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Abstract

With both an aging population and greater post-stroke survival, multimorbidity is a growing healthcare challenge,

affecting over 40% of stroke patients, and rising rapidly and predictably with increasing age. Commonly defined as the

co-occurrence of two or more chronic conditions, multimorbidity burden is a strong adverse prognostic factor, asso-

ciated with greater short- and long-term stroke mortality, worse rehabilitation outcomes, and reduced use of secondary

prevention. Chronic kidney disease can be considered as the archetypal comorbidity, being age-dependent and also

affecting about 40% of stroke patients. Chronic kidney disease and stroke share very similar traditional cardiovascular

risk factor profiles such as hypertension and diabetes, though novel chronic kidney disease-specific risk factors such as

inflammation and oxidative stress have also been proposed. Using chronic kidney disease as an exemplar condition, we

explore the mechanisms of risk in multimorbidity, implications for management, impact on stroke severity, and down-

stream consequences such as post-stroke cognitive impairment and dementia.

Keywords

Multi-morbidity, stroke risk, chronic kidney disease, stroke, transient ischemic attack, hypertension

Received: 22 June 2020; accepted: 15 October 2020

Introduction

The term ‘‘multimorbidity’’ is typically defined as the
presence of two or more long-term conditions within an
individual.1 Due to an increasing life expectancy, there
is now a substantial and growing global burden of mul-
timorbidity that affects low- and middle-income coun-
tries (LMICs) as well as high-income ones.2 In LMICs,
rates of non-communicable diseases such as diabetes
and cardiovascular disease are rising and augmenting
existing burdens of infectious diseases, maternal and
child health problems, and nutritional conditions.3,4

However, research on multimorbidity has many evi-
dence gaps and there have been several calls to make
it a priority for global health research.2,5,6 In this
review, using chronic kidney disease (CKD) as an
exemplar condition, we will explore the current know-
ledge of and evidence for the impact of multimorbidity
on stroke risk, care, and outcomes. CKD is a good
example of this phenomenon because, as we will dem-
onstrate, it is under-recognized, increasing in preva-
lence, associated with both traditional vascular risk
factors as well as non-traditional ones, and it can

potentially impact every stage of stroke presentation,
diagnosis, treatment, and outcome.

Search strategy

The methodology of our systematic reviews of stroke
and CKD has previously been published.7,8 Briefly, we
searched MEDLINE and EMBASE databases (from
inception to May 2020) using a search strategy devel-
oped by a specialized librarian that combined text word
and medical subject headings without language restric-
tions. Additionally, we searched references from rele-
vant articles. The final reference list was generated
based on relevance for the current review.
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Epidemiology and implications of

multimorbidity in stroke

There has been variation in the duration, severity, or
clustering of conditions included in the definition of
multimorbidity which can make direct comparison of
studies or populations challenging.9 In a nationwide
population-based cohort study of 219,354 Danish
adults hospitalized for first stroke, there was a 42.7%
prevalence rate for multimorbidity as measured using
the Charlson Comorbidity Index (CCI).10 The most
prevalent comorbidities were atrial fibrillation (AF) or
flutter (11.0%), cancer (10.9%), diabetes mellitus
(9.0%), congestive heart failure (8.1%), and chronic
pulmonary disease (8.1%). The association between
multimorbidity and stroke predictably appears to
increase with age. In a smaller, retrospective cohort
study (N¼ 29,673) of community-dwelling older (�66
years) adults living with stroke in Ontario, Canada,
99.1% had one or more comorbidities, 51.7% had
four or more, and 6.5% had seven or more comorbi-
dies.11 In this study, although concordant conditions
such as hypertension (89.9%) and ischemic heart dis-
ease (38.1%) were quite common, so too were discord-
ant conditions such as arthritis (65.8%) and
inflammatory bowel disease (21.4%). However, multi-
morbidity in younger stroke survivors is also an issue in
certain high-risk populations or geographic regions
such as in the rural areas of Appalachian states in the
US where there was a 21% prevalence of multimorbid-
ity in those aged less than 50 years.12

