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Abstract: Nano lanthanum oxide particles (La2O3 NPs) are important nanoparticle materials which
are widely used in photoelectric production, but their potential health hazards to the respiratory
system are not clear. The purpose of this study was to explore the possible mechanism of lung
injury induced by La2O3 NPs. In this study, 40 SPF male SD rats were randomly divided into low-,
medium-, and high-dose groups and control groups, with 10 animals in each group. Rats were
poisoned by tracheal injection. The low-, medium-, and high-dose groups were given La2O3 NPs
suspension of 25, 50, and 100 mg/kg, respectively, and the control group was given an equal volume
of high-temperature sterilized ultrapure water. The rats in each group were exposed once a week
for 12 consecutive times. The gene transcription and protein expression levels of PINK1 and parkin
in rat lung tissue were mainly detected. Compared with the control group, the gene transcription
and protein expression levels of PINK1 and Parkin in the exposed group were significantly higher
(p < 0.05). La2O3 NPs may activate PINK1/parkin-induced mitochondrial autophagy.

Keywords: nanometer lanthanum oxide; pulmonary; mitochondrial autophagy injury; PINK1/parkin

1. Introduction

China is a large country of rare earth elements. Lanthanum is the most widely used
rare earth element, and it is widely used in agriculture, animal husbandry, aquaculture,
medicine and health, and other industries [1,2]. It can enter and accumulate in the human
body through the digestive tract, respiratory tract, placental blood circulation, and breast
milk. Lanthanum oxide nanoparticles (La2O3 NPs) is an important rare earth oxide which
has the advantages of high optical activity, high catalytic activity, and strong adsorption
selectivity [3]. These characteristics make it good for applications in sensor materials,
battery electrode materials, photocatalytic materials, luminescent materials, and other
fields, in addition to the field of hydrogen storage materials and magnetic materials.

Due to their small particle size and high biological activity, La2O3 NPs can easily
enter the body through the respiratory tract in the air, accumulate in the lungs, and can
also be transported to various tissues and organs with blood circulation, resulting in body
damage [4,5]. Shin et al., explored the potential toxicity of La2O3 NPs after repeated
inhalation exposure in male rats and found that La2O3 NPs could accumulate in rat lung
tissue in a dose-dependent manner. Pulmonary inflammation occurred in the exposure
group, and after exposure, pulmonary inflammation tended to deteriorate [6]. Lim found
that the toxicity of La2O3 NPs with different particle sizes was similar, but La2O3 NPs with
smaller particle sizes were more toxic to macrophages and alveolar basal epithelial cells,
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which were absorbed more by the lungs and cleared more slowly. La2O3 NPs caused more
severe lung injury than micron La2O3 [7]. Sisler et al., found, in their study on the effects of
atomized inhalation of La2O3 NPs on the lungs of mice, that La2O3 NPs remained in the
lungs 56 days after exposure, resulting in a large number of inflammatory cell infiltration
in lung tissues, resulting in chronic inflammatory changes and pulmonary fibrosis [8].
Li et al., found, in their study on the gene toxicity of nano-TiO2 to mouse lung tissue
that nano-TiO2 damaged DNA and cells by inducing lung oxidative stress, inflammatory
response, and apoptosis [9]. Therefore, La2O3 NPs can enter the blood circulation and
lymphatic circulation through a variety of ways to reach potential target sites, so as to exert
toxic effects on the body [10].

Oxidative stress is one of the important mechanisms for nanomaterials to exert their
biological toxic effects. Mitochondria are not only the main place for cells to produce ROS,
but also the primary target of ROS attack, and a large amount of ROS accumulation will
induce mitochondrial autophagy [11]. Mitophagy is a process in which cells selectively clear
lesions or damage mitochondria through the mechanism of autophagy [12]. It is one of the
key links in the regulation of mitochondrial quality and quantity. Mitochondrial autophagy
mediated by the PINK1/parkin pathway is a main mechanism of cell stress regulation
induced by nanomaterials [13]. When mitochondria are damaged by oxidative stress,
mitochondrial transmembrane potential is destroyed, resulting in the blocking of PINK1
translocation and degradation; this makes PINK1 accumulate on the outer membrane
surface of mitochondria, recruits Parkin to damaged mitochondria, and starts mitochondrial
autophagy by mediating the activation of Parkin and ubiquitin phosphorylation. When
mitochondrial autophagy cannot clear damaged mitochondria or mitochondrial autophagy
is excessive, apoptosis-related genes are activated to induce apoptosis [14], resulting in the
damage of cells and organs. The participation of mitochondrial autophagy can be seen in
the cellular effects of nano materials, both in normal cells and tumor cells. For example, TiO2
NPs induce endoplasmic reticulum stress in human trophoblast cells, activate autophagy
(including mitochondrial autophagy), and affect placental function [15]; ZnO NPs can kill
tumor cells by activating pink1/parkin-mediated mitochondrial autophagy [16].

