined below.

2. TNFα Plays Opposing Roles in Cancer

Despite TNFα’s denomination, in vitro reported tumor necrosis after high TNFα con-
centrations appeared a phenomenon that is not so straightforwardly translated to successful
cancer treatments in vivo. The latter is partly explained by TNFα’s multifunctionality as a
cytotoxic but also immune modulating cytokine. As the immune system plays a complex
role on the tumor microenvironmental (TME) battlefield, TNFα is used as a weapon to
modulate and/or kill tumor cells, immune cells, and/or endothelial cells [57].

Previously observed direct anti-tumoral properties of TNFα in vivo are among others
based on its capacity to hinder tumor-associated blood vessel formation (angiogenesis) via
selective endothelial cytotoxicity and necrotic hemorrhage [58]. This selective endothelial
cytotoxicity can subsequently result in hyperpermeability of tumor vessels and increased
blood cell extravasation. The exact underlying mechanism remains unknown, yet van
Horssen et al. [59] described the noteworthy hypothesis that tumor-residing endothelial
cells are more sensitive to TNFα because they upregulate TNFR1 upon cytokine signaling
by tumor cells and macrophages. However, external administration of TNFα was shown
to occupy TNFR1 expressed by tumor and healthy endothelial cells without toxicity to-
wards the latter, due to the presence of a low number of receptors on healthy cells [60].
Nevertheless, studies in mice and rats further showed a synergistic anti-tumor effect of
TNFα in combination with chemotherapeutic drugs, as accumulation of the latter at the
tumor site was shown to be improved [61–63]. Moreover, persistent high-level stimulation
with TNFα in vitro inhibits endothelial cell proliferation in a dose-dependent manner [64],
further supporting its anti-angiogenic effects [65–67]. However, Fajardo et al. hypothesized
that TNFα could show both pro- and anti-angiogenic effects in vivo, depending on its
local concentration. When murine TNFα was administered subcutaneously in mice, this
was shown to exert opposing effects. At low doses (range: 0.01–1 ng), TNFα induced
angiogenesis whereas increasing doses (1 and 5 µg) reduced this effect with complete
abolishment at the highest doses [68].

While a high concentration of TNFα has been linked to hemorrhagic necrosis, it is now
widely accepted that chronic exposure to TNFα is more likely to promote tumor progression.
First, it has been demonstrated repeatedly that chronic inflammation, in which the innate
immune system plays a leading role, can promote cancer onset as well as progression
and metastasis, typifying the “never-healing-wound” character of solid cancers [69,70].
Indeed, chronic exposure to TNFα can promote cellular transformation via the induction
of direct mutations and DNA damage [71] as well as via profound epigenetic changes that
modulate the expression level of oncogenes and tumor suppressor genes [72]. In addition,
inflammation influences epithelial-to-mesenchymal cell transition (EMT) and subsequent
cancer cell invasion. Further, TNFα has been shown to affect expression of EMT-inducing
transcription factors, particularly in synergy with TGFβ [73]. Moreover, TNFα associated
with chronic inflammation can be held responsible for the observed phenomenon of cancer
cell specific resistance to TNFα-induced cell death [74]. Specifically, chronic TNFα/TNFR1
binding increases the expression of anti-apoptotic, angiogenic, and invasive proteins via the
TAK-1, MAPKs, Akt, IKK, AP-1, and NF-κB signaling pathways [28,75,76]. Notably, also
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the ligands and receptors of the LTα family with, among others, affinity for TNFR1 and 2,
have been linked to increased carcinogenesis, as extensively reviewed elsewhere [55,77].

Even if chronic inflammation is not involved in the onset of tumor cell transformation,
the immune system often becomes a co-worker during cancer progression. Today it is
generally accepted that the immune system can identify and control nascent malignancies
in a process called cancer immunosurveillance. In contrast, the latter can also promote
tumor progression through the selection of poorly immunogenic variants and suppression
of anti-tumor immunity. Together, the dual host-protective and tumor-promoting actions
of immunity are referred to as cancer immunoediting and comprise three distinct phases:
the elimination, equilibrium, and escape phase [78–80].

