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Simple Summary: Bladder cancer ranks fourth among the most prevalent cancers in men and is the
most expensive cancer to treat on a per-patient basis. The muscle-invasive form of bladder cancer is
one of the deadliest cancers, with a 5-year survival rate of only 6% in patients with distant metastasis.
Effective therapeutic options remain few and far between. SNHG1 is a long non-coding RNA that
is over-expressed in 95% of muscle-invasive bladder cancers. However, very little information is
available about the role and mechanisms of SNHG1 in bladder tumor formation and progression.
Here, we provide experimental evidence establishing that SNHG1 drives bladder cancer cell invasion
and stem-cell-like behaviors through a specific signaling pathway. Our results reveal novel biomark-
ers predictive of the progression of muscle-invasive bladder cancer and potential new targets for
therapeutic intervention.

Abstract: The stem-cell-like behavior of cancer cells plays a central role in tumor heterogeneity and
invasion and correlates closely with drug resistance and unfavorable clinical outcomes. However, the
molecular underpinnings of cancer cell stemness remain incompletely defined. Here, we show that
SNHG1, a long non-coding RNA that is over-expressed in ~95% of human muscle-invasive bladder
cancers (MIBCs), induces stem-cell-like sphere formation and the invasion of cultured bladder cancer
cells by upregulating Rho GTPase, Rac1. We further show that SNHG1 binds to DNA methylation
transferase 3A protein (DNMT3A), and tethers DNMT3A to the promoter of miR-129-2, thus hyper-
methylating and repressing miR-129-2-5p transcription. The reduced binding of miR-129-2 to the
3′-UTR of Rac1 mRNA leads to the stabilization of Rac1 mRNA and increased levels of Rac1 protein,
which then stimulates MIBC cell sphere formation and invasion. Analysis of the Human Protein
Atlas shows that a high expression of Rac1 is strongly associated with poor survival in patients with
MIBC. Our data strongly suggest that the SNHG1/DNMT3A/miR-129-2-5p/Rac1 effector pathway
drives stem-cell-like and invasive behaviors in MIBC, a deadly form of bladder cancer. Targeting this
pathway, alone or in combination with platinum-based therapy, may reduce chemoresistance and
improve longer-term outcomes in MIBC patients.

Keywords: urothelial carcinoma; muscle-invasive; stemness; SNHG1; Rac1; DNMT3A

1. Introduction

The muscle-invasive form of bladder cancer accounts for ~30% of bladder cancers, but
it causes almost all bladder cancer deaths [1–4]. Despite radical cystectomy coupled with
pre- and/or post-operative chemotherapy, up to 50% of muscle-invasive bladder cancers
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(MIBCs) eventually progress to regional and distant metastasis, with 5-year survival rates
of 38% and 6%, respectively [1,5]. Although immune checkpoint blockade therapies have
shown significant promise in the treatment of metastatic bladder cancer, this approach bene-
fits only ~25% of patients [6]. Multi-omics studies have profiled thousands of human MIBC
specimens but have not delineated the driver events for bladder cancer metastasis [7–9].
This argues against the existence of a major barrier to the progression from bladder cancer
invasion to metastasis. Thus, controlling bladder cancer at the invasive stage remains the
key to reducing the number of deaths caused by this disease.

