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The evolutionary function and maintenance of variation in animal personality is

still under debate. Variation in the size of metabolic organs has recently been

suggested to cause and maintain variation in personality. Here, we examine

two main underlying notions: (i) that organ sizes vary consistently between

individuals and cause consistent behavioural patterns, and (ii) that a more

exploratory personality is associated with reduced survival. Exploratory behav-

iour of captive red knots (Calidris canutus, a migrant shorebird) was negatively

rather than positively correlated with digestive organ (gizzard) mass, as well

as with body mass. In an experiment, we reciprocally reduced and increased

individual gizzard masses and found that exploration scores were unaffected.

Whether or not these birds were resighted locally over the 19 months after

release was negatively correlated with their exploration scores. Moreover, a

long-term mark–recapture effort on free-living red knots with known gizzard

masses at capture confirmed that local resighting probability (an inverse

measure of exploratory behaviour) was correlated with gizzard mass without

detrimental effects on survival. We conclude that personality drives physio-

logical adjustments, rather than the other way around, and suggest that

physiological adjustments mitigate the survival costs of exploratory behaviour.

Our results show that we need to reconsider hypotheses explaining personality

variation based on organ sizes and differential survival.
1. Introduction
Animals modify aspects of their phenotype in response to changes in their

environment (phenotypic plasticity [1]). Changes that are reversible within

an individual’s lifetime are known as phenotypic flexibility [2,3]. Animal be-

haviour is a classic example of phenotypic flexibility, enabling rapid and

reversible responses to changes in environmental and social context [4].

Perhaps somewhat surprisingly, given behavioural flexibility, individuals of

many species have been shown to vary consistently in their behaviour across

contexts, yielding the notion of ‘animal personalities’ (reviewed in [5]).

Personality refers to a suite of phenotypically or genetically correlated

behavioural traits that are consistent over time or across contexts [5–8].

Variation in personality is thought to be shaped by continuous interaction

between genes and environment during ontogeny [6,9–13]. In recent years, con-

siderable progress has also been made in understanding personalities from an

evolutionary perspective [14–16]. Most of the adaptive explanations involve

between-individual variations in state (e.g. physiological condition, health and

organ masses), in combination with positive feedback mechanisms maintaining

these state variations [14,15,17]. The idea is that if the state of an individual is

more or less stable over time, then state-dependent behaviour will also be consist-

ent. However, few empirical studies exist in which predictions from such

state-dependent personality models have been tested [17].
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The sizes of an individual’s metabolic organs (e.g. digestive

organs, heart and liver) are thought to be slow-changing state

variables that are causal to variation in personality between indi-

viduals [18–20]. This variation is thought to be maintained by a

positive feedback mechanism, whereby individuals with large

metabolic organs behave in ways that allow for the acquisition

of enough energy to sustain them. For instance, such individuals

might need to be explorative, bold and/or aggressive in order to

gain access to the resources necessary for the maintenance of

their large organs. At the same time, however, such behaviours

are risky and are assumed to come attached with survival costs

[20,21]. Exploratory individuals would thus lead a high-risk/

high-gain lifestyle. For such behaviour to be evolutionarily

stable, the associated survival costs are expected to be

compensated for by correlations with particular life-history

characteristics (e.g. growth, age at maturity [22]), in line with

the ‘pace-of-life’ concept [20]. According to the pace-of-life con-

cept, metabolic costs and personality should be linked along a

continuum of slow/fast life-history strategies. However, there

is, as yet, little evidence to support this theory [23].

Implicit in the hypothesis that metabolic organ sizes are

causal to personality variation is the fact that organ sizes vary

consistently between individuals, allowing for consistent behav-

iour to develop throughout an individual’s life. Organs are,

however, notoriously flexible in size, reflecting changes in

ecological context [2,3,24]. Indeed, regardless of how personal-

ities arise, it seems likely that animals with different

personalities will express a preference for different environ-

ments (i.e. with respect to food type, predation risk, etc.

[15,25,26]), which may, in turn, result in specific physiological

adaptations. One could thus argue that personality variation

causes consistent variation in organ morphology and, conse-

quently, in metabolic costs, rather than the other way around.

In this study, we examined two critical notions underlying

the hypothesis of organ-size-driven personality variation:

(i) that variation in digestive organ sizes cause consistent vari-

ation in behaviour; and (ii) that large digestive organs and

exploratory behaviour are associated with reduced survival.

Our model species is the red knot Calidris canutus (Linnaeus,

1758), a long-distance migrating shorebird, for which contextual

flexibility in organ mass has been extensively studied [3,24,27].

Our study involved four steps. First, we experimentally deter-

mined exploratory behaviour for newly captured red knots

and correlated this with their digestive organ mass (i.e. the

muscular stomach, or gizzard). We also correlated exploratory

behaviour with body mass, and predicted that individuals

with large body mass (i.e. large energy stores) would

avoid risky behaviour and thus be less explorative (sensu the

mass-dependent predation risk hypothesis [28]). Second, we

manipulated gizzard mass in order to compare the effect of a

small and a large gizzard on exploratory behaviour within indi-

viduals. Third, to test whether the experimental quantification of

exploratory behaviour is representative of this behaviour in the

field, we tagged and released the experimental birds with

unique combinations of colour-rings and estimated local resight-

ing probability. We predicted that explorative birds would have

a lower local resighting probability because they have larger

spatial ranges than non-explorative birds. Fourth, we analysed

survival and resighting probability for free-living red knots,

with known gizzard masses, on the basis of a sustained marking

and resighting effort on free-living birds [29].