The elimination phase is characterized by an imbalance towards more anti-tumor
immunity, installed by adaptive as well as innate immune cells. Characteristic for a
potent Th1-oriented tumor-associated antigen (TAA) specific adaptive immune response is
the presence of immunogenic TAAs, presented via MHC-I on the surface of tumor cells,
together with Fas, TRAIL, and IFN-γ receptors and the presence of perforin, granzymes,
IFN-α/β/γ, IL-1, IL-12, and TNFα within the TME. Hence, TNFα can ameliorate this
phase through its involvement in activation of T cells, macrophages, and NK cells. For
example, it was shown that TNFR1 signaling promotes the accumulation of anti-tumor
M1 polarized tumor-associated macrophages (TAMs) by suppressing the M2-polarizing
release of IL-13 from eosinophils co-recruited with inflammatory monocytes [81]. On their
turn, MHC-IIhigh (M1) TAMs and granulocytes can secrete, among others, TNFα, IL-1, and
IL-12 to further ameliorate a Th1-polarized anti-tumor immune profile [82].

During the equilibrium phase, anti- and pro-tumor immunity are in balance and/or
immune-mediated tumor dormancy is installed [80]. It was reported that the absence of
TNFR or IFN-γ promoted angiogenesis and multistage carcinogenesis in an experimentally
induced pancreatic murine tumor model, suggesting that a coordinated interaction between
IFN-γ and TNFα was responsible for the activation of TAA-specific cytotoxic T cells [83].
Moreover, the combination of IFN-γ and TNFα drove pancreatic tumor cells into STAT-1
and TNFR1-mediated senescence [82]. Because IFN-γ and TNFα induce senescence in
numerous murine and human cancers, this may be a general mechanism for arresting
cancer progression.

In the escape phase, TNFα has several effects capable of lowering the antitumor
immune response by facilitating the accumulation and/or activation of a wide range of im-
munosuppressive cells such as Tregs [37], regulatory B cells [84], and suppressive myeloid
cells [85]. As stated before, the common factor of these immunosuppressive effects lies
within TNFα binding to TNFR2. When secreted by activated CD4+ T-cells, TNFα has been
shown to induce myelopoiesis in tumor-bearing mice. Furthermore, cells of the myeloid
lineage can be recruited to become immune-suppressive regulatory myeloid cells, which
decrease TAA-specific CD8+ T cell mediated tumor cytotoxicity [86]. Moreover, it has been
reported that tmTNFα, rather than sTNFα, is able to activate immunosuppressive myeloid
cells upon binding to TNFR2. To illustrate, a marked increase in immunosuppressive
myeloid cell accumulation was only observed when tmTNFα was constitutively expressed
on 4T1 mammary tumor cells, with subsequent promotion of NO, ROS, IL-10, and TGF-β
secretion by these myeloid cells and inhibition of lymphocyte proliferation. In contrast,
4T1 overexpression of sTNFα resulted in increased lymphocyte infiltration and tumor
regression [87]. TNFα also facilitates the installment of an effector T cell hostile milieu
via indoleamine 2,3-dioxygenase 1 (IDO1) accumulation in the TME. To illustrate, while
M2b polarized macrophage conditioned medium stimulates tumor cell proliferation and
IDO1 expression in vitro, this is reduced upon TNFα neutralization [88]. As IDO1 con-
verts tryptophan into kynurenine, tryptophan is deprived with subsequent installment of
TAA-specific T cell anergy, while Treg activity, lymphangiogenesis, and neovascularization
are enhanced in vivo. Finally, TNFα has been linked to cancer therapy resistance. To
illustrate, in a murine triple-negative breast cancer model, resistance to the anti-angiogenic
drug bevacizumab was shown to be accompanied by M2b TAM-mediated secretion of
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the chemokine CCL1 along with TNFα. Upon TNFα-neutralizing nanobody administra-
tion in vivo, this immunosuppressive M2b macrophage-induced resistance was overcome,
supporting TNFα’s key role in resistance to bevacizumab [88].