Despite its high prevalence, the impacts of multimor-
bidity on stroke severity, functional recovery, and
long-term risk of recurrence are not clearly understood.
Certain specific comorbidities such as AF and diabetes
are well known to be associated with poor functional
outcomes and worse responses to acute therapies such
as thrombolysis.13,14 However, few large-scale studies
have examined the relationship between multimorbidity
and functional outcomes post-stroke and those that
have report variable findings.15,16 A French study of
28,201 stroke survivors found that the CCI was asso-
ciated with less functional gain, even after adjusting
for baseline functional status and length of stay.15

In contrast, a smaller US study (N¼ 2402) reported
that CCI did not improve the predictive model fit for
functional independence over age/sex alone. However,
this study did find that diagnostic cost group, another
measure of multimorbidity, improved the overall
model fit for functional gain, suggesting that method
of measurement may matter. It has been recently high-
lighted that there are at least 35 objective measures of
multimorbidity available and that each of these uses
different variables to generate a score or index, linked
with various or no outcome measures.17 The best

measure of multimorbidity in the context of stroke is
unknown.

The impact of multimorbidity on risk of stroke
recurrence as well as subsequent vascular risk is also
poorly described. However, several analyses from the
Oxford Vascular Study (OXVASC), an ongoing popu-
lation-based study of all types of acute vascular events
(including transient ischemic attack (TIA), stroke,
acute coronary syndromes, and peripheral vascular
events) in the UK since 2002, have tried to provide
some insights in this area.7,18–20 First, it has been
shown that among 2554 TIA/stroke patients with
over 10,000 patient-years of follow-up, the number of
affected vascular beds (cerebrovascular, coronary, per-
ipheral vascular) predicted the long-term risk of both
recurrent stroke and non-stroke vascular events.18

Compared with patients with single-territory, patients
with multiple-territory disease also had higher long-
term risks of recurrent ischemic stroke (hazard ratio
(HR)¼ 1.38; 95% CI: 1.04–1.81) and non-stroke
acute vascular events (HR¼ 3.06; 95% CI, 2.23–4.20).
Second, the Essen score, a simple clinical score based
on the presence of prior vascular comorbidities, was
used to risk-stratify OXVASC patients with TIA/
stroke without prior coronary artery disease (CAD)
and to identify subsets who may be at high risk of fur-
ther vascular events.19 Compared with patients with
prior CAD, an Essen risk score of �4 identified a sub-
group at similar high 10-year risks of myocardial
infarction and of recurrent stroke. Third, OXVASC
has highlighted that patients with TIA/stroke with
coexisting cardiovascular disease remain at high risk
of recurrent ischemic events despite standard secondary
prevention treatment.20 However, the predictive value
of non-vascular comorbidities or overall multimorbid-
ity scores for recurrent vascular events is less clear.

Multimorbidity is also consistently associated with
short-term and long-term mortality post-stroke.10,21–23

In the large Danish national registry-based study, there
was a dose-response relationship between multimorbid-
ity (as measured by CCI) and 30-day and 5-year mor-
tality risk over the 18-year follow-up period.10 Stroke
survivors with very severe comorbidities (defined as a
CCI score of �3) had a 23.5 and 74.5% 30-day and
5-year mortality risk, respectively, compared with
10.5 and 36.6% for those without comorbidities at
baseline. Comorbidities such as cancer and advanced
renal or liver disease are associated with a particularly
high mortality post-stroke24 beyond the combined
expected effects of comorbidity and stroke acting
alone though other studies suggest that it is the
number of comorbidities rather than the type of condi-
tion that may be the more helpful predictor of mortal-
ity.23 This association is thought to be multi-factorial,
variously attributable to greater stroke severity and
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subsequent disability,25 polypharmacy,26 bleeding dia-
stasis, or hypercoaguloability.27

In a Canadian cohort study of older individuals
with stroke, increasing number of comorbidities was
associated with greater healthcare utilization (primary
and secondary care, emergency department, home care
visits, and hospitalizations) during the five years’ post-
stroke.11 The authors of this study highlighted that, in
2008, for example, the average older adult with prior
stroke visited a primary care physician over 13 times
not including specialist visits, albeit for predominantly
non-stroke reasons. Health care costs increased accord-
ingly with multimorbidity burden, mainly driven by the
increase in acute care use.