At present, La2O3 NPs are being more and more widely used, and their impact on
human health and safety has attracted more and more attention. However, the study of
mitochondrial autophagy mediated by the PINK1/parkin pathway in lung injury induced
by La2O3 NPs has not been reported. Therefore, this study used the method of the whole
animal experiment to establish a rat model of subchronic exposure to La2O3 NPs through
the respiratory tract and to explore the role and specific mechanism of PINK1/parkin signal
transduction pathway in lung injury induced by La2O3 NPs.

2. Materials and Methods
2.1. Establishment of Animal Model

Forty SPF male SD rats (provided by the Experimental Animal Center of North China
University of Science and Technology) weighing 180~220 g were fed freely, drank water
at 20~25 ◦C, and were kept in an environment where the humidity was 45%. They were
randomly divided into a control group, La2O3 NPs low-dose group (25 mg/kg), La2O3
NPs medium-dose group (50 mg/kg), and La2O3NPs high-dose group (100 mg/kg), with
10 animals in each group. The test was conducted after 1 week of adaptive feeding.

The appropriate amount of La2O3 NPs was accurately weighed; sterilized at a high
temperature and high pressure; and placed in normal saline to prepare 2.5, 5, and 10 mg/mL
La2O3 NPs suspension. Before the experiment, the mixture was mixed by ultrasonic
oscillation for 30 s.

The La2O3 NPs suspension after ultrasonic oscillation was mixed. After ether anes-
thesia, the rats were exposed to non-exposed tracheal injection. The low-, medium-, and
high-dose groups were given 25, 50, and 100 mg/kg La2O3 NPs suspension, respectively.
The control group was given an equal volume of normal saline (1 mL/100 g). Exposure was
once a week and continued for three months, totaling of 12 exposures. The body weight,
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appearance, eating, and drinking water of the experimental animals were observed and
recorded every day.

Rats were sacrificed 24 h after the last exposure, weighed, and recorded. After the
heart blood was taken, the lung tissue was quickly removed, and the weight of the tissue
was recorded. Some tissues were used for pathological examination, and some blood was
separated from serum. The samples were frozen at −80 ◦C for further use.

2.2. General Observation of Rats

During the experiment, the rats’ appearance, activity ability, mental state, food and
water intake, and fur changes were observed once a week. Weight was observed every day,
with weekly summary analyses of weight changes and timely records.

2.3. Determination of Lung Coefficient

After the blood was taken from the heart of the rats, the lung tissue was quickly taken
out, rinsed with normal saline, and dried with excessive moisture. Then the wet weight of
the lung tissue was accurately weighed with an electronic balance, and the lung coefficient
was calculated according to the following formula:

Lung coefficient = (wet lung weight/body weight) × 100%

2.4. Determination of Lanthanum Content in Lung Tissue

A total of 1.0 g of rat lung tissue was taken and placed in digestion flasks, respectively,
and 4 mL of nitric acid was added overnight until the sample was nitrified. The sample
was then evaporated on an electrothermal plate for 1–2 h, until the white powder remained.
After cooling, the sample was diluted with nitric acid (1%) to 10 mL, and then a 7500 in-
ductively coupled plasma–atomic emission spectrometry (ICP–MS) analyzer (Santa Clara
Agilent) was used to detect the content of lanthanum in lung tissue.

2.5. Detection of Oxidative Damage Index in Lung Tissue

The lung tissue was taken with normal saline to prepare 10% tissue homogenate and
centrifuged at 3500–4000 r/min for 10 min. The supernatant was taken for use. The activity
of SOD and GSH-Px and the content of MDA in lung homogenate were measured by using
a kit.