We will show that gizzard mass and body mass (energy

stores) were negatively correlated with exploratory behaviour
between individuals, and that manipulations of gizzard

mass did not cause changes in exploratory behaviour. More-

over, neither gizzard mass nor exploratory behaviour was in

any way correlated with survival. We conclude that personal-

ity drives the physiological adjustments. These results call for

reconsideration of hypotheses explaining personality variation

on the basis of organ sizes as well as differential survival.
2. Material and methods
(a) Model species
Red knots are long-distance migratory shorebirds that breed in

the High Arctic and spend the rest of the year along more

southerly shores with extensive intertidal mudflats [30]. The sub-

species islandica, studied here, breeds on tundras in northern

Greenland and northeast Canada, and winters in northwestern

Europe, including the Wadden Sea [30]. During the non-breeding

season, red knots roam intertidal mudflats in large flocks in

search of burrowed hard-shelled bivalves [31]. Depending on

the tides and weather conditions, the availability of the foraging

grounds varies temporally and spatially, as does the abundance

and quality of prey [32,33].

Bivalves of suitable sizes are swallowed whole and crushed

in their muscular stomach, the gizzard [34]. The size of the giz-

zard sets an upper limit to the amount of shell mass that can

be processed and thus limits daily intake rates [35]. Gizzard

mass is flexible within individuals and changes in response to

the ratio of flesh to shell mass of their prey (prey quality) [36].

The lower this ratio, the larger the gizzard must be to uphold

energy intake rates. Gizzard mass is correlated with the mass

of other digestive organs such as the intestines, liver and kidneys

[27,37]. Together, the digestive organs make up 18% of an indi-

vidual’s lean mass, and are a determining factor for basal and

resting metabolic rates [37,38].

Twenty-three red knots were caught between 17 and 20 March

2010 in the Dutch Wadden Sea (538150 N, 58150 E). A blood sample

was taken for molecular sexing [39]. Birds were weighed and

ringed on location, whereafter they were transported to the exper-

imental shorebird facility at NIOZ (Texel, The Netherlands;

5380001200 N, 484702300 E). Birds were housed in aviaries measuring

4 � 2 m with a height of 2.5 m and lined with white Trespa (Trespa

International BV, Weert, The Netherlands). These aviaries

provided running saltwater along a coated concrete surface, fresh-

water for drinking and bathing, and a stretch of sand covered in

5 cm water to resemble the knots’ natural mudflat habitat. The

birds were maintained on a diet of protein-rich trout-feed pellets

(Produits Trouw, Vervins, France).

(b) Measuring organ mass
Gizzard mass was measured by A.D. using an ultrasound scanner

(model Aquilla, Pie Medical Benelux, Maastricht, The Netherlands)

as described by Dekinga et al. [36]. Two sets of measurements of

gizzard width and height (cm) were taken at each measurement

session. Gizzard width and height were averaged per individual,

and gizzard mass (g) was derived as 21.09 þ 3.78 � width �
height (r ¼ 0.92, p , 0.01; this regression was obtained with fresh

gizzard masses from dead individuals). Gizzard mass was

measured 1 day after capture (which was taken to be reflective of

a birds’ organ mass while free-living), and also 1 day before each

treatment of the gizzard mass manipulation experiment.

(c) Exploratory behaviour
We tested exploratory behaviour in a novel ‘exploration arena’

measuring 7 � 7 m with a height of 3 m (‘novel environment’

test [5]). The exploration arena had walls lined with white
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Trespa and was filled with a layer of 30 cm seawater on top of a

50 cm deep layer of sand. Filled with only wet sand, we posi-

tioned five familiar trays (1 � 1 m, 20 cm deep) above the water

surface for the birds to explore. The trays were placed approxi-

mately 90 cm from the walls and acted as foraging patches,

such that the degree to which birds explored within and between

patches would reflect their propensity to explore while searching

for food. To further motivate the birds to search for food during

the trials, familiar but empty feeders were placed at the centre of

each patch. In order to induce standard hunger levels between

birds, they were deprived of food for 2 h prior to the experiment,

periods without food that knots are accustomed to naturally as

they cannot feed around high tide.

Each trial consisted of a bird being retrieved from its aviary,

weighed to the nearest 1 g and first introduced into a familiar

aviary adjacent to the exploration arena to rest for a minimum

of 5 min. This aviary led into the exploration arena through a

sliding door that could be remotely opened and closed via a

pulley mechanism. After this door was opened, the bird was

gently pushed into the exploration arena. Trials lasted 30 min.

We tested two to eight randomly selected birds each day between

8 and 11 June 2010, several months after capture. The procedure

was repeated between 21 and 24 June 2010.

All trials were recorded on video and later analysed with

OBSERVER XT software (v. 10.1, Noldus Information Technology),

allowing accurate estimation of time budgets. Our ethogram

included ‘searching for food’, ‘resting’, ‘preening’ and ‘flying’.

