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Asymmetric controlled 
bidirectional remote preparation 
of two- and three-qubit equatorial 
state
Yi-Ru Sun1, Xiu-Bo Chen1,2, Gang Xu1, Kai-Guo Yuan1 & Yi-Xian Yang1,2

In this paper, a novel asymmetric controlled bidirectional remote preparation scheme is proposed. In our 
scheme, Alice and Bob are not only the senders but also the receivers with the control of Charlie. By using 
the eleven-qubit entangled state as the quantum channel, Alice prepares an arbitrary two-qubit equatorial 
state for Bob and Bob prepares an arbitrary three-qubit equatorial state for Alice simultaneously. Firstly, 
we give the construction process of the quantum channel. Secondly, the whole recovery operations are 
given. Alice and Bob can recover the prepared state determinately. Thirdly, we consider the effect of the 
noisy environment (amplitude-damping and phase-damping) in our scheme and calculate the fidelities of 
the output states. Finally, since our scheme does not need additional operations and auxiliary qubits, the 
efficiency of our scheme is higher than that of the previous schemes.

In quantum cryptography, quantum entanglement is magic, which plays a key role in many different types of commu-
nication schemes1–3. One of the applications is the remote state preparation (RSP)4–6. In a RSP scheme, the sender can 
prepare a known quantum state for the remote receiver through a pre-shared quantum channel and the appropriate 
measurements. After that, many various schemes were presented, such as controlled RSP (CRSP)7, joint RSP (JRSP)8.

However, the previous RSP schemes are unidirectional. The first controlled bidirectional RSP (CBRSP) 
scheme was presented by Cao et al.9 in 2014, where Alice and Bob send their single-qubit state to each other 
simultaneously. After that, in 2015, the deterministic, the probabilistic and the joint CBRSP schemes were devised 
by Sharma et al.10. And Peng et al.11 presented a five-party joint CBRSP scheme by using eight-qubit entangled 
state. In 2016, utilize the non-maximally and maximally six-qubit entangled state, Zhang et al.12,13 proposed two 
joint CBRSP schemes. In 2017, another five-party joint CBRSP scheme is proposed by Wang and Mo14 by using 
seven-qubit entangled state as the quantum channel. Sang15 presented a bidirectional controlled quantum infor-
mation transmission scheme, where Alice teleports an arbitrary unknown single-qubit state to Bob and Bob 
remotely prepares an arbitrary known single-qubit state for Alice simultaneously. In 2018, a controlled bidirec-
tional hybrid of remote state preparation and quantum teleportation scheme was proposed by Wu et al.16. By 
using thirteen-qubit entangled state as the quantum channel, Chen et al.17 presented a symmetric CBRSP scheme, 
where Alice and Bob prepared an arbitrary three-qubit state to each other simultaneously. Moreover, this scheme 
was discussed in four types of noisy environment and no auxiliary qubits are needed.

Moreover, many asymmetric CBRSP (ACBRSP) schemes have been proposed. In 2017, an ACBRSP scheme was 
presented by Sang et al.18, where Alice teleports an arbitrary unknown single-particle state to Bob and Bob remotely 
prepare an arbitrary known two-qubit state to Alice. Song et al.19 investigated an ACBRSP scheme of a single-qubit 
state and two-qubit state. Ma et al.20 proposed an ACBRSP scheme of an arbitrary four-qubit cluster-type state and a 
single-qubit state. In 2018, a scheme for bidirectional and hybrid quantum information transmission was proposed 
by Fang et al.21, where Alice can teleport an arbitrary single-qubit state (two-qubit state) to Bob and Bob can prepare 
a known two-qubit state (single-qubit state) to Alice simultaneously. In the previous schemes, many of them need the 
help of the auxiliary qubits and additional operations19–21. Furthermore, they do not give the construction process of 
the quantum channel. And only in the schemes10,17, the noise are considered. However, noise is a necessary factor that 
must be considered in actual communication. In ref.22, Zeng and Zhang have shown that the RSP scheme in real Hilbert 
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space can only be implemented when the dimension of the space is 2, 4 or 8, while the equatorial case can be general-
ized without restriction on the dimension. Although the preparation of two states to each other can be completed by 
using two independent RSP schemes, simultaneity and fairness cannot be guaranteed in this process. However, in our 
scheme, the controlled bidirectional preparation of the equatorial state, Alice and Bob can transmit the prepared state to 
each other simultaneously with the control of Charlie. The simultaneity and fairness can be guaranteed in our scheme.