Although both TNFα and its receptors’ precise role within the complex and ever-
evolving TME are far from fully understood, substantial evidence has emerged that TNFα
signaling has a paradoxical and dual role in cancer progression and the dynamic immu-
noediting process. While it has been held responsible for key tumor promoting features
such as the maintenance of an antigen-ignorant chronic inflammatory state and immuno-
suppressive effects that hinder TAA-specific effector functions, its documented anti-tumor
assets in vitro and in vivo hamper a clear-cut conclusion.

3. Specificities of TNFα in Lung Cancer Progression

Lung cancer remains the leading cause of cancer-related deaths worldwide, responsi-
ble for almost 1.8 million deaths in 2020 alone [89]. Lung cancer comprises two key types:
non-small cell lung cancer (NSCLC), accounting for 80–85% of cases, and small cell lung
cancer (SCLC) [90].

As the human respiratory tract is continuously exposed to air that can potentially
contain airborne pathogens, lungs necessitate a unique, fine-tuned, and rapidly acting
pulmonary immune system to maintain homeostasis [91]. When the immunohistological
expression of TNFα and its receptors was evaluated in healthy human lung tissue, TNFα
was shown to be particularly prominent in bronchial epithelial cells, vascular smooth
muscle cells, and alveolar macrophages. In addition, TNFR1 was shown to be eminently
expressed on bronchial epithelial cells and endothelial cells, while TNFR2 was expressed
by nearly all cell types [92]. Therefore, it is not surprising that in the complex process
of lung cancer onset, progression, and dissemination, TNFα and its receptors have been
reported to play decisive roles, too. Indeed, it was recently described that TNF is one of
the co-occurring frequently altered immune genes found within the TCGA pan-cancer
lung adenocarcinoma (LUAD) dataset (n = 507) [93]. However, the exact effect seems to
be nuanced by contradicting functions governed by their isoforms, signal strength, and
downstream signaling pathways. This is illustrated by the finding that specific genetic
polymorphisms of the TNF gene region impact lung cancer progression differently. While
the 238 G > A polymorphism, found in the promoter region of TNFα, has a favorable
prognostic association for NSCLC [94], the 308 G>A polymorphism constitutes an increased
risk for lung cancer [95].

Another opposing effect is found for sTNFα and tmTNFα on lung cancer growth [96].
When murine lung tumor lines expressed tmTNFα, their engraftment resulted in the
formation of small tumors with reduced tumor-associated myeloid cell infiltration, in
contrast to control or sTNFα-overexpressing lines. The observed myeloid cell reduction was
found to be a direct effect of tmTNFα on myeloid survival via induction of ROS-mediated
cell necrosis. Furthermore, human NSCLC was shown to express varying levels of sTNFα
and tmTNFα, and gene expression patterns favoring tmTNFα appeared predictive of
improved lung cancer survival [96]. This is in contrast with previous findings using the
mammary 4T1 model and, moreover, counterintuitive, as tmTNFα shows a higher affinity
than sTNFα for the immunosuppression promoting TNFR2 [87]. The fact that TNFα could
have a favorable impact on survival is further supported by a study on citronellol’s ability
to induce necroptosis of human lung tumor cells in vitro and in vivo. This study identified
a decisive role for TNFα in this necroptosis induction via its activation of RIP1/3 and
simultaneous downregulation of caspase 3/8 activity [97].