We also scored the patch on which the bird was located at any

given time. The logit of the fraction of total time spent in

search of food was positively correlated with the log-transformed

number of patch visits (r ¼ 0.63, p , 0.01). Hereafter, we will use

the fraction of total time spent in search for food as the measure

of exploratory behaviour.

(d) Separating effects of body mass and energy stores
on exploratory behaviour

Many species show a relationship between structural size and body

mass. For red knots, however, the principal component from the

lengths of wing (mm), tarsus (mm) and head to bill (mm) explained

only 16% of variation in body mass within the sexes (electronic

supplementary material, appendix S1). In order to investigate

correlations between exploratory behaviour and body mass, we

analysed these variables in a bivariate mixed-effects model with

individual identity as random factor (equations 7a and 7b in

[40]). These analyses allowed us to decompose the phenotypic

(co)variance and calculate correlation coefficients of exploratory

behaviour with body mass between and within individuals.

Between-individual and within-individual processes operate in

conjunction, and their separation can provide insight into the

origin and maintenance of personality variation. Significant corre-

lations between individuals would indicate that behaviour and

body mass would take shape by gene–environment interactions

during ontogeny, whereas significant within-individual corre-

lations would give hints about more proximate mechanisms. For

example, a negative within-individual correlation could indicate

that a reduction in body mass (‘hunger’) motivates an individual

to explore more. An in-depth discussion on the causes and conse-

quences of between- and within-individual correlations can be

found elsewhere [40].

(e) Gizzard mass treatment
Gizzard mass was manipulated by varying the quality (shell con-

tent) of the food [35,36], so that we could measure exploratory

behaviour (as described previously) of the same individuals

with a large and a small gizzard. To induce a relatively large giz-

zard, we offered closed blue mussels Mytilus edulis that were
swallowed whole. To induce small gizzards, we offered only

the flesh of the blue mussel, thus removing the need for shell

crushing, while keeping the digestible parts identical.

The 23 knots were divided into two groups of 11 and 12 indi-

viduals, respectively. One group started with the large gizzard

mass treatment followed by the small gizzard mass treatment,

while the other group was simultaneously exposed to the two

treatments in reversed order (a crossover design to avoid con-

founding effects of time). In captivity, it takes about a week for

a bird’s gizzard mass to match its diet [36]. We allowed at

least three weeks for the birds to increase gizzard mass after a

diet switch. Trials were conducted between 21 December 2010

and 21 January 2011, after which the birds were returned to a

diet of trout-feed pellets.

In order to account for variation in magnitude of gizzard

mass change, as well as to decompose the (co)variance into the

between- and within-individual components, we analysed

exploratory behaviour and gizzard mass in a bivariate mixed-

effects model with individual identity as a random effect [40].

We did not include the initial gizzard mass measurements in

this analysis, as there was no corresponding measure of explora-

tory behaviour at that time. The effect of the order in which

birds received the gizzard manipulation was not significant

(20.19, 95% CI (21.23; 0.77)), and for simplification we removed

it from the final model. In order to test whether individuals varied

consistently in gizzard mass between treatments, we calculated

‘consistency repeatability’ from standardized gizzard mass [41].

( f ) Free-living exploratory behaviour of experimental
birds

In August 2011, after the experiments had been completed, all

birds (except for two that had died) were released into the wild

(538150 N, 58150 E). A week before their release, the birds were

fed blue mussels and tagged with unique colour-coded ring com-

binations placed around their legs allowing for individual

identification in the wild [29]. Resightings of these individuals up

to March 2013 allowed us to estimate their free-living exploratory

space use.

(g) Long-term resighting analyses of free-living birds
Between 1998 and 2003, 402 islandica knots were captured and

promptly released in the Dutch Wadden Sea after their gizzard

mass had been measured, and they had been tagged with

unique colour-coded combinations of rings. Resightings of these

birds in the Dutch Wadden Sea (n ¼ 1068) were analysed over

the period from capture up to March 2013 to estimate ‘apparent

survival’ and resighting probability. Note that apparent survival

includes true survival as well as permanent emigration, which

cannot be separated [42]. In order to correct for food-type- and

season-induced variation in gizzard mass between and within

years [35], we zero-centred gizzard mass for each catching event

(n ¼ 16) [43].

(h) Data analyses
For each captive individual, exploratory behaviour was measured

on four occasions: two replicates during the first quantification of

exploratory behaviour, and two replicates during the gizzard

mass manipulation. Fraction of time spent searching in the

exploration arena (exploratory behaviour) was logit-transformed

to conform to normality assumptions. Repeatability R in explora-

tory behaviour was calculated as the between-individual variance

divided by the total phenotypic variance; that is, the sum of

between- and within-individual (residual) variance. Variance

components were extracted from a univariate mixed-effects

model with individual identity as a random effect. Confidence
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intervals and significance were calculated with parametric boot-

strapping [41]. We initially included sex as a fixed effect, but we

removed this from the final model as exploratory behaviour did

not significantly differ between males and females (0.3 s.e. 0.6).

In order to truly capture the effect of a ‘novel’ environment, we

correlated gizzard mass at capture to exploratory behaviour

from the first replicate. Because our purpose was not to predict

exploratory behaviour from gizzard mass, but only to summarize

their relationship, we used standardized major axis analyses [44].