In this paper, a novel ACBRSP scheme is put forward. With the control of Charlie, Alice prepares an arbitrary 
two-qubit equatorial state for Bob and Bob prepares an arbitrary three-qubit equatorial state for Alice at the same 
time. We firstly generate the eleven-qubit entangled state as the quantum channel. Then, through the appropriate 
measurements and the recovery operations, Alice and Bob can reconstruct the prepared state determinately. 
Moreover, we consider the effect of the noisy environment in our scheme and calculate the fidelities of the out-
put states. Last but not the least, some discussions and conclusions are given. The result shows that our scheme 
does not need additional operations and auxiliary qubits. And the prepared states are the arbitrary two- and 
three-qubit states, so the efficiency of our scheme is higher than that of the previous schemes.

Results
The construction process of the quantum channel.  We use the eleven-qubit product state as an input 
state23 and implement the Hadamard (H) and CNOT operations to construct the eleven-qubit entangled state as 
the quantum channel24. The process of the construction of the quantum channel is given as follows.

The input state is the eleven-qubit product state φ1  as

φ = .0 0 0 0 0 0 0 0 0 0 0 (1)a b1 1 2 3 4 5 6 7 8 9

C1 We implement the H operation on qubit 1 and rewrite the φ1  as

φ = + .
1
2

( 0 1 ) 0 0 0 0 0 0 0 0 0 0
(2)a b2 1 2 3 4 5 6 7 8 9

C2 Operate CNOT operations on the qubit pairs (1, 3), (1, 5), (1, 7), (1, 9), (1, b), respectively, where qubit 1 is 
used as controlled qubit and each of five qubits 3, 5, 7, 9, b are used as target qubit. We rewrite the φ2  as

φ = + .
1
2

( 0 0000000000 1 0101010101 )
(3)ab3 123456789

C3 After implementing the H operations on the qubits 2, 4, 6, 8, a, we execute CNOT operations on the qubit 
pairs (2, 3), (4, 5), (6, 7), (8, 9), (a, b), respectively, where qubits 2, 4, 6, 8, a are used as controlled qubit and each 
of five qubits 3, 5, 7, 9, b is used as target qubit. The eleven-qubit entangled state can be generated as

φ = Φ Φ Φ Φ Φ + Ψ Ψ Ψ Ψ Ψ+ + + + + + + + + +1
2

( 0 1 ),
(4)ab ab4 1 23 45 67 89 1 23 45 67 89

where Φ = ++ ( 00 11 )1
2

 and Ψ = ++ ( 01 10 )1
2

.
In Fig. 1, we give the circuit diagram of the construction of the quantum channel.

Figure 1.  The construction of the quantum channel.
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The ACBRSP scheme of an arbitrary two- and three-qubit equatorial state.  By using eleven-qubit 
entangled state φ4  as the quantum channel, we propose a novel ACBRSP scheme. In the scheme, with the control of 
Charlie, Alice prepares an arbitrary two-qubit equatorial state for Bob and Bob prepares an arbitrary three-qubit equa-
torial state for Alice. They pre-share this quantum channel at first which is constructed by Charlie. Then, Alice and Bob 
can complete the preparation task through the appropriate measurements and the corresponding recovery operations.

In the scheme, as an honest controller, Charlie constructs the eleven-qubit entangled state as the quantum 
channel and holds qubit 1 in his hand. Then, he sends the qubits 2, 4, 6, 8, a to Alice and sends the qubits 3, 5, 7, 9, 
b to Bob. Before distributing these qubits, the participants have to check eavesdropping by using the decoy qubits 
to ensure the security of the distribution. The process of checking eavesdropping is the same as that in ref.17. After 
successfully passing the check eavesdropping, the quantum channel can be securely shared by Alice, Bob and 
Charlie. Next, we will describe our ACBRSP scheme in detail.