However, there are some limitations to the concept
of multimorbidity in stroke that should be considered.
First, the approach that is sometimes used of simply
measuring the number of comorbidities is arguably a
simplistic concept that fails to appreciate the spectrum/
severity of each disease and assumes that each comor-
bidity has an equivalent impact if using a simple quan-
titative approach. Second, multimorbidity may
potentially overestimate disease burden when overlap-
ping conditions (or conditions on the same causative
pathway) exist. Finally, the multimorbid approach
may not consider the cumulative effect on physiology
and functional reserve (Fried’s clinical frailty pheno-
type).28 Although multimorbidity and clinical frailty
are separate concepts, they frequently co-exist and a
consideration is that it is not necessarily multimorbidity
but the associated frailty that may be driving worse
outcomes.

CKD – An exemplar comorbidity

CKD exemplifies the complexity of multimorbidity and
its multifaceted impact on stroke, from etiology to
rehabilitation. Although CKD itself is a heterogenous
condition that encompasses a variety of diseases includ-
ing diabetic or hypertensive nephropathy, glomerulone-
phritidies, polycystic kidney disease, amongst others, it
is consistently associated with cardiovascular disease
risk and burden.29 In this review, we will explore the
pathways through which it leads to stroke, and how it
impacts on treatment and outcomes.

CKD is often under-recognized as an important and
frequent comorbidity that affects stroke survivors
(Figure 1). This is partly because patients with kidney
disease have been excluded from over one-third of clin-
ical trials of cerebrovascular disease interventions and
only 0.3% of trials have subsequently reported baseline
renal function.30 In addition, many of the existing mul-
timorbidity scores or measurement tools do not take
CKD into account or acknowledge only severe disease
as in the case of the CCI,31 the most commonly used

tool in studies of stroke and multimorbidity.1 However,
this is an important omission since even early stages of
CKD are associated with cardiovascular mortality32

and CKD itself frequently portends other
multimorbidity.33

The global burden of CKD is on the rise with preva-
lence estimates of 9.1% (8.5–9.8) for all stages.34

However, CKD prevalence is much higher in acute
stroke survivors, varying from 20 to 40% in patients
with acute ischemic stroke35,36 and from 20 to 46% in
patients with acute intracerebral hemorrhage
(ICH).37,38 Kidney function, as determined by the esti-
mated glomerular filtration rate (eGFR), demonstrates
an inverse step-wise relationship with incident stroke
risk increasing by 3-, 4.1-, 5.4-, and 7.1-fold for CKD
stages 3–5 and dialysis compared to the general
population.39

Patients with proteinuria appear to represent an even
higher-risk subgroup within kidney disease. A previous
meta-analysis showed that proteinuria was associated
with a 70% increased risk of stroke compared to those
without it,40 and other studies have suggested that it
may be a better predictor of stroke risk in CKD than
low eGFR.41 There is also some evidence though that
stroke risk increases additively with declining GFR and
increasing albuminuria.42 Proteinuria itself has been
associated with an independently increased risk of
multimorbidity.

Mechanisms of risk in CKD

Disentangling the pathophysiology of stroke risk in
multimorbidity can be challenging as although shared
vascular risk factors may account for much it, novel
risk factors have also been proposed and their role
has yet to be fully elucidated (Figure 1). For example,
it has been postulated that stroke risk in CKD may be
attributable to a combination of both traditional and
non-traditional cardiovascular mechanisms.43 These
can be further subdivided into shared conventional vas-
cular risk factors such as hypertension and diabetes,
secondary consequences of renal dysfunction such as
chronic inflammation and mineral-bone disease, dialy-
sis-specific factors such as cerebral hypoperfusion, and
systemic conditions that cause both stroke and CKD
such as systemic lupus erythematosus or Fabry’s
disease.44