Apparent survival and resighting probabilities were calcu-

lated from resighting histories of free-living individuals using

the statistical software MARK [42]. Our candidate model set

included models with fixed or residual gizzard-mass-dependent

apparent survival and resighting probability. To account for vari-

ation in apparent survival and resighting probability between

years, we additionally included models with time-dependent

apparent survival and resighting probability in our candidate

model set (i.e. year as factor with 15 levels). For model selection

and inference, we used Akaike’s information criterion corrected

for small sample size (AICc). In order to test for violations of

the assumptions underlying mark–recapture analyses, we per-

formed a goodness-of-fit test of the global model without

covariates, including time effects on apparent survival and

resighting probability, using the program U-CARE [45]. These

results indicated that our model fitted the data adequately

(x2
(51) ¼ 60:7, p ¼ 0.17).

Data analyses were carried out in R v. 2.15.1 [46] with the

packages ‘RMark’ for mark–recapture [47], ‘rptR’ for univariate

mixed-effects repeatability [41], ‘smatr’ for standardized major axis

[48] and ‘MCMCglmm’ for bivariate mixed-effects analyses [49].
3. Results
(a) Exploratory behaviour
Our first set of experiments revealed that exploratory behav-

iour was repeatable (R ¼ 0.67, 95% CI (0.38; 0.85), p , 0.01;

figure 1a), and that it was negatively correlated with gizzard

mass at capture (intercept ¼ 5.3, 95% CI (3.0; 7.6),

slope ¼ 20.72, 95% CI (21.06; 20.50), r ¼ 20.52, p ¼ 0.01;

figure 1b). Within individuals, a reduction in body mass

(energy stores) did not motivate birds to explore more, as

the within-individual correlation of exploratory behaviour

with body mass was non-significant (r ¼ 0.13, 95% CI

(20.35; 0.44); figure 2). There was, however, a significant
and negative between-individual correlation of exploratory

behaviour with body mass (r ¼ 20.84, 95% CI (20.96;

20.45); figure 2). Body mass during these trials was corre-

lated with body mass at capture, indicating that body mass

in captivity reflects body mass while living free (r ¼ 0.59,

95% CI (0.24; 0.81), t21¼ 3.4, p , 0.01).

(b) Gizzard mass treatment
Manipulating gizzard mass resulted in an average gizzard mass

difference of 4.6 g between treatments (s.e. 0.6, ANOVA: F1,44¼

66.7, p , 0.01; figure 3a). An individual’s exploratory behaviour

did not change in response to the manipulation of gizzard mass,

as evidenced by a lack of within-individual correlation of

exploratory behaviour with manipulated gizzard mass

(r ¼ 20.20, 95% CI (20.50; 0.11); figure 3b). Between individ-

uals, the correlation of exploratory behaviour with

manipulated gizzard mass did not differ significantly from
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zero either (r ¼ 20.40, 95% CI (20.90; 0.69); figure 3c). The

absence of this correlation compared with the negative

between-individual correlation we found when the birds were

living free suggests that gizzard mass is not determined by indi-

vidual ‘design’ constraints (e.g. genetic architecture and body

size), but regulated by diet. Indeed, manipulated gizzard mass

(when diet was controlled for) was not repeatable (Rconsistency ¼

0.22, 95% CI (0.00; 0.55), p ¼ 1.00). By contrast, exploratory be-

haviour in the gizzard manipulation trials was repeatable

(R ¼ 0.56, 95% CI (0.22; 0.79)), also with respect to the first

measure of exploratory behaviour six months before (R ¼ 0.54,

95% CI (0.21; 0.77), p , 0.01). Surprisingly, however, explora-

tory behaviour was no longer significantly correlated with

gizzard mass at capture. Nonetheless, the estimated values for

intercept (7.3) and slope (20.89) were within the 95% confidence

intervals ((3.9; 10.6), p ¼ 0.24; and (21.38; 20.57), p¼ 0.34,

respectively) of those estimated from the correlation between

the first measures of exploratory behaviour and gizzard mass

at capture.

(c) Free-living exploratory behaviour of experimental
birds

Out of 21 experimental birds that were released in the wild,

10 were resighted in the period between release and March

2013. In line with our experimental results, free-living exploratory

individuals with small gizzards had a lower resighting prob-

ability than non-exploratory individuals with large gizzards.

Birds that were not resighted had significantly higher exploratory

behaviour scores (1.1 s.e. 0.4, ANOVA: F1,19 ¼ 7.2, p¼ 0.01;
figure 4a) and smaller gizzard masses (21.5 s.e. 0.6, ANOVA:

F1,19¼ 6.0, p¼ 0.02; figure 4b) than birds that were resighted.
(d) Long-term resighting analyses of free-living birds
Based on the analysis of our long-term resighting efforts and

in line with our independent experimental results, we found

that exploratory behaviour and gizzard mass were negatively

correlated in the field as well. The logit of resighting prob-

ability increased by 0.13 (95% CI (0.02; 0.24)) per gram of

residual gizzard mass (figure 5a; electronic supplementary

material, tables S1 and S2), meaning birds with small giz-

zards were less often resighted in the Dutch Wadden Sea

than those with large gizzards. Similarly, the average gizzard

mass of individuals that were resighted outside the Dutch

Wadden Sea within a year after capture was lower than

that of individuals that were resighted in the Dutch

Wadden Sea only (20.80 s.e. 0.37, F1,108 ¼ 4.7, p ¼ 0.03,

figure 5b). We did not find an effect of gizzard mass on

apparent survival, which averaged 0.82 (95% CI (0.79; 0.84);

electronic supplementary material, tables S1 and S2),

suggesting that neither large metabolic machinery nor

exploratory behaviour are associated with lower survival.
4. Discussion
Consistent variation in (metabolic) organ mass has been

hypothesized to cause variation in personality traits [18–20].