2.6. Determination of PINK1 and Parkin mRNA Expression Levels and Protein Expression Levels
in Lung

Western blot was used to detect. Take the lung tissue about 0.1 g, cut into pieces, and
add 1000 µL lysis liquid. Then use an ultrasonic cell broken instrument for lysis. Protein
concentration was measured by using a BCA protein detection kit. The 15 µg protein was
subjected to SDS–PAGE electrophoresis, transferred to PVDF membrane, and then blocked
with 5% BSA. PVDF membrane was incubated overnight with diluted rabbit anti-mouse
PINK1 primary antibody, mouse anti-mouse Parkin primary antibody, and beta-actin. The
membrane was washed three times with TBST and incubated with secondary antibody.
Finally, ECL imaging was used. The Image J image analysis system was used to analyze
the integrated density value (IDV) of protein bands, and the expression levels of PINK1
and Parkin in the lung were calculated with β-actin as the internal reference.

2.7. Determination of Bcl-2 and Bax Protein Expression Levels in Lung

The lung tissue was dewaxed and hydrated by immunohistochemical staining and
incubated with 1% hydrogen peroxide methanol solution at room temperature for 10 min
to inactivate endogenous peroxidase. Double steam washing once, 0.1 mol/L PBS washing
5 min × 3 times; microwave radiation in a microwave oven for 10 min; after the repair
solution dropped to room temperature, 0.1 mol/L PBS was washed 5 min × 3 times;
normal goat serum blocking solution was added, incubated at room temperature for 20 min;
primary antibody (rabbit IgG) was added, left overnight, at 4 ◦C; 0.01 mmol/L phosphate
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buffer saline (PBS) was washed 2 min × 3 times; secondary antibody was added, incubated
at 37 ◦C for 20 min; and 0.1 mol/L PBS was washed 5 min × 3 times. DAB color, full
washing, dehydration transparent sealing, and image processing and analysis were used.

2.8. Pathomorphological Examination of Lung

The middle lobe of the right lung of rats was taken, and the lung tissue with a size
of about 1 cm3 was retained and fixed with 10% neutral formalin. The lung tissue was
routinely dehydrated and embedded in paraffin to prepare paraffin sections. After a 3 mm
slice was stained with HE, the morphological changes of rat lungs were observed under
light microscope.

2.9. Statistical Analysis

The data obtained were expressed as mean ± standard deviation. Excel was used
to establish the database, SPSS 17.0 statistical software was used for statistical analysis,
one-way analysis of variance (ANOVA) was used to test the significance of the difference
between the two groups, and LSD was used to test the comparison between the two groups.
A p < 0.05 indicated that the difference was statistically significant.

3. Results
3.1. Characterization of La2O3 NPs

The size and surface morphology of La2O3 NPs were examined by using SEM. The
SEM images are given in Figure 1A,B, and show that La2O3 NPs powder has good crys-
tallinity; the product is regular spherical, has good dispersibility, and has uniform particle
size distribution. Nanoparticles with an average diameter of 50 nm can be seen. It can
be seen from the XRD spectrum that La2O3 NPs have obvious characteristic diffraction
peaks and no other impurity peaks, thus indicating that the La2O3 NPs have high purity
(Figure 1C).
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Figure 1. TEM images of La2O3 NPs ((A) 10,000× and (B) 20,000×), and XRD pattern (C). The black
curve represents the La2O3 NPs sample, and the red curve represents the standard.

3.2. General Condition and Weight Change of Rats

The rats in the control group had shiny fur, quick movement, a sensitive reaction,
and good drinking-water intake. The weight of the rats is shown in Figure 2. In the high-
dose group, the hair was dry, yellow, and dull, and there was a depilation phenomenon.
Autonomous activities were generally reduced, the reaction was slow, and the food intake
and water intake were reduced.
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The body weight of the high-dose group was significantly higher than that of the
control group and the low-dose and medium-dose groups (p < 0.05).