Mounting evidence suggests that stem-cell-like behavior (or stemness) plays a central
role in driving cancer cell invasion [10,11]. While concrete evidence is lacking about the true
identity of bladder cancer stem cells (CSCs), there are stem-cell-like behaviors displayed
by MIBC cells [12]. For instance, cell lines derived from human MIBC can undergo sphere
formation in serum-free and low-adherent culture conditions [13]. Further, human MIBC
can be serially transplanted in xenografts [14,15]. MIBC is highly heterogeneous, comprised
of cellular lineages as diverse as urothelial, squamous, and neuronal [8,16–18], presumably
due to divergent differentiation from common ancestral CSCs. Biologically aggressive
MIBC cells also tend to exhibit features of epithelial–mesenchymal transition (EMT) [19,20].
Furthermore, the great majority of MIBCs are either intrinsically resistant to platinum-based
chemotherapeutics or acquire drug resistance during the course of platinum therapy [21].
Taken together, the stemness of bladder cancer cells contributes in large measure to the
genesis and progression of MIBC. Clearly, elucidating the mechanisms underlying the
stemness and invasion of bladder cancer cells has the potential to open new avenues for
treatment strategies. Nevertheless, despite some recent attempts, this is an area where
significant knowledge gaps remain.

One topic that has attracted growing recent attention relates to the importance of long
non-coding RNA (lncRNA) in regulating cancer-cell-like behaviors, including stemness and
invasion [22,23]. Small nucleolar RNA host gene 1, or SNHG1, is an lncRNA that is over-
expressed in a broad range of cancer types [24]. SNHG1 is believed to exert oncogenic effects
by inhibiting tumor suppressors, such as Tp53, and by affecting the activities of certain
miRNA that regulate tumorigenic processes, such as cell proliferation, migration, apoptosis,
and EMT [25]. The over-expression of SNHG1 is considered a marker of progression for
non-small-cell lung [26], cervical [26], and pancreatic cancers [27]. However, very little is
known about whether SNHG1 participates in the stem-cell-like and invasive properties of
cancer cells and, if so, what signaling pathway conducts such effects.

We carried out the present study to determine the functional significance of the
preferential over-expression of SNHG1 in advanced human bladder cancers. We examined
how the enforced over-expression, and conversely the knockdown, of SNHG1 affected
bladder cancer cell sphere formation, migration, and invasion. We screened for, pinpointed,
and functionally validated specific signaling molecules and mechanisms of action of key
components of the SNHG1 effector pathway that stimulated bladder cancer cell stemness
and invasion. In addition, we studied the functional relationship between stemness,
migration, and invasion. By mining the existing human bladder cancer databases, we found
that the high levels of expression of several activators within our identified SNHG1 effector
pathway were strongly associated with poor patient survival; these activators may serve as
actionable targets during therapies to control bladder cancer invasion and metastasis.

2. Materials and Methods
2.1. Reagents, Antibodies, and Plasmids

The following reagents were obtained commercially: actinomycin D from Santa Cruz,
a dual luciferase assay kit from Promega, and TRIzol and the SuperScript™ First-Strand
Synthesis system from Invitrogen. Full-length human SNHG1 sequences were synthesized
and subcloned into pmR-ZsGreen1 (Takara Bio, Shiga, Japan). The DNMT3A knockout
plasmid and the miR-129-2 expression plasmid were obtained from Addgene. The 3′-
UTR of Rac1 mRNA was cloned into the p-MIR luciferase reporter vector. The primary
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antibodies against SOX2 (3579S), OCT4 (2840S), and CD133 (64326S) were purchased from
Cell Signaling; the antibodies against DNMT3A (sc-373905), DNMT1 (sc-271729), and Rac1
(sc-95) from Santa Cruz; the antibody against β-Actin (A5441) from Sigma-Aldrich; and the
antibody against DNMT3B (GTX129127) from Gentex.

2.2. Cell Lines, Culture, and Transfection

The human bladder cancer cell line T24T, a derivative of the T24 cell line, was a
kind gift from Dr. Dan Theodorescu of the Cedars-Sinai Cancer Center. UMUC3 was
purchased from ATCC. Both cell lines were cultured in DMEM: F-12 (1:1) with 5% FBS
(Atlanta Biologicals, Flowery Branch, GA, USA) [28,29]. The cell lines were authenticated
every 6 months by testing the STR loci and gender using the PowerPlex® 16 HS System
(Genetica DNA Laboratories, Cincinnati, OH, USA). Results were compared with data from
the ATCC STR Database. Cell transfection was performed using PolyJetTM DNA (SL10068)
In Vitro Transfection Reagent (SignaGen Laboratories, Frederick, MD, USA). For stable
transfection, cells were selected with various antibiotics based on the specific constructs
involved. The cells that survived the selection were pooled as mass stable transfectants.