In this study, we examined two critical notions under-

lying this hypothesis. Instead of the hypothesized positive
between-individual correlation, we found that exploratory
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function of residual gizzard mass at capture, and (b) average residual gizzard
mass for birds resighted in the Dutch Wadden Sea only and those elsewhere
within 1 year after capture. Those knots that were resighted outside the Dutch
Wadden Sea within a year after capture were resighted in England or Germany
(see inset of panel (b)).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20133135

6

behaviour was negatively correlated with digestive organ

(gizzard) mass. To examine the causality of this correlation,

we manipulated gizzard mass and found that an individual’s

exploratory behaviour was unaffected. This led us to reject

the hypothesis that variation in digestive organ size causes

consistent exploratory behaviour within individuals. For

free-living knots, we also showed that exploratory behaviour

was negatively correlated with gizzard mass between

individuals, and that neither factor was associated with

lower survival. Consistent variation in exploratory behaviour,

or some correlated variable, seems to cause variation in

digestive organ mass.
(a) An ecology of exploratory behaviour
Consistent differences in exploratory behaviour are found in

many different organisms [5]. Usually, exploratory behaviour

is measured in standardized experiments outside an individ-

ual’s regular environment, which can be problematic for the
interpretation of the trait under investigation [50]. To avoid

ambiguity in the measurement of personality traits, vali-

dation against behaviour in the wild is essential [5,50].

Nonetheless, a few studies show that small-scale exploratory

behaviour in a laboratory is related to large-scale space use in

the wild. In one example, after removal of a food source, non-

explorative great tits Parus major remained close to the known

feeder location, whereas explorative individuals moved

further away [51]. Comparable results were found for brook

charr Salvelinus fontinalis [52], starlings Sturnus vulgaris [53]

and red squirrels Tamiasciurus hudsonicus [21]. For red

knots, we now show that exploratory behaviour in a labora-

tory setting is also related to space use in the wild on a

spatial scale of northwestern Europe, which is unprece-

dented. The experimental birds that were not resighted in

the local study area after release had higher experimental

exploration scores than birds that were locally resighted.

The explorative individuals with small gizzards spread out

on spatial scales of up to hundreds of kilometres between

mudflats in England, The Netherlands and Germany.

An individual’s gizzard mass is flexible and reflects the

quality of prey that it consumed over the previous few

weeks [36]. Experimental exploration scores were negatively

correlated with gizzard mass in the wild, suggesting that

exploratory behaviour is correlated with prey type between

individuals, either directly or indirectly (e.g. through increased

access to areas where high-quality prey are available). Further-

more, the positive between-individual correlation of resighting

probability with residual gizzard mass at capture was present

in all years (1998–2013) after capture (between 1998 and 2003).

The temporal consistency of this correlation suggests that an

individual’s exploratory behaviour is consistent over time

and that gizzard mass is indeed behaviourally regulated.

One could argue that the between-individual correlation

of exploratory behaviour with gizzard mass has been

formed by the interaction between genetic mechanisms (e.g.

coevolution, pleiotropy and linkage disequilibrium) and

environmental mechanisms (e.g. permanent environmental

correlations) [40]. The lack of repeatability in an individual’s

gizzard mass between the small and large gizzard mass treat-

ment, however, does not support such an argument. Gizzard

mass might still be regulated by an underlying unknown

process (e.g. prey preference) that itself is correlated with

exploratory behaviour. A particularly interesting mechanism

that, in theory, could be capable of generating the observed

correlation between exploratory behaviour and gizzard

mass during ontogeny [14,17] is a positive feedback

mechanism between gizzard mass and prey quality.

In the Wadden Sea, prey quality is inversely related to

prey density [33], and the spatial extent where high-quality

prey are available is limited [32]. Because of a digestive con-

straint, individuals with small gizzards can only achieve

sufficiently high intake rates on a diet of high-quality prey

(i.e. there is a positive feedback between gizzard mass and

prey type) [33–35]. As high-quality prey is less abundant

than low-quality prey, it was previously thought that birds

with small gizzards would have an increased starvation

danger compared with birds with large gizzards [54]. We

have now shown that there is no survival cost for having a

small gizzard, which is at odds with this notion. Possibly,

the increased starvation risk of having a small gizzard can

be compensated for by being explorative, thereby allowing

the discovery of high-quality prey.



consequence

requirement
physiological response

+

–

–

+

–

–predation
danger energy stores

prey qualitydigestive
organ mass

exploratory
behaviour

Figure 6. Hypothesized positive feedback loop capable of maintaining variation in exploratory behaviour between red knots. The consequence of exploratory
behaviour is increased predation danger, to which red knots respond physiologically by having lower energy stores. Low energy stores increase starvation
danger, which requires exploratory behaviour that consequently enables the discovery of high-quality prey. Digestive organ mass will be small as a physiological
response to consuming high-quality prey, which in turn requires exploratory behaviour enabling the discovery of sparsely distributed high-quality prey, because birds
with small gizzards can only achieve a sufficient intake rate on high-quality prey.
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(b) Exploratory behaviour, survival and body mass
The evolutionary origin and maintenance of phenotypic vari-

ation in animal personality is intensely debated [15,17,55,56].