The relevance of non-traditional risk factors gained
some traction when earlier meta-analyses found that
CKD (defined an eGFR below 60mL/min/1.73m2)
appeared to independently increase the risk of incident
stroke by 43% and that stroke risk increased 7% for
every 10mL/min/1.73m2 decrease in eGFR.42,45 These
associations were consistent across subtypes of stroke,
sex, and varying prevalence of cardiovascular risk factors.
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However, apparent associations between comorbid-
ities and stroke risk can be complex. For example,
the relationship between CKD and cerebrovascular dis-
ease might not be truly independent of hypertension,
the most prevalent comorbidity in individuals with
CKD,46 and the leading modifiable risk factor for
stroke in the general population.47 In a systematic
review and meta-analysis of stroke risk with low
eGFR (<60mL/min/1.73m2) with a particular focus
on how robustly studies adjusted for hypertension,7

85 studies were included in which 3,417,098 partici-
pants experienced nearly 73,000 stroke events.
Although patients with CKD appeared to have a
36% greater risk of stroke than in those with normal
renal function in multivariate-adjusted analysis, this
risk association varied considerably depending on the
way in which hypertension was adjusted for (Figure 2).
When multiple prior BP readings over time were
adjusted for, a better marker of long-term burden or
control, there was near-complete attenuation of the risk
association between CKD and stroke. The degree of
risk attenuation would tend to suggest that this rela-
tionship is strongly confounded by hypertension and
that CKD, as determined by low eGFR, is unlikely to
be a significant independent risk factor for stroke out-
side of such traditional risk factors.

Confounding by age is also an issue that must be
carefully teased out when examining the relationship
between stroke and comorbidities. CKD is particularly
liable to this problem since its GFR-based definition

(60mL/min/1.73m2 for three or more months as per
2012 Kidney Disease: Improving Global Outcomes
guidelines)48 is very age-dependent in its measurement.
For example, approximately one-half of adults over the
age of 70 years have a measured or eGFR <60mL/min/
1.73m2.49 There has been controversy over whether
mildly reduced eGFR in this context truly represents
disease versus the normal structural and functional
changes that occur in the kidney with ageing.50 Thus,
although there appears to be major differences in rates
of CKD between etiological (TOAST) stroke subtypes,
for example, in a study of nearly 3000 patients with
TIA and ischemic stroke, the association was strongly
confounded by age (Figure 3).36 Any study of multi-
morbidity and stroke risk should therefore be carefully
stratified by and adjusted for age.

Chronic inflammation or ‘‘inflammageing,’’ a condi-
tion thought to occur in some older individuals, char-
acterized by elevated levels of blood inflammatory
markers that increases susceptibility to cardiovascular
disease, has also been proposed to explain some of the
association between CKD and stroke.51 However, in an
analysis of nearly 1300 TIA/stroke patients, correl-
ations between biomarkers related to inflammation
and thrombosis with renal dysfunction in the setting
of cerebrovascular events were generally modest after
adjustment for age, suggesting that putative risk factors
such as chronic inflammation or coagulopathy are unli-
kely to be important stroke mechanisms in patients
with CKD.52

Figure 1. The interplay of CKD, stroke, and multimorbidity.
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However, mechanisms of stroke risk may be more
complex and less confounded for patients with protein-
uria. The ‘‘strain vessel hypothesis’’ has been proposed
whereby juxtamedullary afferent arterioles in the
kidney and cerebral perforating arteries in the brain
are both small, short vessels exposed to the large pres-
sure gradients and therefore most vulnerable to hyper-
tensive vascular injury, manifest as albuminuria and
cerebrovascular disease, respectively.53 In a systematic
review and meta-analysis of nearly 2 million partici-
pants undertaken to study the impact of hypertension
on the relationship between proteinuria and stroke
risk,8 the presence of proteinuria conferred a 70%
greater risk of stroke compared to that in those without
it. However, in contrast to low eGFR and stroke, the
risk association between proteinuria and stroke did not
substantially vary or attenuate even with the extensive
adjustment for blood pressure. The association was
also stronger in younger populations suggesting that
shared genetic susceptibility for premature vascular dis-
ease may underpin the relationship between proteinuria
and stroke risk.