2.3. Sphere Formation Assay

Cultured cells were plated into 6-well ultralow attachment plates (Corning, Corning,
NY, USA) at 1000 cells/well in 2 mL of DMEM/F-12 supplemented with 10% FBS. The
number of spheres was counted at day 7 after seeding, and the results were tabulated
relative to the control groups.

2.4. Cell Invasion Assay

Upon incubation with the Transwell (BD Falcon, Schaffhausen, Switzerland), the cells
on both interior sides of the chamber were fixed in 3.7% formalin for 2 min and 100%
methanol for 20 min and stained with Giemsa. The non-invading cells were scraped off
with a cotton swab, and the invaded cells were normalized to migrated cells. Cell migration
was assessed in Transwell without Matrigel. The images were captured under an Olympus
DP71, and the number of cells was calculated using NIH ImageJ software.

2.5. Luciferase Reporter Assay

The UCSC Genome Browser was used to search for the promoter region and 3′-UTR
in genes of interest. TargetScan was used to search for potential miRNA binding sites
in 3′-UTR of Rac1 mRNA. The promoter-driven and 3′-UTR-driven luciferase reporters
were then constructed and transfected together with the Renilla luciferase vector pRL-TK
(Promega, Madison, WI, USA) into cultured bladder cancer cells. The luciferase activity was
determined by using the dual-luciferase assay kit (Promega) together with a luminometer
(Lumat). The firefly luciferase signal was normalized to the Renilla luciferase signal to
control the variability in transfection efficiencies.

2.6. Immunoblotting Analysis

Cultured cells were lysed in a cell-lysis buffer (10 mm Tris-HCl (pH 7.4), 1% SDS,
1 mm Na3VO4, and a cocktail of proteinase inhibitors). The protein concentration was
determined using Nano Drop 2000 (Thermo Scientific, Waltham, MA, USA). The protein
extracts were subjected to Western blotting using the primary antibodies described above.
The antibody-reactive protein bands were visualized using an alkaline-phosphatase-linked
secondary antibody and an enhanced chemifluorescence system (Amersham Biosciences,
Amersham, UK). The relative abundance of the proteins was semi-quantified by scanning
the bands with the NIH ImageJ software and expressed as a ratio against the identically
quantified β-actin control. The results represented at least three independent experiments.
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2.7. Chromatin Immunoprecipitation (ChIP) Assay

MethPrimers were used to analyze CpG islands of the miR-129-2 promoter, which
served as potential binding sites for DNMT3A. The EZ-ChIP kit (Millipore Technologies)
was used to carry out the ChIP assay. Briefly, the T24T cells were treated with 1% formalde-
hyde for 10 min at room temperature. The cells were then pelleted, resuspended in lysis
buffer, and sonicated to generate 200–400 bp chromatin DNA fragments. After centrifu-
gation at 13,000× g at 4 ◦C for 10 min, the supernatants were incubated with a rabbit
anti-DNMT3A antibody or non-immune rabbit control IgG at 4 ◦C overnight. The immune
complex was captured with Protein-G-agarose-saturated beads with salmon sperm DNA
and then eluted with elution buffer. The reverse cross-linking of protein–DNA complexes
to free DNA was conducted by incubation at 65 ◦C overnight. The DNA was extracted and
subjected to real-time PCR analysis.