Recent work suggests that personality variation among indi-

viduals could reflect variation in adaptive specialization to a

particular life-history strategy (the ‘pace-of-life’ concept [20]).

Explorative individuals are likely to incur costs associated

with movement that may reduce survival (e.g. through

increased metabolic costs and higher predation danger

through increased exposure [21,27]). From a life-history strat-

egy perspective, these survival costs are expected to be

compensated for by increased growth, age at maturity and

reproduction if exploratory behaviour is to be evolutionarily

stable (a high-risk/high-gain lifestyle [20,22]). Empirical evi-

dence that there are survival costs to exploratory behaviour,

however, is equivocal [57]. Our results do not provide any

evidence that exploratory behaviour is associated with

reduced survival.

Other than through adaptive specialization to a particular

life-history strategy, costs of an individual’s personality could

be reduced through correlations with other traits such as body

mass [4,12]. For instance, exploratory blackbirds Turdus merula
compensated for increased flight costs and predation danger

by carrying smaller energy stores than more sedentary individ-

uals, albeit at the cost of increased starvation danger [58].

Similarly, we found a negative correlation of body mass with

exploratory behaviour between individuals. Red knots show

relatively small variations in structural size [59], and the

observed mass differences between exploratory and non-

exploratory birds (maximum of 79 g) are too large to be

accounted for by differences in organ mass only [37]. Moreover,

in an experimental setting, red knots have been shown to

actively reduce body mass in the presence of predators [60],

allowing better escape behaviour from predators [61]. Birds

with small energy stores could compensate for their increased

risk of starvation by searching for higher-quality prey. Indeed,

in our study, lighter birds were more explorative. This effectively

creates two positive feedback loops (figure 6): one between

exploratory behaviour, predation danger and energy stores,

and another between exploratory behaviour, prey quality and

digestive organ mass. Although in our short-term laboratory

study with fully mature birds we did not find a within-individ-

ual correlation between exploratory behaviour and gizzard

mass, nor body mass, in the field the situation is expected to
be different for two reasons. First, in the more demanding life-

style of the wild, exploration for the sparsely distributed high-

quality prey is required for individuals with small gizzards

and energy stores, which are digestively constrained [33–35].

Likewise, having small energy stores will increase the risk of star-

vation, and thus require birds to be more explorative and

increase the probability of finding (high-quality) prey. Second,

we imagine that such feedback loops are especially important

during ontogeny (either or not in interaction with genetic dispo-

sitions), after which behaviour could become fixed to some

extent (i.e. consistent). Small differences in any of the variables

in the hypothesized feedback loops could lead to lasting

between-individual differences. For example, if, by chance, a

young and learning individual experiences an unsuccessful fora-

ging bout, and consequently low energy stores, it will be

prompted to explore more, facing higher predation risk, and

thus enforcing maintenance of lower energy stores [28]. At the

same time, exploratory behaviour allows access to high-quality

prey, wherefore birds will acquire small gizzards, thus enforcing

exploratory behaviour (figure 6). The challenge is to pinpoint

whether, and at what time during ontogeny, consistent variation

in behaviour and physiology will start to occur. For such inves-

tigations, we need to understand the key state variables involved

in the trajectory towards exploratory or non-exploratory person-

alities. We propose that the causal framework sketched in figure

6 could be the working hypothesis upon which to build further

empirical and theoretical work.
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and according to Dutch law.
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20. Réale D, Garant D, Humphries MM, Bergeron P,
Careau V, Montiglio PO. 2010 Personality and the
emergence of the pace-of-life syndrome concept at
the population level. Phil. Trans. R. Soc. B 365,
4051 – 4063. (doi:10.1098/rstb.2010.0208)

21. Boon AK, Reale D, Boutin S. 2008 Personality,
habitat use, and their consequences for survival in
North American red squirrels Tamiasciurus
hudsonicus. Oikos 117, 1321 – 1328. (doi:10.1111/j.
2008.0030-1299.16567.x)

22. Stamps JA. 2007 Growth-mortality tradeoffs and
‘personality traits’ in animals. Ecol. Lett. 10,
355 – 363. (doi:10.1111/j.1461-0248.2007.01034.x)

23. Bouwhuis S, Quinn JL, Sheldon BC, Verhulst S. 2013
Personality and basal metabolic rate in a wild bird
population. Oikos 123, 56 – 62. (doi:10.1111/j.1600-
0706.2013.00654.x)

24. Piersma T. 2002 Energetic bottlenecks and other
design constraints in avian annual cycles. Integr.
Comp. Biol. 42, 51 – 67. (doi:10.1093/icb/42.1.51)

25. Wolf M, Weissing FJ. 2012 Animal personalities:
consequences for ecology and evolution. Trends Ecol.
Evol. 27, 452 – 461. (doi:10.1016/j.tree.2012.05.001)