Inequities and implications for clinical
practice

The high prevalence of CKD poses unique challenges
to diagnosis, management, and prevention in
stroke (Figure 1). In terms of presentation, it has
been shown that in over one-third of cases, dialysis-
dependent patients may develop stroke symptoms

during or within 30 minutes of a dialysis session,54

which can lead to misdiagnosis and delayed presenta-
tion.55 In a cross-sectional analysis of 148 end-stage
kidney disease (ESKD) patients without a prior diag-
nosis of stroke or TIA, 46 (36.5%) had experienced
one or more stroke symptoms.56 These unreported
symptoms were then subsequently associated with a
two- to threefold higher odds of cognitive or functional
impairment, suggesting that these may have represented
clinically significant but undiagnosed events.

Compounding the problem of delayed presentation
is that when patients with CKD eventually do present,
there may then be further challenges to surmount in
terms of diagnostic imaging. The administration of
iodinated contrast material, as required for computed
tomography angiography, has been associated with
acute kidney injury (AKI), termed historically ‘‘con-
trast-induced nephropathy (CIN),’’57 and more
recently, ‘‘contrast-associated AKI (CA-AKI).’’58

Although it is increasingly recognized that even patients
with prior kidney disease are at very low risk of CA-
AKI in this context,59 CKD is still associated with
treatment delays in the receipt of thrombolysis ther-
apy.60 In addition, gadolinium-based contrast agents
have also been associated with nephrogenic systemic
fibrosis, a debilitating and relentlessly progressive skin
condition, in patients with advanced CKD, precluding
their use in this group.61

CKD patients have consistently been shown to
receive suboptimal acute stroke care at every level.
They are less likely to be prescribed aspirin acutely,62

Figure 2. Variation in the risk association between CKD and stroke depending on the method of hypertension adjustment used

in the studies. All studies were also adjusted for other traditional risk factors. Reproduced from Kelly et al.7

CI: confidence interval; BP: blood pressure; HTN: hypertension; RR: relative risk.
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to be thrombolyzed,62,63 or to be admitted to an acute
stroke unit.62 The reasons for these differences are
unclear and likely myriad, related to delayed presenta-
tion, real or perceived bleeding risk, premorbid func-
tional status, and poor integration of stroke with renal
care. Regardless, they should be explored and carefully
delineated. Therapies such as thrombolysis and mech-
anical thrombectomy are also variably associated with
higher symptomatic ICH and mortality rates in this
group,64–66 and the excess mortality is often attribut-
able to non-vascular causes such as pneumonia or
sepsis, which likely stem from or relate to their

multimorbidity burden.67,68 Several studies have also
shown that patients with CKD are less likely to receive
standard secondary preventative therapies or advice
including smoking cessation, antiplatelet, or statin
treatment.63,69 These inequities appear to worsen with
declining renal function63 and are exacerbated by co-
existing racial/ethnic disparities. In a study of 56,587
ESKD hemodialysis patients with AF, black,
Hispanic, or Asian patients were more likely to experi-
ence stroke (13, 15, and 16%, respectively) when com-
pared with white patients, but were less likely to fill a
warfarin prescription (10, 17, and 28%, respectively).70

Figure 3. (a) CKD initially appeared to be associated with certain TOAST TIA/stroke subtypes; (b) however, these associations

were shown to be strongly confounded by age when the odds ratio (OR) of specific TOAST subtypes in CKD was plotted against

the median age within individual subtypes. Age was a significant predictor of between-subtype variance in a metaregression.