A1 They pre-share the quantum channel φ4 . Alice wants to prepare a two-qubit equatorial state ϕA  for Bob 
and Bob wants to prepare a three-qubit equatorial state ϕB  for Alice, where

ϕ = + + +θ θ θe e e1
2

( 00 01 10 11 ), (5)A
i i i1 2 3

ϕ = + + + + + + +δ δ δ δ δ δ δ
(6)e e e e e e e1

2 2
( 000 001 010 011 100 101 110 111 ),B

i i i i i i i1 2 3 4 5 6 7

Here, θ θ θ δ, , , k1 2 3  are real and θ θ θ δ π≤ ≤0 , , , 2k1 2 3 , = ...k 1, 2, , 7.
A2 Alice carries out two-qubit measurement on her qubits 2, 4. The measurement basis is 

A A A A( , , , )0 1 2 3 24, where













=







− −
− −

− −



















θ θ θ

θ θ θ

θ θ θ

θ θ θ

− − −

− − −

− − −

− − −

A
A
A
A

e e e
e e e

ie e ie
ie e ie

1
2

1
1
1
1

00
01
10
11

,

(7)

i i i

i i i

i i i

i i i

0

1

2

3

1 2 3

1 2 3

1 2 3

1 2 3

Bob performs three-qubit measurement on his qubits 7, 9, b. The measurement basis is B B B B( , , , ,0 1 2 3  
B B B B, , , ) b4 5 6 7 79  as

=

B B B B B B B B

B

( , , , , , , , )

( 000 , 001 , 010 , 011 , 100 , 101 , 110 , 111 ) (8)
b

T

b
T

0 1 2 3 4 5 6 7 79

79

where

=







− − − −
− − − −

− − − −
− − − −

− − − −
− − − −

− − − −




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B

e e e e e e e
e e e e e e e
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e e ie ie e e e e ie ie e
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1
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1
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1
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1
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/4 /4 /4 /4

/4 /4 /4 /4

/4 /4 /4 /4

/4 /4 /4 /4

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

The quantum channel φ4  becomes:

φ = + + +

+ − + − +

− − + + +

− − + +
+ + + + +

+ + + +

+ − + −

+ − − +

+ + − −
+ + + +
+ + +

θ θ θ

θ θ θ

θ θ θ θ

θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

A e e e

A e e e A

ie e ie A ie

e ie B C B C B C
B C B C B C B C B C

A e e e

A e e e

A ie e ie

A ie e ie B D
B D B D B D B D
B D B D B D

1/8{ 0 1/2[ ( 00 01 10 11 )

( 00 01 10 11 ) ( 00

01 10 11 ) ( 00 01

10 11 ) ](
)

1 1/2[ ( 11 10 01 00 )

( 11 10 01 00 )

( 11 10 01 00 )

( 11 10 01 00 ) ](

) }, (9)

i i i

i i i

i i i i

i i

b a
i i i

i i i

i i i

i i i

b a

4 1 0 24 35

1 24 35 2 24

35 3 24

35 0 0 1 1 2 2

3 3 4 4 5 5 6 6 7 7 79 68

1 0 24 35

1 24 35

2 24 35

3 24 35 0 0

1 1 2 2 3 3 4 4

5 5 6 6 7 7 79 68

1 2 3

1 2 3

1 2 3 1

2 3

1 2 3

1 2 3

1 2 3

1 2 3



www.nature.com/scientificreports/

4SCIeNTIfIC REPOrTS |          (2019) 9:2081  | https://doi.org/10.1038/s41598-018-37957-x

where

= + + +

+ + + +

= − + −

+ − + −

= + − −

+ + − −

= − − +

+ − − +

= + − −

− − + +
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− − − +
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A3 Alice’s and Bob’s measurement results are A B,s t b24 79 , ≤ ≤s0 3 and ≤ ≤t0 7. They send their meas-
urement results to others. After that, Charlie implements a single-qubit measurement in the basis { 0 , 1 } on 
qubit 1 and sends the result to Alice and Bob through the classical channel.

A4 In the end, after receiving others’ measurement results, Alice can recover the three-qubit equatorial state 
ϕB  by applying the corresponding recovery operations on her qubits 6, 8, a and Bob can recover the two-qubit 
equatorial state ϕA  by applying the corresponding recovery operations on his qubits 3, 5. The process of the 
scheme is given in Fig. 2.

For instance, we assume Alice’s and Bob’s measurement results are A B, b0 24 0 79 . If Charlie’s measurement 
result is 0 1, Alice (Bob) recovers the prepared state ϕB a68 ( ϕA 35) by performing the recovery operations 

⊗ ⊗I I Ia6 8  ( ⊗I I3 5) on the qubits 6, 8, a (3, 5), respectively. If Charlie’s measurement result is 1 1, Alice’s 
(Bob’s) recovery operations are ⊗ ⊗X X Xa6 8  ( ⊗X X3 5), respectively. For other measurement results, Alice 
and Bob can also use corresponding recovery operation to get the prepared state. All the measurement results 
and corresponding recovery operations are given in Supplementary information. Furthermore, the scheme is 
completed deterministically.