26. Sih A, Cote J, Evans M, Fogarty S, Pruitt J. 2012
Ecological implications of behavioural syndromes.
Ecol. Lett. 15, 278 – 289. (doi:10.1111/j.1461-
0248.2011.01731.x)

27. Piersma T, Dekinga A, van Gils JA, Achterkamp B,
Visser GH. 2003 Cost-benefit analysis of mollusc
eating in a shorebird, I. Foraging and processing
costs estimated by the doubly labelled water
method. J. Exp. Biol. 206, 3361 – 3368. (doi:10.
1242/jeb.00545)

28. Witter MS, Cuthill IC. 1993 The ecological costs of
avian fat storage. Phil. Trans. R. Soc. Lond. B 340,
73 – 92. (doi:10.1098/rstb.1993.0050)

29. Spaans B, Van Kooten L, Cremer J, Leyrer J, Piersma
T. 2011 Densities of individually marked migrants
away from the marking site to estimate population
sizes: a test with three wader populations.
Bird Study 58, 130 – 140. (doi:10.1080/00063657.
2011.566601)

30. Piersma T. 2007 Using the power of comparison to
explain habitat use and migration strategies of
shorebirds worldwide. J. Ornithol. 148, S45 – S59.
(doi:10.1007/s10336-007-0240-3)

31. Piersma T, Hoekstra R, Dekinga A, Koolhaas A, Wolf
P, Battley PF, Wiersma P. 1993 Scale and intensity
of intertidal habitat use by knots Calidris canutus in
the western Wadden Sea in relation to food, friends
and foes. Neth. J. Sea Res. 31, 331 – 357. (doi:10.
1016/0077-7579(93)90052-T)

32. Kraan C, van Gils JA, Spaans B, Dekinga A, Bijleveld
AI, van Roomen M, Kleefstra R, Piersma T. 2009
Landscape-scale experiment demonstrates that
Wadden Sea intertidal flats are used to capacity by
molluscivore migrant shorebirds. J. Anim. Ecol. 78,
1259 – 1268. (doi:10.1111/j.1365-2656.2009.01564.x)

33. van Gils JA, Dekinga A, Spaans B, Vahl WK, Piersma
T. 2005 Digestive bottleneck affects foraging
decisions in red knots Calidris canutus. II. Patch
choice and length of working day. J Anim Ecol. 74,
120 – 130. (doi:10.1111/j.1365-2656.2004.00904.x)

34. Piersma T, Koolhaas A, Dekinga A. 1993 Interactions
between stomach structure and diet choice in
shorebirds. Auk 110, 552 – 564. (doi:10.2307/
4088419)

35. van Gils JA, Piersma T, Dekinga A, Dietz MW. 2003
Cost-benefit analysis of mollusc-eating in a
shorebird II. Optimizing gizzard size in the face of
seasonal demands. J. Exp. Biol. 206, 3369 – 3380.
(doi:10.1242/jeb.00546)

36. Dekinga A, Dietz MW, Koolhaas A, Piersma T. 2001
Time course and reversibility of changes in the
gizzards of red knots alternately eating hard and
soft food. J. Exp. Biol. 204, 2167 – 2173.

37. Piersma T, Bruinzeel L, Drent R, Kersten M, van der
Meer J, Wiersma P. 1996 Variability in basal
metabolic rate of a long-distance migrant shorebird
(Red Knot, Calidris canutus) reflects shifts in organ
sizes. Physiol. Zool. 69, 191 – 217.

38. Dietz MW, Piersma T. 2007 Red knots give up flight
capacity and defend food processing capacity during
winter starvation. Funct. Ecol. 21, 899 – 904.
(doi:10.1111/j.1365-2435.2007.01290.x)

39. Baker AJ, Piersma T. 1999 Molecular vs. phenotypic
sexing in Red Knots. Condor 101, 887 – 893. (doi:10.
2307/1370083)

40. Dingemanse NJ, Dochtermann NA. 2013 Quantifying
individual variation in behaviour: mixed-effect
modelling approaches. J. Anim. Ecol. 82, 39 – 54.
(doi:10.1111/1365-2656.12013)

41. Nakagawa S, Schielzeth H. 2010 Repeatability for
Gaussian and non-Gaussian data: a practical guide
for biologists. Biol. Rev. 85, 935 – 956. (doi:10.1111/
j.1469-185X.2010.00141.x)