In an attempt to predict the most common interactions between the different TNFα-
signaling members within the lung TME, we compared the overall TNF, TACE, TNFR1,
and TNFR2 expression profiles within a healthy tissue and TCGA pan-cancer LUAD
transcriptomic data set. We found a significant reduction of TNF, TACE, and TNFR2
transcripts within the LUAD cohort (Figure 2A,B), leading to an increased TNFR1/TNFR2
ratio (Figure 2C). These findings imply that LUAD tumors are characterized by reduced
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numbers of TNFα and especially of sTNFα molecules as TACE is significantly reduced.
The specific reduction of TNFR2 and not TNFR1 in LUAD tumors further implies that
TNFR1 but not TNFR2 plays a crucial role in tumor progression. As TNFR1 also shows
high affinity for LTα3, we used the same LUAD cohort to evaluate the expression profile of
the lymphotoxin alpha monomer encoding gene LTA. We found a significant upregulation
of LTA in the LUAD cohort compared to healthy controls (Figure 2D). Previous studies
linked the expression of at least two LTA-signaling members to a poor clinical outcome in
lung cancer patients: the receptor for the heterotrimeric LTαβ (LTβR) and the alternative
LTα3 receptor herpes virus entry mediator (HVEM) [98,99]. Overall, these findings suggest
that the TNFα pathway will have the highest likelihood to signal within the LUAD TME
via TNFR1 through low-affinity binding to tmTNFα or high-affinity binding to LTα3, as
graphically visualized with green arrows in Figure 3.
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were collected from TCGA for both normal (n = 58) and LUAD tumor tissue (n = 488). Next, we obtained the Log2-
transformed normalized RSEM values via Wanderer for TNF (A), TACE (B), TNFR1 and 2 (C), and LTA (D) [100]. For
(C), the ratio of the expression values of TNFR1 over TNFR2 is depicted. Statistical analysis was performed using the
Mann–Whitney test (****, p < 0.0001). (E,F) Gene expression analysis of TACE, TNFR1, and TNFR2 in CD8+ T cells from
NSCLC patients before and during anti-PD-1 mAb treatment. RNAseq dataset obtained from the Gene Expression Omnibus
(GEO) database (accession number: GSE111414, accessed on 06/07/2021). Counts were normalized using DESeq2 in R.
Counts for TNF were zero for most samples (data not shown). (A) Gene expression profile of TACE in both non-responder
and responder groups. (B) Ratio of TNFR1 and TNFR2 normalized expression values. For each group: n = 5.
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Nevertheless, studies on the lung tumor growth promoting role of TNFα signaling
are ample, too. First, several clinical studies have reported on the decisive role of TNFα in
lung cancer EMT, invasion, and metastasis [101,102]. Secondly, TNFα has been shown to
play an essential role in creating an immunosuppressive lung TME [103], among others, by
upregulating MHC-II in alveolar type-II (AT-II) cells responsible for a plethora of functions
that support the maintenance and optimal functioning of alveoli. Because AT-II cells’ pri-
mary function is not antigen presentation, they lack co-stimulatory signals (CD80/CD86),
essential to effectively prime CD4+ T cells. Thus, instead of creating an antitumor immune
response, increased AT-II cell-specific MHC-II expression can trigger Treg differentia-
tion [104]. Numerous studies evaluated TNFR2 as a potential biomarker for NSCLC as
it has been shown to be crucial for TNFα-mediated immunosuppression [105,106]. High
amounts of TNFR2+ Tregs have been found in the TME of murine [39,107] as well as human
advanced lung cancers [108,109], suggesting that Tregs are activated through TNFα/TNFR2
signaling. In addition, TNFR2 expression by lung tumor cells and the lung TME has been
shown to support tumor cell survival [110], pre- metastatic niche formation [111], and
neovascularization via vascular endothelial growth factor (VEGF) release. These findings
are further supported by the observation that the levels of TNFR2 expression in human
lung cancer patients, which are up to 35% [106], correlate positively to a more advanced
clinical stage, immune invasion, progressive metastasis, shorter survival time, and poor
prognosis [106,108]. These findings were confirmed in TNFR2-ko mice engrafted with
the Lewis lung carcinoma (LLC) model. Compared to wild type and TNFR1/2 double
ko mice, tumor growth decreased twofold in TNFR2-ko mice specifically and correlated
with reduced VEGF expression and capillary density, along with increased numbers of
apoptotic LLC cells. As they further showed that blocking TNFR2 via a short-hairpin
RNA in cultured LLCs increased TNFα-mediated apoptosis and expression of several
angiogenic factors, they confirmed that TNFR2 directly ameliorates angiogenesis and LLC
survival [110]. Moreover, Chopra et al. reported that TNFα or TNFR2 deficiency on im-
mune cells resulted in the reduction of lung metastasis and a decrease in the number of
pulmonary Tregs [39].