Reproduced from Kelly et al.36
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Impact of CKD on stroke severity and

outcomes

Unsurprisingly then, CKD as a comorbidity has
important implications for stroke outcomes. In a
recent analysis of 3178 patients, CKD was shown to
play a major role in stroke severity and recurrence
risk.71 CKD was independently associated with greater
risk of ischemic stroke compared to TIA (adjusted
OR¼ 1.31, 95%CI¼ 1.11–1.56; p¼ 0.002) and with
greater initial NIHSS (adjusted OR¼ 1.28, 1.04–1.46;
p¼ 0.018), driven mostly by those with advanced CKD
(defined as an eGFR< 30mL/min/1.73m2) (adjusted
OR¼ 2.59, 1.44–4.66; p¼ 0.001 for ischemic stroke;
adjusted OR¼ 4.06, 2.04–8.06; p< 0.001 for initial
NIHSS). Among patients with ischemic stroke, CKD
was also associated with higher one-month mRS scores
(adjusted OR¼ 1.40, 1.13–1.74; p¼ 0.002), similarly
driven by those with an eGFR< 30mL/min/1.73m2

(adjusted OR¼ 6.51, 3.04–13.97, p< 0.001).
Consistent with these findings, in an analysis of the

Get With The Guidelines (GWTG)-Stroke cohort, an
eGFR< 30mL/min/1.73m2 was associated with
greater odds of institutionalization.72 Interestingly,
the risk of institutionalization was greatest for those
with an eGFR< 15mL/min/1.73m2 who were not on
dialysis as this often identifies a multimorbid group,
previously deemed unfit for dialysis with poor health
status at baseline. The combination of CKD and stroke
therefore has substantial socioeconomic costs. Among
Medicare patients in the US, the combination of stroke
and CKD was the most costly chronic condition dyad
and comprised four of the top five most costly triads of
conditions.73

In recent analysis,71 CKD was also independently
associated with an increased risk of recurrent stroke
(adjusted HR¼ 1.28, 1.05–1.55, p¼ 0.012), which was
particularly pronounced for early (<90 days) stroke
recurrence (adjusted HR¼ 1.60, 1.15–2.21; p¼ 0.005)
(Figure 4). The sequential and consistent impact of
CKD on initial event severity, early disability, and
recurrence risk suggests that there may be associated
inflammatory or other processes intrinsic to CKD lead-
ing to uniformly worse outcomes. One such unifying
mechanism may be nitric oxide deficiency which is
known to occur in CKD.74 Nitric oxide has a crucial
role in angiogenesis after ischemic stroke,75 and the
associated collateralization is predictive of post-stroke
neurological outcomes.76 It is also a cerebral and sys-
temic vasodilator, modulator of vascular and neuronal
function, and inhibitor of apoptosis.77 Nitric oxide
donors are candidate treatments for acute stroke.
Although they showed some promise in preclinical stu-
dies,78 any efficacy in clinical trials has not been demon-
strated.79 However, it is not known whether such novel

drugs may be specifically beneficial in an already nitric-
oxide-deficient group such as CKD patients.

Consistent with multimorbidity in general, CKD has
also been associated with both short- and long-term
mortality post-stroke.80,81

Impact of prior stroke on CKD
outcomes

There is a two-way relationship between stroke and
comorbidities such as CKD in terms of risk, morbidity,
and mortality. In an analysis of the Salford Kidney
Study, a UK prospective cohort of more than 3000
patients, patients who suffered a stroke prior to recruit-
ment had worse clinical outcomes (death, progression
to ESKD, and non-fatal cardiovascular events) than
those without stroke during follow-up even after
accounting for other known risk factors.69 Patients
with a history of stroke were also less likely to com-
mence dialysis despite having a higher rate of ESKD,
suggesting that their index stroke may have rendered
them less likely to tolerate dialysis.

The impact of stroke on renal progression was also
demonstrated in a large Taiwanese population-based
cohort study (N¼ 100,353) where stroke was associated
with higher risks for incident CKD (adjusted
HR¼ 1.43, 1.36–1.50; p< 0.001), decline in renal func-
tion (aHR¼ 1.22; p¼ 0.04), and progression to ESKD
(adjusted HR¼ 1.30; p¼ 0.008). Subgroup analysis
showed that it was younger stroke patients (<50
years) (aHR 1.61, p< 0.001) and those with concomi-
tant diabetes mellitus (aHR 2.12, p< 0.001), hyperlip-
idemia (aHR 1.53, p< 0.001), or gout (aHR 1.84,
p< 0.001) who were at higher risk of developing inci-
dent CKD, again highlighting the interplay of concord-
ant comorbidities within stroke, and the ability of
multimorbidity to transcend age. With its known asso-
ciation with accelerated atherosclerosis,82 CKD may
indeed be a harbringer of multimorbidity at younger
ages.