http://dx.doi.org/10.1016/s0169-5347(03)00036-3
http://dx.doi.org/10.1016/s0169-5347(03)00036-3
http://dx.doi.org/10.1111/j.1469-185X.2007.00010.x
http://dx.doi.org/10.1111/j.1469-185X.2007.00010.x
http://dx.doi.org/10.1016/S0149-7634(99)00026-3
http://dx.doi.org/10.1016/S0149-7634(99)00026-3
http://dx.doi.org/10.1086/422893
http://dx.doi.org/10.1002/dev.20574
http://dx.doi.org/10.1002/dev.20574
http://dx.doi.org/10.1098/rstb.2010.0217
http://dx.doi.org/10.1525/auk.2010.127.4.752
http://dx.doi.org/10.1163/156853905774539364
http://dx.doi.org/10.1098/rstb.2010.0215
http://dx.doi.org/10.1111/j.1461-0248.2012.01846.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01846.x
http://dx.doi.org/10.1098/rstb.2010.0222
http://dx.doi.org/10.1098/rstb.2010.0221
http://dx.doi.org/10.1098/rstb.2010.0221
http://dx.doi.org/10.1111/j.0030-1299.2008.16513.x
http://dx.doi.org/10.1111/j.0030-1299.2008.16513.x
http://dx.doi.org/10.1016/j.tree.2010.08.003
http://dx.doi.org/10.1098/rstb.2010.0208
http://dx.doi.org/10.1111/j.2008.0030-1299.16567.x
http://dx.doi.org/10.1111/j.2008.0030-1299.16567.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01034.x
http://dx.doi.org/10.1111/j.1600-0706.2013.00654.x
http://dx.doi.org/10.1111/j.1600-0706.2013.00654.x
http://dx.doi.org/10.1093/icb/42.1.51
http://dx.doi.org/10.1016/j.tree.2012.05.001
http://dx.doi.org/10.1111/j.1461-0248.2011.01731.x
http://dx.doi.org/10.1111/j.1461-0248.2011.01731.x
http://dx.doi.org/10.1242/jeb.00545
http://dx.doi.org/10.1242/jeb.00545
http://dx.doi.org/10.1098/rstb.1993.0050
http://dx.doi.org/10.1080/00063657.2011.566601
http://dx.doi.org/10.1080/00063657.2011.566601
http://dx.doi.org/10.1007/s10336-007-0240-3
http://dx.doi.org/10.1016/0077-7579(93)90052-T
http://dx.doi.org/10.1016/0077-7579(93)90052-T
http://dx.doi.org/10.1111/j.1365-2656.2009.01564.x
http://dx.doi.org/10.1111/j.1365-2656.2004.00904.x
http://dx.doi.org/10.2307/4088419
http://dx.doi.org/10.2307/4088419
http://dx.doi.org/10.1242/jeb.00546
http://dx.doi.org/10.1111/j.1365-2435.2007.01290.x
http://dx.doi.org/10.2307/1370083
http://dx.doi.org/10.2307/1370083
http://dx.doi.org/10.1111/1365-2656.12013
http://dx.doi.org/10.1111/j.1469-185X.2010.00141.x
http://dx.doi.org/10.1111/j.1469-185X.2010.00141.x


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20133135

9
42. White GC, Burnham KP. 1999 Program MARK:
survival estimation from populations of marked
animals. Bird Study 46, 120 – 139. (doi:10.1080/
00063659909477239)

43. van de Pol MV, Wright J. 2009 A simple method for
distinguishing within- versus between-subject
effects using mixed models. Anim. Behav. 77,
753 – 758. (doi:10.1016/j.anbehav.2008.11.006)

44. Smith RJ. 2009 Use and misuse of the reduced
major axis for line-fitting. Am. J. Phys. Anthropol.
140, 476 – 486. (doi:10.1002/ajpa.21090)

45. Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M,
Pradel R. 2009 U-CARE: utilities for performing
goodness of fit tests and manipulating CApture –
REcapture data. Ecography 32, 1071 – 1074. (doi:10.
1111/j.1600-0587.2009.05968.x)

46. R Core Team. 2013 R: a language and environment for
statistical computing. Vienna, Austria: R Foundation for
Statistical Computing. See http://www.R-project.org.

47. Laake JL. 2013 RMark: an R interface for analysis of
capture – recapture data with MARK. AFSC Processed
Rep. 2013-01. Seattle, WA: Alaska Fisheries Science
Center.

48. Warton DI, Duursma RA, Falster DS, Taskinen S.
2012 smatr 3: an R package for estimation
and inference about allometric lines. Methods Ecol.
Evol. 3, 257 – 259. (doi:10.1111/j.2041-210X.2011.
00153.x)
49. Hadfield JD. 2010 MCMC methods for multi-
response generalized linear mixed models: the
MCMCglmm R package. J. Stat. Softw. 33, 1 – 22.

50. Carter AJ, Feeney WE, Marshall HH, Cowlishaw G,
Heinsohn R. 2013 Animal personality: what are
behavioural ecologists measuring? Biol. Rev. 88,
465 – 475. (doi:10.1111/brv.12007)

51. van Overveld T, Matthysen E. 2010 Personality
predicts spatial responses to food manipulations in
free-ranging great tits (Parus major). Biol. Lett. 6,
187 – 190. (doi:10.1098/rsbl.2009.0764)

52. Wilson ADM, McLaughlin RL. 2007 Behavioural
syndromes in brook charr, Salvelinus fontinalis: prey-
search in the field corresponds with space use in
novel laboratory situations. Anim. Behav. 74,
689 – 698. (doi:10.1016/j.anbehav.2007.01.009)

53. Minderman J, Reid JM, Hughes M, Denny MJH,
Hogg S, Evans PGH, Whittingham MJ. 2010 Novel
environment exploration and home range size in
starlings Sturnus vulgaris. Behav. Ecol. 21,
1321 – 1329. (doi:10.1093/beheco/arq151)

54. van Gils JA, Piersma T, Dekinga A, Spaans B, Kraan C.
2006 Shellfish dredging pushes a flexible avian top
predator out of a marine protected area. PLoS Biol. 4,
2399 – 2404. (doi:10.1371/journal.pbio.0040376)
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