In conclusion, preclinical evidence suggests that TNFR2 is involved in lung tumor
progression while tmTNFα (with high affinity for TNFR2) has been linked to a better
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prognosis for lung cancer patients. This implies that the biomarker potential of tmTNFα
and TNFR2 for lung cancer progression most likely pivots on the delicate balances of
sTNFα over tmTNFα as well as TNFR1 over TNFR2.

4. Linking TNFα to Antitumor Immunotherapy in Lung Cancer

The goal of antitumor immunotherapy is to completely and specifically eradicate
both primary and metastatic tumor lesions by mobilized cytotoxic effector cells. Hence,
immunotherapy can achieve actual cures of advanced lung cancer patients, representing
an unprecedented reality [112,113]. Therefore, the first FDA approval of an immunother-
apeutic treatment for squamous cell NSCLC benchmarked a revolutionary era for lung
cancer patients. This treatment is based on blocking the immune checkpoint programmed
death-1 (PD-1) pathway. Under healthy conditions this pathway is used to put an adequate
brake on T cell stimulation and return to homeostatic conditions. As tumor cells can
express the PD-1 ligand (PD-L1) themselves, they can corrupt this pathway to hinder their
execution by PD-1+ TAA-specific cytotoxic effector cells [114,115]. Since 2016, five PD-(L)1
inhibitors (nivolumab, pembrolizumab, atezolizumab, durvalumab, and cemiplimab) have
been approved by the FDA as second- and/or first-line treatment options for advanced
NSCLC [93]. Notably, for the treatment of SCLC, both nivolumab and pembrolizumab
were originally approved [116] yet have been withdrawn from the US market since con-
firmatory trials failed to evidence improved survival outcomes. Additionally, only ~20%
of unselected NSCLC patients benefit from blocking immune checkpoints, and many of
the initial responders eventually develop resistance to therapy. Moreover, the growing
trend to combine several immune checkpoint inhibitors (ICIs) coincides with a growing
occurrence of severe to fatal immune-related adverse effects (irAEs), often related to a local
increase in TNFα [117]. Together with the emerging concept of hyperprogression upon
ICI [118], these phenomena cast light on the current knowledge gap of immunotherapy
hampering mechanisms.

In search for clues, the relationship between TNFα and immune checkpoint signaling
in the TME is being explored, hinting towards a lead role for TAMs. While IFN-γ is the
main regulator of PD-L1 expression in tumor cells, PD-L1 expression in TAMs seems to be
regulated via TNFα [119]. In 2017, Hartley et al. demonstrated that TNFα increases the
expression of PD-L1 on bone marrow-derived monocytes and macrophages. They found
that this was maintained through the secretion of versican by tumor cells, which stimulated
the production of TNFα by monocytes themselves in a TLR2-dependent manner [120]. One
year later, the same group provided more evidence on the interactions between the TNFα
and PD-L1 pathways, as they demonstrated that PD-L1 blockade increased spontaneous
macrophage proliferation, survival, and activation in vitro. Via RNAseq and IPA software
analysis of these anti-PD-L1 treated macrophages, they further revealed an activated
TNFR2 signaling profile [119]. Furthermore, it was recently shown in NSCLC patients
that TNFα-secreting TAMs can enhance hypoxia and aerobic glycolysis and that TAMs
dampen PD-L1 expression on murine lung tumor cells specifically [121,122]. The latter
does contradict the observation that TAM-secreted TNFα could stabilize PD-L1 expression
on 4T1 mammary cancer cells, triggering immunosuppression in vivo [123].