2.8. RNA Immunoprecipitation (RIP)

The cultured cells were lysed in a polysome lysis buffer containing 10 mM HEPES
pH 7.0, 100 mM KCl, 5 mM MgCl2, 25 mM EDTA, 0.5% IGEPAL, 2 mm DTT, 50 units/mL
RNase OUT, 50 units/mL Superase IN, 0.2 mg/mL heparin, and a complete proteinase
inhibitor. The lysates were centrifuged at 14,000× g for 10 min at 4 ◦C. The anti-DNMT3A
antibody and agarose beads A/G were added to the supernatants and incubated overnight
at 4 ◦C in a NET2 buffer containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM MgCl2,
0.05% IGEPAL, 50 units/mL Rnase OUT, 50 units/mL Superase IN, 1 mM dithiothreitol,
and 30 mM EDTA. The agarose beads were washed three times, resuspended in 100 µL of
NET2 and 100 µL of SDS-TE (20 mM Tris-HCl, pH 7.5, 2 mM EDTA, and 2% SDS), and then
incubated for 30 min at 55 ◦C. The RNAs were extracted by phenol-chloroform-isoamyl
alcohol, after which quantitative PCR was performed to detect SNHG1 present in the
immune complex.

2.9. Quantitative Real-Time PCR

Total RNAs were extracted with TRIzol (Invitrogen) and reverse-transcribed to cD-
NAs using the Thermo-Script RT-PCR system (Invitrogen). A pair of oligonucleotides
(forward: 5′-gatgatcttgaggctgttgtc-3′ and reverse: 5′-cagggctgcttttaactctg-3′) was used
to amplify human GAPDH cDNA as an internal control. The human SNHG1 cDNA
fragments were amplified using primer pairs: 5′-agcagacacagattaagaca-3′ (forward) and
5′-ggcaggtagattccagataa-3′ (reverse); the human Rac1 cDNA fragments were amplified
using primer pairs: 5′-atcaagtgtgtggtggtggg-3′ (forward) and 5′-ccagctgtatcccataagccca-
3′ (reverse). Total microRNAs were extracted using the miRNeasy Mini Kit (QIAGEN,
Germantown, MD, USA), reverse transcription was performed using the miScript II RT
Kit (QIAGEN), and quantitative PCR was performed using the miScript PCR Starter Kit
(QIAGEN). U6 was used as an endogenous normalizer. Cycle threshold (CT) values were
determined, and the relative expression of microRNAs was calculated using the values
of 2-∆∆Ct.

2.10. DNA Extraction, Bisulfite DNA Modification, and Methylation-Specific PCR

Genomic DNA was extracted using the Dneasy Blood & Tissue Kit (Qiagen). The
sodium bisulfite modification of DNA and the subsequent isolation of the sodium bisul-
fite conversion of unmethylated cytosine in DNA were performed using the EpiTect
Bisulfite kit (Qiagen). Optimized methylation-specific PCR was employed to amplify
bisulfite-treated genomic DNA [30]. The primers of miR-129-2 MSP were: M-Forward:
5′-TTTTAGTTCGTATTAATGAGTTGGC-3′; M-Reverse: 5′-CGAATCTCTAAACAAATAC
AATTCGA-3′; U-Forward: 5′-TTAGTTTGTATTAATGAGTTGGTGG-3′; U-Reverse: 5′-
AAATCTCTAAACAAATACAATTCAAA-3′.
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2.11. RNA Pull-Down

SNHG1 was in vitro transcribed and biotin-labeled using a biotin RNA labeling mix
(Roche, Basel, Switzerland). An antisense RNA sequence of SNHG1 was used as negative
control. Biotin-labeled products of SNHG1 and its antisense controls were treated with
RnasE–Free Dnase I (Roche, Basel, Switzerland) and purified with the Rneasy Mini Kit
(Qiagen). UMUC3 cell extracts were incubated with biotin-labeled products at 4 ◦C for 1 h,
followed by the addition of streptavidin agarose beads (Invitrogen, Waltham, MA, USA).
DNMT3A protein in each reaction was detected by Western blotting.