Figure 2.  The process of the ACBRSP scheme. The M M M, ,b24 79 1 are short for the measurements of Alice, Bob 
and Charlie on their own qubits, respectively. U U, a35 68  are the recovery operations of Bob and Alice, 
respectively.

Figure 3.  The relationship between fidelity and decoherence rate. In the amplitude-damping and phase-
damping noisy environment, we assume that = =p p pa p .
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The ACBRSP scheme in amplitude-damping and phase-damping noisy environment.  It 
is impossible to have a noiseless communication environment in practice. For example, Sharma et al.10 dis-
cussed the effects of two well-known noise processes, the amplitude-damping and phase-damping noise, 
in their scheme. In this section, we will consider the ACBRSP scheme in two types of noisy environment 
(amplitude-damping and phase-damping).

In ACBRSP scheme, Charlie constructs the quantum channel φ4  and holds the qubit 1. Since the qubit 1 is not 
transmitted in the noisy environment, so it is not affected by the noise. Charlie sends the qubits 2, 4, 6, 8, a (3, 5, 
7, 9, b) to Alice (Bob) via the channel-I (channel-II). We assume that the channel-I and channel-II are in the same 
noisy environment. Therefore, the qubits 2, 4, 6, 8, a (3, 5, 7, 9, b) are affected by the same Kraus operator. The 
density matrix of the quantum channel φ4  can be calculated as ρ φ φ= 4 4 .

The Kraus operators.  In the amplitude-damping noisy environment, the Kraus operators25 are

=



 −






=










E p E p1 0
0 1 , 0

0 0
,

(10)
A

a

A a
0 1

where ≤ ≤p p(0 1)a a  is the decoherence rate. It is the probability of missing a photon. Because of the interaction 
with this noisy environment, a system undergoes energy dissipation.

In phase-damping noisy environment, it describes the loss of information about the relative phase in the 
quantum state. The Kraus operators25 are

=



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−

−


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0 1 2

where ≤ ≤p p(0 1)p p  is the decoherence rate.

The output state.  The qubits 2, 4, 6, 8, a (3, 5, 7, 9, b) are transmitted in the amplitude-damping and 
phase-damping noisy environment, we rewrite the density matrix ρ as ε ρ( )A  and ε ρ( )P .
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The fidelity of the output state.  In the noisy environment, Alice and Bob implement measurements on qubits 2, 
4 and 7, 9, b, respectively. The output state can be calculated as ρ( )out

A
a3568  and ρ( )out

P
a3568 :

Scheme Quantum Channel
Auxiliary 
Qubits

Auxiliary 
Operations CCCs Efficiency

ref.20 Ten-Qubit Entangled State 5 7 CNOTs 8 13.04%

ref.18 Seven-Qubit Entangled State 0 0 5 25%

ref.21
Seven-Qubit Entangled State 2 2 CNOTs 7 18.75%

Seven-Qubit Entangled State 1 1 CNOT 7 20%

ref.19 Four-Qubit Entangled State + EPR 1 1 CNOT 6 23.08%

Ours Eleven-Qubit Entangled State 0 0 6 29.41%

Table 1.  Discussions with other ACBRSP schemes. Where CCCs is short for classical communication cost.
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If we consider the scheme in the noiseless environment, the final state is φ φΨ = ⊗A B a35 68 . However, in 
the noisy environment, the fidelity of the output state can be calculated as ρ= Ψ ΨF A

out
A  and ρ= Ψ ΨFP

out
P .
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The fidelity is at most 1 by definition and 0.5 is automatically achieved by outputting a completely mixed 
state26. By calculating the fidelities of the output states, we conclude that fidelity depends on the decoherence rate. 
In amplitude-damping and phase-damping noisy environments, we assume that = =p p pa p . The diagram of 
fidelity changes with the decoherence rate given in Fig. 3. We can see that the fidelities F F,A P of the output states 
decreases as the decoherence rate increases.

Discussions
First, we give a summary of this scheme, including the necessary operations, classical communication costs 
(CCCs) and efficiency. Second, we give some discussions with other schemes18–21. Last, the conclusions are 
described.