CKD, subclinical cerebrovascular
disease, and post-stroke cognitive
dysfunction

With aging populations, co-occurrence of neurodegen-
erative and vascular pathologies is increasingly recog-
nized.83,84 Chronic cerebral inflammation due to
vascular risk factors exposure and genetic modulators
(apoE4) has been proposed to increase beta-amyloid
(Ab) production while chronic small vessel disease
(SVD) and vascular inflammation may drive inefficient
perivascular and cell-mediated Ab clearance.85 In add-
ition, increased periventricular white matter hyperin-
tensities are associated with elevated cerebral amyloid
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independent of confounders such as age, APOE geno-
type, and vascular risk factors.86

CKD has been strongly associated with SVD includ-
ing white matter lesions,87 silent cerebral infarctions
(SCI),88 perivascular spaces,89 and cerebral micro-
bleeds.90 Strikingly, over half of patients with CKD
or ESKD have been shown to have SCI.91,92 This asso-
ciation may simply be related to their shared vascular
risk factors such as hypertension and diabetes,93 but it
has also been proposed that SVD and CKD may be
part of a multi-system small vessel disorder.94 This
theory was explored in an analysis of 1080 consecutive
patients with TIA/stroke who underwent MRI ima-
ging.95 CKD was found to be associated with total
SVD burden (as measured by the total SVD score)
(OR¼ 2.16, 1.69–2.75; p< 0.001), but only at age <60
years (<60 years: OR, 3.97, 1.69–9.32; p¼ 0.002; 60–79
years: OR¼ 1.01, 0.72–1.41; p¼ 0.963; �80 years:
OR¼ 0.95, 0.59–1.54; p¼ 0.832). These findings indi-
cate that there is an age-specific association between
CKD and SVD that is predominantly seen at younger
ages and that may be explained by a shared genetic
susceptibility. Two genome-wide association studies
have indicated genetic pleiotropy between kidney and
cerebrovascular disease, particularly with large artery
atherosclerotic and small vessel stroke.96,97 At older
(>60 years) ages, however, much of the association
appears to be confounded by age and other vascular
risk factors.

However, regardless of etiology, SVD has many
implications for patients with CKD. In a small study

of nearly 200 hemodialysis patients, the presence of SCI
independently predicted future cerebrovascular and all-
type vascular events (HR for cerebral events 7.33, 95%
CI 1.27–42.25: for vascular events 4.48, 95% CI 1.09–
18.41).91 Similarly, in another small cohort study of 142
CKD patients, SCI also heralded the composite out-
come of renal progression and death from cardiovascu-
lar causes (HR, 2.16; 95% CI, 1.01–4.64; p¼ 0.04).98

CKD is associated with cognitive impairment, par-
ticularly with declining renal function.99 In the Reasons
for Geographic and Racial Differences in Stroke
(REGARDS) Study, each 10mL/min/1.73m2 decrease
in eGFR< 60mL/min/1.73m2 was associated with an
11% increase in prevalence of cognitive dysfunction
(defined as a score of four or less in a 6-Item
Screener, a test of global cognitive function).100

Hemodialysis patients are three times more likely to
have severe cognitive impairment than age-matched
non-dialysis patients even after adjustment for clinical
differences, with prevalence rates of 37%.101 Although
vascular pattern cognitive impairment with executive
dysfunction is typical102 and several studies link cogni-
tive impairment in CKD to SVD,103 other studies sug-
gest that the relationship between CKD and cognitive
dysfunction may be independent of SVD.104 Neural
progenitor cells and the glymphatic system, which are
important in Alzheimer disease pathogenesis, have also
been proposed to be involved in CKD-associated cog-
nitive impairment.105 Multimorbidity itself has been
shown to accelerate cognitive decline,106 and this
effect may be amplified in a post-stroke setting.