As melanoma remains the textbook example for immunotherapy responsiveness,
TNFα targeting studies are most numerous for this cancer type. Overall, preclinical TNFα
blockade has been shown to reduce the induction of irAEs upon ICI combinations and even
improve therapeutic effectiveness of ICIs [117,124]. Upon adoptive CD8+ T cell transfer,
TNFα appeared to be a crucial factor in the incitement of melanoma dedifferentiation,
which resulted in immune escape and melanoma relapse [125]. Bertrand et al. partly
explained these effects by the observation that TNFα/TNFR1 signaling triggers AICD of
tumor-infiltrating CD8+ T cells in melanoma, with subsequent lack of response to anti-
PD-1 therapy [126]. Hence, via systemic administration of etanercept, melanoma growth
was inhibited in immunocompetent animals specifically. Notably, similar effects were
seen in TNFR1-ko, but not TNFR2-ko, mice, suggestive for the decisive role of TNFR1 in
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this AICD of CD8+ T cells [127]. A few years later, Bertrand et al. further validated these
findings by showing that anti-PD-1 therapy can stimulate T-cell expression of the alternative
checkpoint T-cell immunoglobulin and mucin domain 3 (TIM-3) via TNFα. Moreover, they
could demonstrate that co-blockade of PD-1 and TNFα overcomes resistance to anti-PD-1
monotherapy [124]. Hence, we eagerly await the results from the first Phase Ib, open-label
trial [128] that is evaluating the administration of nivolumab (anti-PD-1) and ipilimumab
(anti-CTLA-4) in combination with the anti-TNFα drug infliximab or certolizumab in
patients with advanced melanoma.

In contrast to melanoma, only a handful of preclinical studies have explored the poten-
tial of TNFα pathway modulating strategies to treat lung cancer with rather contradictory
findings. For example, anti-TNFα antibody treatment has been tested together with an
intrapulmonary IFN-beta immuno-gene therapy (Ad.IFNβ) in an orthotopic mouse model
of lung cancer. The rationale for this was that blocking the pro-inflammatory actions of
TNFα could reduce the induction of dose-limiting pulmonary inflammation upon Ad.IFNβ

delivery. However, upon administration, the anti-TNFα antibody not only significantly
reduced the pulmonary inflammation but also the therapeutic effect of Ad.IFNβ delivery.
Hence, TNFα proved to be both a dose-limiting factor as well as crucial for the anti-tumor
immune stimulatory capacity of Ad.IFNβ [129]. More straightforward was the negative
role described for TNFα secretion by TAMs, as this promoted cell glycolysis, tumor hy-
poxia, and decreased PD-L1 expression. Hence, when the TNFα-secreting TAMs were
depleted upon clodronate treatment of LLC-engrafted mice, PD-L1 expression significantly
increased in the aerobic cancer cells. Moreover, this treatment increased tumor T cell
infiltration and most importantly, its response to anti-PD-L1 therapy, which was otherwise
completely ineffective [121]. While the above study suggests that TNFα blockade can
increase effectivity of anti-PD-L1 therapy, this seems diametrically opposed to the observa-
tion that not reduced but increased serological levels of TNFα were found to be associated
with improved anti-PD-1 treatment response and survival in NSCLC (along with IFN-γ,
IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and IL-12) [130]. Using an online available RNAseq
dataset on CD8+ T cells sorted out of NSCLC patients’ peripheral blood mononuclear
cells before and during anti-PD-1 mAb therapy [131], we were able to support the notion
that increased levels of sTNFα could be linked to improved anti-PD-1 treatment response,
as we found a non-significant increase in TACE expression within the responder group
specifically, linked to more release of sTNFα from its tmTNFα form (Figure 2E). While the
TNFR1/TNFR2 ratio decreased upon anti-PD-1 treatment, this phenomenon was seen in
both the responder and non-responder groups (Figure 2F). Finally, the levels of LTA were
very similar between the responder and non-responder groups (data not shown), although
we were unable to draw any conclusions for TNF due to the lack of representative data,
underscoring the current lack of human data on gene expression profiles of the different
TNFα family members before, during, and after antitumor immunotherapy.