3.3. Results of Lung Coefficient

Figure 3 showed that lung coefficients of rats in the medium-dose and high-dose
groups were significantly higher than those in the control group (p < 0.05).
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3.4. Results of Determination of Lanthanum Content in Lungs

As shown in Figure 4, compared with the control group, the content of lanthanum
in the lung tissue of rats in medium- and high-dose groups increased significantly, and
the content of lanthanum in the high-dose group was significantly higher than that in the
medium-dose group and control group (p < 0.05).
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3.5. Determination Results of SOD, GSH-Px Activities and MDA Content in Lung

From Figure 5, it can be seen that the activities of SOD and GSH-Px in the lungs of
the groups with low-, medium-, and high-dose La2O3 NPs exposure were significantly
different from those in the control group (p < 0.05). With the increase of exposure dose,
the activities of SOD and GSH-Px decreased, the medium-dose group was significantly
lower than the low-dose group, and the high-dose group was significantly lower than the
medium- and low-dose groups.
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Figure 5. Effects of La2O3 NPs on SOD, GSH-Px activity, and MDA content in lung tissue of rats in
each group. (A) SOD level. (B) GSH-Px level. (C) MDA activity. Note: •, compared with the control
group, p < 0.05; N, compared with the low group, p < 0.05; �, compared with the medium group,
p < 0.05.

Compared with the control group, the content of MDA in the lung of the low-, medium-
, and high-dose La2O3 NPs was significantly different (p < 0.05). With the increase of
exposure dose, the content of MDA increased, the medium-dose group was significantly
higher than the low-dose group, and the high-dose group was significantly higher than the
medium- and low-dose groups.

3.6. Results of Parkin and PINK1 mRNA Expression Levels in Lung

As shown in Figure 6, the qRT-PCR results showed that PINK1 and Parkin mRNA
expression levels increased significantly in the high-dose group relative to the control group
(p < 0.05).
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3.7. Results of Parkin and PINK1 Protein Expression Levels in Lung

The Western blotting results are shown in Figure 7. Compared with the control group,
the expression levels of total PINK1 and Parkin protein in mitochondria in the high-dose
group were significantly higher (p < 0.05).
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3.8. Results of Immunohistochemical

Immunohistochemical staining was employed for characterizing Bax and Bcl-2 on rat
lung tissue (Figure 8A,B). Bax-positive cells in the medium- and high-dose groups were
significantly increased, and Bcl-2-positive cells in each treatment group were decreased.

3.9. Pathological Examination Results of Lung

The pathomorphological changes of rat lung tissue induced by La2O3 NPs were shown
in Figure 9. The control group had normal lung tissue structure, no obvious congestion and
edema in alveolar septum, no obvious inflammatory cells in alveolar septum, and uniform
thickness of alveolar septum. In the low-dose group, the alveolar size, alveolar septum
thickening, and fibroblasts began to increase; in the medium-dose group, inflammatory
cell infiltration, alveolar size, alveolar fusion, and fibrous tissue increased; and in the
high-dose group, the degree of pulmonary fibrosis was aggravated, and some alveolar
cavities disappeared, which was occupied by a large number of collagen fibers, fibroblasts,
and lymphocytes.



Nanomaterials 2022, 12, 2594 8 of 14

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 8. Expressions of Bax (A) and Bcl-2 (B) in rat lung were detected by immunohistochemical 
staining. These images were taken at 400× magnification for the control group (a), low-dose group 
(b), medium-dose group, (c) and high-dose group (d). Arrows indicated the positive cells. 

3.9. Pathological Examination Results of Lung 
The pathomorphological changes of rat lung tissue induced by La2O3 NPs were 

shown in Figure 9. The control group had normal lung tissue structure, no obvious con-
gestion and edema in alveolar septum, no obvious inflammatory cells in alveolar septum, 
and uniform thickness of alveolar septum. In the low-dose group, the alveolar size, alve-
olar septum thickening, and fibroblasts began to increase; in the medium-dose group, in-
flammatory cell infiltration, alveolar size, alveolar fusion, and fibrous tissue increased; 
and in the high-dose group, the degree of pulmonary fibrosis was aggravated, and some 

Figure 8. Expressions of Bax (A) and Bcl-2 (B) in rat lung were detected by immunohistochemical
staining. These images were taken at 400× magnification for the control group (a), low-dose group
(b), medium-dose group, (c) and high-dose group (d). Arrows indicated the positive cells.



Nanomaterials 2022, 12, 2594 9 of 14

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 14 
 

 

alveolar cavities disappeared, which was occupied by a large number of collagen fibers, 
fibroblasts, and lymphocytes. 