Figure 4. Cumulative risk of early (<90 days) recurrent stroke in those with CKD versus those with normal renal function.

Reproduced from Kelly et al.71

International Journal of Stroke, 16(7)

Kelly and Rothwell 765



Conclusions and future research
directions

Using CKD as an example, we aimed to highlight the
impact of multimorbidity on stroke risk, mechanisms,
severity, functional recovery, and risk of recurrence or
death. As the global burden of CKD rises,34 so too will
its prevalence in stroke survivors and potential contri-
bution to stroke mechanisms through hypertension and
acceleration of atherosclerosis. Patients with proteinu-
ric kidney disease and those who are dialysis-dependent
should be recognized as being particularly high-risk for
cerebrovascular events and should be given appropriate
clinical and research prioritization.

While CKD may share risk factors or certain
treatment strategies with stroke, it should still merit
special consideration in the design or implementation
of stroke prevention and recovery programs. The
underlying cause of the kidney disease should also be
taken into account, and prevention or treatment plans
should be individualized accordingly. Currently, one
must cross-reference multiple disparate CKD or
stroke guidelines in order to be appropriately guided
in the prevention and management of stroke in

CKD.107 Given the increasing prevalence of overlap-
ping conditions such as CKD, there is a need to stand-
ardize or integrate clinical practice guidelines to guide
real-world decision-making in frequently multimorbid
patients.108

Dedicated CKD-specific or -enriched trials are
required to expand the evidence base for integrated
guidelines. Few cerebrovascular trials to date have
reported baseline renal function and many have
excluded CKD patients entirely.30 Pragmatic trial
design may offer advantages over traditional trial
design for CKD or other multimorbid patient groups.
We have outlined our recommendations for key
research priorities in CKD and multimorbidity in
Table 1, several of which aim to establish the safety
and efficacy of many standard treatments in the CKD
population that have not previously been
demonstrated.

However, research is needed to explore multimor-
bidity in stroke more broadly. Detailed examination
of individual comorbidities, as well as comorbidity
clusters and overall multimorbidity, on long-term
stroke recurrence by stroke subtype is warranted.

Table 1. Selected research priorities for CKD and multimorbidity in stroke

Research agenda for CKD

Determine the role of genetic factors in the etiology of stroke in CKD.

Determine if there are novel risk factors that contribute to stroke risk in patients with proteinuria.

Regular audit and monitoring of times to acute treatment and rates of treatment in patients with CKD versus those with normal

renal function.

Evaluate the efficacy and safety of IV thrombolysis and thrombectomy in CKD.

Investigate potential novel mechanisms by which CKD may increase the severity of stroke event and the risk of early recurrence,

such as the nitric oxide deficiency hypothesis.

Determine the role for antiplatelet treatment in primary stroke prevention in CKD.

Determine when anticoagulation should be used in dialysis patients and which agent has the greatest safety and efficacy.

Clarify whether carotid stenting or endarterectomy are superior in CKD.

Investigate the mechanisms of cognitive decline in CKD and chart its natural history.

Research agenda for multimorbidity

Develop a consensus definition for multimorbidity in stroke and determine the best tool to measure it in this setting.

Design and implement care pathways and programs that accommodate patient preferences and priorities.

Explore the short-term impact of multimorbidity on acute stroke care.

Explore the longer-term impact of multimorbidity on stroke rehabilitation services, recurrence risk, and mortality as well as

potential predictors of worse outcomes.

Creation of integrated, collaborative stroke guidelines to reduce fragmented care.

Investigate the impact of treatment burden and polypharmacy on multimorbid stroke survivors.
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Few studies to date, example, have examined the long-
term impact of multimorbidity in stroke with its impli-
cations for stroke rehabilitation, secondary prevention,
and outcomes as well as non-stroke-related care and
outcomes. Interdisciplinary collaboration will be cen-
tral to the redesign of stroke healthcare to adapt to the
increasing complexity of multimorbid patients.
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