5. Conclusions and Future Perspectives on TNFα Modulation for Lung
Cancer Treatment

The multitude of contradictory findings currently poses a stalemate for TNFα pathway-
affecting strategies in combination with immunotherapy to treat lung cancer and suggests
the need for additional research into biomarkers to guide rationalized therapy combinations.
This conundrum is reflected by the range of preclinical studies that report on the therapeutic
efficacy of TNFα upon its administration as well as its inhibition [132]. To illustrate, when
a TNF-based Activity-on-Target cytokine (AcTakine) was specifically targeted to the CD13+

neovasculature in vivo, the rapid destruction of the tumor neovasculature and complete
regression of large, established tumors was demonstrated. In contrast, selective blockage
of sTNFα via INB03 led to a reduced carcinogen-induced tumor incidence and growth
rate [133]. Moreover, a detrimental role has been attributed to sTNFα and TNFR1 for
melanoma-infiltrated functional CD8+ T cells as well as the onset of irAEs, rationalizing
combined TNFα-blockade with immunotherapy to treat melanoma.
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By mining existing next-generation sequencing data from LUAD patients, the latter
were shown to contain less TNF, and because of the significant reduction in TACE, sTNFα
protein is likely to be most decreased. Together with the notion that tmTNFα, and not
sTNFα, has been shown to play a key role in Th1-polarized antitumor immunity and
improved lung cancer patient survival [18,134], this argues against a tumor promoting
role for TNFα in lung cancer, discouraging TNFα-blockage for lung cancer treatment
today. Additionally, the role of TNFR2 in lung cancer progression remains undetermined
and requires more research. High amounts of TNFR2+ Tregs have been found in the
TME of human advanced lung cancers, and TNFR2 has recently been identified as a
tumor-promoting oncogene with new biomarker potential for cancer [135,136]. However,
upon mining the currently available transcriptomic dataset from a TCGA LUAD patient
cohort, we demonstrated that the expression of TNFR2 is markedly decreased in the lung
TME. Moreover, pre-clinically, TNFR2 agonists as well as antagonists have been linked to
antitumoral effects, arguing against the effectiveness of TNFR2 modulation for lung cancer
therapy [137–140].

To conclude, numerous studies point out that TNFα signaling is extensively involved
in lung tumor progression and response to (immuno-)therapy. However, the underly-
ing mechanisms of the different TNFα family members that modulate tumor prognosis
and response to treatment remain to be revealed. We summarized our main findings in
Figure 3 to highlight that TNFα signaling involves different ligands and receptors in LUAD,
which have been linked to prognosis response to PD-(L)1 treatment. To make matters
more complicated, all of these components can be expressed, secreted, and sensed by a
broad range of malignant, immune, and non-immune cells within the respiratory tract,
whereas most (pre-)clinical data have been based on serological values of sTNFα and RNA
sequencing data. Therefore, we believe that larger genomic, transcriptomic, and proteomic
dataset analysis studies are needed for various disease stages and treatment options on
the single cell lung TME level to advance our current understanding of the biomarker and
modulatory potential of the TNFα pathway for lung cancer prognosis and therapy.
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