In this paper, we construct the quantum channel at first. The necessary operations have six H operations and 
ten CNOT operations. Quantum gate operations are critical part of quantum computation and quantum com-
munications. Many experimental results27–31 have been proposed for quantum operations implementation. For 
example, in 2018, Rosenblum et al.27 realized a CNOT gate between two multiphoton qubits in two microwave 
cavities. They coupled two encoded qubits together through a transmon, which is driven by an RF pump to 
apple the gate within 190 ns. This is two orders of magnitude shorter than the decoherence time of the trans-
mon, enabling a high-fidelity gate operation. Zajac et al.28 demonstrate an efficient resonantly driven CNOT gate 
for electron spins in silicon. The single-qubit rotations can be achieved by their platform with fidelities greater 
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than 99%, as verified by randomized benchmarking. They used the CNOT gate to generate a Bell state with 78% 
fidelity. According to the relevant experimental results, the implementation of the H and CNOT operations can 
be completed by using the existing technology. Furthermore, we can realize the construction of the eleven-qubit 
entangled state.

In our ACBRSP scheme, no auxiliary operations are needed. The CCCs are generated when three participants 
send their measurement results through the classical channel. In the scheme, the measurement results can be 
transmitted directly to others via broadcast, since it does not contain the information about the prepared state. 
Thus, the CCCs are 6 bits. The efficiency32 of the scheme can be calculated as

η = + = = .q q b/( ) 5/17 29 41%, (18)s u t

where qs denotes the number of qubits that consist of the quantum information to be prepared, qu is the number 
of the qubits that is used as the quantum channel and bt is the classical bits transmitted.

We give some discussions with the other ACBRSP schemes18–21. The results are shown in Table 1. Firstly, in 
refs18,19,21, these schemes are asymmetrical bidirectional remote preparation of an arbitrary single- and two-qubit 
state. The scheme in ref.20 is asymmetrical bidirectional remote preparation of single- and four-qubit state, but in 
fact they only transmit the single- and two-qubit state and the receiver needs two local auxiliary qubits and auxil-
iary operations to recovery four-qubit state. However, in our ACBRSP scheme, we prepare a two- and three-qubit 
equatorial state. Secondly, we construct the quantum channel by using H operations and CNOT operations. 
Neither of them gave the process of the construction of quantum channel. Thirdly, in refs19–21, these schemes need 
the auxiliary qubits and auxiliary operations to complete the preparation task, while our scheme and the scheme 
in ref.18 do not need. Fourthly, the CCCs of our scheme are 6 bits, which is less than that in refs20,21. Finally, the 
efficiency of our scheme is higher than that of other schemes.

In the future, we hope the scheme can play a facilitating role in quantum network communication. The 
point-to-point quantum communication must be turned to the multi-party quantum network communication. 
These have a wide range of research meanings in some network structures33–36. As regards the quantum networks, 
the feasibility and construction have been fully verified theoretically37,38. Our scheme do not need the auxiliary 
resources and have relatively high efficiency, so it can be easily incorporated into the design of quantum network 
communication.

Conclusions
In summary, we propose a novel ACBRSP scheme. Alice prepares an arbitrary two-qubit equatorial state for Bob 
and Bob prepares an arbitrary three-qubit equatorial state for Alice simultaneously by using the eleven-qubit 
entangled state as the quantum channel. The quantum channel is constructed at first. Moreover, Alice and 
Bob can recover the prepared state determinately. Then, our scheme are considered in the noisy environment 
(amplitude-damping and phase-damping noisy environment) and the fidelities of the output states are calcu-
lated. In the end, we give some discussions with other ACBRSP schemes and the results show that our scheme is 
effective.

Specifically, an arbitrary two-qubit state and three-qubit state can be prepared separately in either direction. 
Moreover, using the quantum channel we selected, in addition to completing the content presented in this paper, 
Alice can also prepare a three-qubit equatorial state for Bob, and Bob prepares a two-qubit equatorial state for 
Alice. Furthermore, according to the construction of the quantum channel, we can see that whether it is the prod-
ucts of five Φ+  or products of five Ψ+  states. One can partition these products into the product of any two Bell 
states and the product of the remaining three Bell states. The part can be used to prepare the corresponding 
multi-qubit state in either direction.

Our scheme does not only allow the preparation of the equatorial state. Also, since the quantum channel is 
suitable for processing the bidirectional transmission of quantum states. There is no strict restriction on the type 
of quantum states. For example, the scheme can also be used for the bidirectional preparation of general or other 
special states. We will further study this part of the contents.
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