2.12. Statistical Analysis

Two-sided Student’s t-tests were used to determine significant differences between the
experimental groups and the control groups, and a p-value < 0.05 was considered significant.

3. Results
3.1. SNHG1 Over-Expression Induces the Stem-Cell-like and Invasive Behaviors of Cultured
Bladder Cancer Cells by Upregulating Rac1 Expression

To determine the functional significance of SNHG1, which is frequently over-expressed
in human MIBC specimens (Figure S1A), we stably transfected cultured T24T bladder
cancer cells with a SNHG1-bearing plasmid. Stable transfectants bearing the SNHG1
plasmid, i.e., T24T(SNHG1), expressed significantly higher levels of SNHG1 than stable
transfectants bearing the vector control, i.e., T24T(Vector) (Figure S1B). We next compared
these two transfectants for their ability to form stem-cell-like spheres and found that the
T24T(SNHG1) cells formed nearly six times more spheres than the T24T(Vector) cells
(Figure 1A,B). Additionally, while T24T(SNHG1) cells and T24T(Vector) cells showed little
difference in cell migration, the former exhibited over three-fold more invasion than the
latter (Figure 1C,D). To complement the over-expression experiments, we performed the
shRNA knockdown of SNHG1 in T24T cells (Figure 1E) and found that the two shRNAs
located in different regions of SNHG1 (Table S1) caused a significant reduction in cell
invasion without a significant change in cell migration (Figure 1F,G). Knocking down
SNHG1 also led to a marked reduction in stem-cell-like sphere formation in T24T cells
(Figure 1H,I).

To discern the molecular underpinnings of our observed changes in stemness and
invasion due to altered SNHG1 expression, we performed Western blotting using antibodies
against several proteins implicated in cancer cell stemness and invasion, including SOX2,
OCT4, CD133, and Rac1 [31–34]. Among these proteins, the upregulation of Rac1 (3–5-
fold induction) emerged as the most significant change in SNHG1-over-expressing cells
(Figure 2A), raising the possibility that Rac1 may act downstream of SNHG1 to promote
stemness and invasion. To explore this possibility, we knocked out Rac1 in T24T(SNHG1)
cells using the CRISPR/cas9 approach (Figure 2B). T24T(SNHG1) cells lacking Rac1 had
a marked decrease in sphere formation (Figure 2C,D) and invasion, without significant
changes in migration (Figure 2E,F), compared to T24T(SNHG1) cells transfected with a
vector harboring a scrambled gRNA. These effects were reproduced in an independent
human bladder cancer cell line, UMUC3 (Figure 2G–M). I enforced over-expression of
SNHG1 promoted invasion (Figure 2G–I) by upregulating Rac1 but not other known stem
cell signaling molecules (Figure 2J); in addition, downregulating Rac1 in SNHG1-over-
expressing cells inhibited cell invasion (Figure 2K–M). In addition, notably, in the TCGA
database of human MIBC, Rac1 mRNA is significantly over-expressed in MIBC specimens
compared to normal bladder controls (Figure S2), and in the Human Protein Atlas database,
the high-expression group of Rac1 mRNA is more strongly associated with poor survival
than the low-expression group of Rac1 (Figure S3). Taken together, these results strongly
suggest that SNHG1 over-expression triggers Rac1 protein over-expression, that Rac1
induces stem-like sphere formation and invasion, and that the upregulation of Rac1 by
SNHG1 promotes MIBC formation and poor prognosis.
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Figure 1. The over-expression of SNHG1 induced stem-cell-like sphere formation and invasion; 
conversely, the knockdown of SNHG1 inhibited sphere formation and invasion. (A–B) T24T cells 
stably transfected with a mock vector (T24T(Vector)) or SNHG1 (T24T(SNHG1)) were plated into 
ultra-low attachment plates. After 7 days of culture, representative images of sphere colonies were 
photographed (A), and the number of tumor spheres was counted and presented relative to 
T24T(Vector) cells (B). (C,D) The migration and invasion of T24T(Vector) and T24T(SNHG1) cells 
were both determined using a BD BiocoatTM MatrigelTM invasion chamber. Migration was de-
termined using the empty insert membrane without Matrigel, while invasion was evaluated using 
the same system except that Matrigel was applied (C). The invasiveness was normalized to the in-
sert control according to the manufacturer’s instructions (B). (E) T24T cells were stably transfected 
with a mock vector (T24T(Vector)) or two independent shRNAs of SNHG1, i.e., T24T(shSNHG1#1) 
or shSNHG1#2. The knockdown of SNHG1 is indicated with an asterisk (*) indicating significant 
decreases in comparison to T24T(Vector) cells (p < 0.01). (F,G) The stable transfectants were as-
sessed for their migration and invasion with the same methods as with SNHG1 over-expression. 
(H,I) T24T(Vector), T24T(shSNHG1#1), and T24T(shSNHG1#2) cells were plated into ultra-low at-
tachment plates. After 7 days of culture, representative images of sphere-forming colonies were 
captured under microscopy (H), and the number of spheres formed was counted and presented 
relative to T24T(Vector) cells (B). Bars in (A,H) are equal to 200 μM and equal to 100 μm in (C,F). 