 
Figure 9. Effect of La2O3 NPs on pathological morphology of lung tissue in rats. These images were 
taken at 100× magnification for the control group (A), low-dose group (B), medium-dose group, (C) 
and high-dose group (D). By contrast, the alveolar septum in the control group was thickened (right 
arrows in (B)), and alveolar fusion occurred in the medium-dose group (left arrows in (C)). The 
alveolar cavity in the high-dose group was filled with collagen fibers, fibroblasts, and lymphocytes 
(up arrows in (D)). 

4. Discussion 
Nano rare earth materials have a unique surface effect, small size effect, quantum 

size effect, and macro quantum tunnel effect, which give them good properties and make 
them more and more widely used; however, their use brings many biosafety problems. 
La2O3 NPs can deposit in the trachea and lung tissue through the respiratory tract, and 
they can also penetrate the cell membrane, causing inflammatory lesions and apoptosis, 
and eventually leading to lung injury [17–24]. The lung is an important respiratory organ. 
The research on mitochondrial autophagy in lung injury caused by La2O3 NPs has not 
been reported. Therefore, this study established a rat model of subchronic exposure to 
La2O3 NPs through the respiratory tract, detected the indicators of oxidative damage in 
the lung by biochemical methods, and detected the gene transcription and protein expres-
sion level of PINK1/parkin by molecular biological methods, so as to explore the effect of 
La2O3 NPs exposure on the lung and provide new clues and a theoretical basis for clarify-
ing the toxic mechanism of La2O3 NPs on the lung. 

As a simple and objective quantitative index, body weight can reflect the comprehen-
sive changes of rat health. Feng et al., found that the body weight of offspring in the high-
dose LaCl3 group was significantly lower than that in the control group, from pregnancy 
to 5 months of life [25]. The results of this study show that the body weight of rats in the 
high-dose group is significantly lower than that in the control group (p < 0.05), which may 
be due to the effect of La2O3 NPs’ exposure on appetite and digestive function, resulting 
in loss of appetite and weight loss. 

Figure 9. Effect of La2O3 NPs on pathological morphology of lung tissue in rats. These images were
taken at 100× magnification for the control group (A), low-dose group (B), medium-dose group,
(C) and high-dose group (D). By contrast, the alveolar septum in the control group was thickened
(right arrows in (B)), and alveolar fusion occurred in the medium-dose group (left arrows in (C)). The
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4. Discussion

Nano rare earth materials have a unique surface effect, small size effect, quantum
size effect, and macro quantum tunnel effect, which give them good properties and make
them more and more widely used; however, their use brings many biosafety problems.
La2O3 NPs can deposit in the trachea and lung tissue through the respiratory tract, and
they can also penetrate the cell membrane, causing inflammatory lesions and apoptosis,
and eventually leading to lung injury [17–24]. The lung is an important respiratory organ.
The research on mitochondrial autophagy in lung injury caused by La2O3 NPs has not been
reported. Therefore, this study established a rat model of subchronic exposure to La2O3
NPs through the respiratory tract, detected the indicators of oxidative damage in the lung
by biochemical methods, and detected the gene transcription and protein expression level
of PINK1/parkin by molecular biological methods, so as to explore the effect of La2O3 NPs
exposure on the lung and provide new clues and a theoretical basis for clarifying the toxic
mechanism of La2O3 NPs on the lung.

As a simple and objective quantitative index, body weight can reflect the compre-
hensive changes of rat health. Feng et al., found that the body weight of offspring in
the high-dose LaCl3 group was significantly lower than that in the control group, from
pregnancy to 5 months of life [25]. The results of this study show that the body weight of
rats in the high-dose group is significantly lower than that in the control group (p < 0.05),
which may be due to the effect of La2O3 NPs’ exposure on appetite and digestive function,
resulting in loss of appetite and weight loss.

In general, the ratio of each organ to body weight is relatively constant. When animals
are poisoned, the quality of damaged organs will change, and the organ index will also
change. In toxicology, the decline of the organ index means that the organ is atrophic
and degenerative; the increase of the organ index may be the hyperemia, edema, and
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hypertrophic changes of the organ [26]. Sun et al., discussed the chronic pulmonary toxicity
caused by continuous intratracheal gavage of TiO2 NPs in mice for 90 days. The results
showed that TiO2 NPs accumulated significantly in the lung, resulting in a significant
increase in lung coefficient, inflammation, and pulmonary hemorrhage [27]. Hong et al.,
found that a large number of lanthanum compounds (LNs) accumulated in the lung,
resulting in a significant increase in lung coefficient [28]. The results of this study showed
that the lung coefficient of rats in each exposure group was significantly higher than that
in the control group (p < 0.05), and this may be due to congestion and edema in the lung
caused by La2O3 NPs exposure, which corresponds to the pathological results.

Oxidative stress is one of the important mechanisms of body damage caused by
nanoparticles. It refers to the excessive production of highly active molecules such as
reactive oxygen species (ROS) in the body when the body is subjected to various harmful
stimuli that exceed the scavenging capacity of the body, resulting in the imbalance of
oxidation system and antioxidant system, which can lead to tissue damage. The antioxidant
system in the organism can effectively remove various endogenous and exogenous free
radicals, so as to protect the body. It includes antioxidant enzymes (SOD, CAT, GSH Px,
etc.) and antioxidants (GSH, vitamin C, carotene, etc.).

Sod is an important antioxidant enzyme in organisms. It can disproportionate su-
peroxide anion free radicals in tissues and cells to produce hydrogen peroxide, so as to
reduce the damage of oxygen free radicals to cells. When the enzyme activity is low, it
will cause the accumulation of superoxide anions and generate harmful products such as
hydroxyl radicals through other reactions, resulting in lipid peroxidation [29,30]. GSH-Px
is an important peroxidase that widely exists in the human body. It can specifically pro-
mote peroxide reduction reaction, reduce and block the damage of lipid peroxide, and
protect the structural and functional integrity of cell membrane. The activity of SOD and
GSH-Px indirectly reflects the ability of the body to scavenge free radicals. MDA is a
lipid peroxide formed by reactive oxygen species attacking polyunsaturated fatty acid
molecules in biofilm. The higher the content of MDA in the body, the higher the degree
of lipid peroxidation. Its content can reflect the degree of oxidative stress injury [31–33].
Tian et al., found that lanthanum could accumulate in the liver nuclei and mitochondria of
mice, and the content of lanthanum in liver nuclei and mitochondria increased with the
increase of exposure dose. At the same time, it was found that lanthanum reduced the activ-
ities of various antioxidant enzymes (SOD, CAT, and GPX) in mouse liver nuclei, resulting
in oxidative damage of liver nuclei [34]. Li et al., found that lead sulfide nanoparticles can
cause SOD activity in rat lung significantly lower than that in the control group, while MDA
content significantly increased [35]. Huang et al., studied the potential oxidative damage
of lanthanum (LA), cerium (Ce), and neodymium (Nd) on liver nuclei and mitochondria
and found that the activities of SOD and CAT decreased in liver nuclei, while the activities
of GSH-Px and MDA increased. The activities of SOD, CAT, and GSH-Px in hepatocyte
mitochondria decreased significantly, and the level of MDA increased significantly [36].
This study found that the activities of SOD and GSH-Px in the lung of rats exposed to
La2O3 NPs were significantly lower than those in the control group (p < 0.05). The content
of MDA in the group exposed to La2O3 NPs was significantly higher than that in the control
group (p < 0.05). This may be because the accumulation of La2O3 NPs induces the body
to produce a large amount of ROS, resulting in the imbalance of the body’s oxidation and
antioxidant system, thus inhibiting the activity of antioxidant enzymes, placing the cells in
a state of oxidative stress, and then leading to cell oxidative damage.