Figure 1. The over-expression of SNHG1 induced stem-cell-like sphere formation and invasion; con-
versely, the knockdown of SNHG1 inhibited sphere formation and invasion. (A,B) T24T cells stably
transfected with a mock vector (T24T(Vector)) or SNHG1 (T24T(SNHG1)) were plated into ultra-low at-
tachment plates. After 7 days of culture, representative images of sphere colonies were photographed
(A), and the number of tumor spheres was counted and presented relative to T24T(Vector) cells (B).
(C,D) The migration and invasion of T24T(Vector) and T24T(SNHG1) cells were both determined
using a BD BiocoatTM MatrigelTM invasion chamber. Migration was determined using the empty
insert membrane without Matrigel, while invasion was evaluated using the same system except that
Matrigel was applied (C). The invasiveness was normalized to the insert control according to the man-
ufacturer’s instructions (B). (E) T24T cells were stably transfected with a mock vector (T24T(Vector))
or two independent shRNAs of SNHG1, i.e., T24T(shSNHG1#1) or shSNHG1#2. The knockdown of
SNHG1 is indicated with an asterisk (*) indicating significant decreases in comparison to T24T(Vector)
cells (p < 0.01). (F,G) The stable transfectants were assessed for their migration and invasion with
the same methods as with SNHG1 over-expression. (H,I) T24T(Vector), T24T(shSNHG1#1), and
T24T(shSNHG1#2) cells were plated into ultra-low attachment plates. After 7 days of culture, repre-
sentative images of sphere-forming colonies were captured under microscopy (H), and the number
of spheres formed was counted and presented relative to T24T(Vector) cells (B). Bars in (A,H) are
equal to 200 µM and equal to 100 µm in (C,F).
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Figure 2. SNHG1-induced stem-cell-like and invasive behaviors were mediated by the upregula-
tion of Rac1 in both T24T and UMUC3 cells. (A, Left panel) Total protein extracts from cultured
T24T(Vector) and T24T(SNHG1) cells were subjected to Western blotting using antibodies against
SOX2, OCT4, CD133, and Rac1. β-Actin served as a loading control. (A, Right panel) Relative
protein levels determined by densitometry and expressed as ratios versus β-Actin. The uncropped
blots and molecular weight markers of this figure and all other figures in this paper are shown in
a Supplementary File S1 named “uncropped gel images”. (B, Left panel) CRISPR/Cas9-Rac1 or its
scramble vector was stably transfected into T24T(SNHG1) cells, and the transfectants were assessed
by Western blotting for Rac1 expression. β-Actin was used as a protein loading control. (B, Right
panel) Relative protein levels determined by densitometry and expressed as ratios versus β-Actin.
(C,D) The indicated cells were subjected to a stem-cell-like sphere formation assay. Representative
images were photographed (C), and the number of spheres was counted and presented relative to
T24T(SNHG1/Vector) cells (D). (E,F) T24T(SNHG1) cells and T24T(SNHG1/KO-Rac1) cells were
subjected to transwell migration/invasion assays (E), and the extent of migration and invasion was
calculated and presented in terms of relative motility to the T24T(SNHG1) control (F). The results
are presented as means ± SD from triplicate experiments, and an asterisk (*) indicates a significant
decrease in comparison to T24T(SNHG1) cells (p < 0.01). (G) SNHG1 over-expression was verified in
UMUC3(SNHG1) in comparison to UMUC3(Vector) cells, with significant increases marked with an
asterisk (*) (p < 0.01). (H,I) Invasion of UMUC3(Vector) and UMUC3(SNHG1) cells was determined
using a BD BiocoatTM MatrigelTM invasion chamber. (J, Left panel) The protein extracts from
the indicated cells were subjected to Western blotting to determine the expression of SOX2, OCT4,
CD133, and Rac1. β-Actin was used as a protein loading control. (J, Right panel) Relative protein levels
determined by densitometry and expressed as ratios versus β-Actin. (K, Left panel) CRISPR/Cas9-Rac1
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and its scramble vector were stably transfected into UMUC3(SNHG1) cells, and the transfectants were
identified by Western blotting. (K, Right panel) Relative protein levels determined by densitometry
and expressed as ratios versus β-Actin. (L,M) UMUC3(SNHG1) cells and UMUC3(SNHG1/KO-
RAC1) cells were subjected to a transwell migration/invasion assay; the invasion rate between the
cells was calculated as above. The results are presented as mean ± SD from triplicate experiments,
and asterisks (*) indicate a significant decrease in comparison to UMUC3(SNHG1) cells (p < 0.01).
Bars in (C) are equal to 200 µM and equal to 100 µm in (E,H,L).

3.2. SNHG1 Stabilizes Rac1 mRNA by Suppressing miR-129-2-5p Transcription

To ascertain the molecular basis by which SNHG1 upregulates Rac1, we first assessed
the levels of Rac1 mRNA in the T24T(SNHG1) cells versus the T24T(Vector) cells. Rac1
mRNA was markedly upregulated in T24T(SNHG1) cells compared to T24(vector) cells
(Figure 3A). To distinguish whether the upregulation of Rac1 mRNA by SNHG1 was
due to mRNA over-expression or increased stability, we assessed Rac1 mRNA stability
in the presence of actinomycin D (or Act-D) to prevent de novo mRNA synthesis. Rac1
mRNA was much more stable in the T24T(SNHG1) cells than in the T24T(Vector) cells
(Figure 3B). Given the fact that the 3′-UTR of mRNA affects mRNA stability [35], we tested
this possibility and found that SNHG1 significantly promoted Rac1 mRNA 3′-UTR activity
(Figure 3C). Since microRNAs act as the key regulators in mRNA stability by binding to the
3′-UTR of target genes to affect mRNA stability [36], we used TargetScan to search for the
potential miRNA binding sites within the 3′-UTR of Rac1 mRNA and their corresponding
miRNAs (Table S1). Based on this survey, we performed real-time PCR to quantify the
relative expression levels of the candidate miRNAs in T24T(Vector) and T24T(SNHG1)
cells. We found that miR-129-5p, but not any other of this set of miRNAs, was specifically
downregulated in SNHG1-over-expressing T24T cells (Figure 3D). Consistent with this
observation, we found that the over-expression of SNHG1 also inhibited miR-129, and
the knockdown of SNHG1 increased miR-129 in UMUC3 cells (Figure S5). Based on these
results, we anticipated that miR-129-5p might be involved in the SNHG1 regulation of
the 3′-UTR activity of Rac1 mRNA. To test this, we stably over-expressed miR-129-2, the
key precursor of miR-129-5p in T24T(SNHG1) cells and UMUC3(SNHG1) (Figure 3E and
Figure S4B). The over-expression of miR-129-2 completely blocked the SNHG1-mediated
induction of Rac1 protein and mRNA (Figure 3F,G and Figure S4C). Additionally, miR-129-2
over-expression markedly decreased 3′-UTR activity (Figure 3H) and the stability of Rac1
mRNA (Figure 3I). Furthermore, miR-129-2 over-expression blocked the SNHG1-mediated
stem-cell-like sphere formation and invasion of MIBC cells (Figure 3J–M and Figure S3D,E).
Finally, the knockdown of SNHG1 markedly reduced Rac1 expression, which closely
correlated with miR-129-5p over-expression (Figure S4A,B). Altogether, we clearly show
that SNHG1 over-expression inhibits miR-129-5p expression, thereby reducing the ability
of the latter to bind to the 3′-UTR Rac1 mRNA and increasing the stability of Rac1 mRNA
and promoting bladder cancer cell stemness and invasion.