When the body is in the state of oxidative stress, excessive ROS accumulated in cells
activates mitochondrial autophagy. The PINK1/parkin pathway is the most classical path-
way regulating mitochondrial autophagy. PINK1 is a serine/threonine kinase. When
mitochondria are damaged by oxidative stress, the mitochondrial transmembrane potential
is destroyed, resulting in the blocking of PINK1 translocation and degradation, which
makes PINK1 accumulate on the surface of mitochondrial outer membrane and recruit
Parkin to damaged mitochondria, so as to start mitochondrial autophagy by mediating
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the activation of Parkin and ubiquitin phosphorylation [37–39]. Parkin is a protein with
E3 ubiquitin–protein ligase activity, which mainly mediates substrate ubiquitination and
regulates protein degradation and signal transduction. When mitochondria are damaged,
E3 ubiquitin ligase activity is activated. After mitochondrial injury, it causes PINK1 accu-
mulation on the outer mitochondrial membrane, mediates the phosphorylation of Parkin
and ubiquitin, makes mitochondrial ubiquitin through the positive feedback process, and
recruits autophagy receptors to the outer mitochondrial membrane to further form au-
tophagosomes. Autophagosome membrane proteins can specifically recognize and recruit
these ubiquitinated proteins into autophagosomes to form complexes with autophagy-
related proteins, thus guiding the separation membrane to recognize and encapsulate
damaged mitochondria and start mitochondrial autophagy [40–45]. Wei et al., found that
PINK1/parkin-mediated mitochondrial autophagy was involved in the BV-2 cytotoxicity
induced by zinc oxide nanoparticles (ZnO NPs) and established the BV-2 cell model with
PINK1 gene knockdown. The study found that ZnO NPs could induce the transport of
Parkin from cytoplasm to mitochondria, and the deletion of the PINK1 gene inhibited the re-
cruitment of Parkin to mitochondria, resulting in the failure of cells to trigger mitochondrial
autophagy [46]. Wang et al., found that ZnO NPs increased the level of intracellular reactive
oxygen species and decreased the mitochondrial membrane potential in a time-dependent
manner, which can activate the PINK1/Parkin mediated mitochondrial autophagy process
of CAL27 cells [16]. This study found that La2O3 NPs could significantly increase the gene
transcription and protein expression levels of PINK1 and Parkin (p < 0.05). The possi-
ble reason is that La2O3 NPs exposure can induce the increase of intracellular ROS level,
change the mitochondrial membrane potential, stabilize PINK1 kinase on the mitochondrial
outer membrane, recruit and activate Parkin, and trigger mitochondrial autophagy. In the
process of mitochondrial autophagy, with the rupture of mitochondrial outer membrane,
cytochrome C is released rapidly and induces apoptosis.

The whole process of apoptosis is regulated by the expression of a variety of gene
proteins. Bcl-2 family is the key regulator of apoptosis. It is divided into two regulatory
proteins, including anti-apoptotic proteins (such as Bcl-2, Bcl-xl, MCL-1, etc.) and pro-
apoptotic proteins (such as Bax, Bad, Bcl-xl, Bik, Bid, etc.). Bax inhibits the effect of Bcl-2
and induces apoptosis by forming heterodimer with Bcl-2 [47,48]. It was found that the
expression of Bcl-2 decreased in the process of apoptosis [49,50]. Wu et al., found that
lanthanum chloride (LaCl3) exposure triggered the mitochondrial apoptosis pathway of
cortical neurons, upregulated the pro-apoptotic Bax, downregulated the expression of anti-
apoptotic Bcl-2, changed the ratio of Bax/Bcl-2, and finally led to neuronal mitochondrial
apoptosis [51]. Yang et al., found that LaCl3 treatment increased the ratio of pro-apoptotic
Bax and anti-apoptotic Bcl-2 proteins, thus breaking the balance between pro-apoptotic and
anti-apoptotic Bcl-2 family proteins, promoting the mitochondrial apoptosis pathway, and
leading to astrocyte apoptosis [52]. This study found that La2O3 NPs could significantly
increase the expression level of Bax protein in the high-dose group (p < 0.05), and the
expression level of Bcl-2 protein in the high-dose group was significantly lower than that
in the control group. At the same time, the ratio of Bcl-2/Bax in the lung in the group
exposed to La2O3 NPs was significantly lower than that in the control group. This shows
that exposure to La2O3 NPs can cause apoptosis and lead to obvious pathological damage
to the lung.

In conclusion, La2O3 NPs can enter the body through the respiratory tract, accumulate
in the lungs, induce the production of a large number of ROS in the lungs, activate the
PINK1/parkin-mediated mitochondrial autophagy pathway, promote the occurrence of
apoptosis, and finally lead to obvious pathomorphological changes in lung tissue. Due
to the complexity of the respiratory system, more research is needed to clarify the exact
mechanism of lung tissue injury; moreover, more extensive and in-depth research needs to
be conducted on the health hazards and related mechanisms of La2O3 NPs and lungs.
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