3.3. SNHG1 Binds DNMT3A, and the Binding Tethers DNMT3A to the miR-129-2 Promoter,
Hyper-Methylates It, and Suppresses Its Transcription

We next sought to further investigate the mechanism(s) by which SNHG1 inhibits
miR-129-5p transcription. We found that the over-expression of SNHG1 did not signifi-
cantly affect the stability of miR-129-5p (Figure 4A). To examine whether SNHG1 regulated
miR-129-5p at the transcriptional level, we studied the effects of SNHG1 on the expression
of pre-miR-129-2. As shown in Figure 4B, as with the mature miR-129-2, the levels of
pre-miR-129-2 were significantly diminished in SNHG1-over-expressing cells. Because
the promoter region of miR-129-2 can be persistently hyper-methylated, leading to tran-
scriptional inhibition in other cancer types [37], we tested whether the regulatory effects
of SNHG1 on miR-129-2 could be mediated by a differentially methylated region (DMR)
within the miR-129-2 promoter in MIBC cells. Upon the over-expression of SNHG1, the
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methylated DNA (M) increased, whereas the unmethylated DNA (U) decreased in the
promoter region of miR-129-2 (Figure 4C), suggesting that SNHG1 inhibits miR-129-2
transcription via the epigenetic methylation of the miR-129-2 promoter. Since DNA methyl-
transferases (DNMTs) are major regulators in this process [38], we explored whether they
were involved in hyper-methylating miR-129-2. As shown in Figures 4D and 5A, the
over-expression of SNHG1 did not affect the expression of DNMT proteins per se. Instead,
our RNA immunoprecipitation assays showed that the SNHG1 transcript could be specifi-
cally precipitated by anti-DNMT3A antibody from T24T(SNHG1) cells (Figure 4E). RNA
pull-down assays extended this observation, demonstrating that SNHG1 could directly
bind to DNMT3A (Figure 5B). To further verify this finding, we carried out ChIP assays
and found that the promoter region of miR-129-2 was specifically present in the immuno-
precipitated complex pulled down by anti-DNMT3A antibody (Figure 4F). Moreover, the
over-expression of SNHG1 enhanced the interaction between DNMT3A and the miR-129-2
promoter (Figure 4F; the right two columns). To functionally link DNMT3A with the
SNHG1-mediated regulation of miR-129-2 and Rac1, we stably knocked out DNMT3A
using CRISPR/Cas9 in T24T(SNHG1) cells (Figure 4G). This significantly inhibited Rac1
protein expression and induced miR-129-2 expression (Figure 4G,H). These effects were
entirely reproducible in UMUC3 cells (Figure 5C,D). DNMT3A knockout also inhibited
stem-like sphere formation and the invasive properties induced by SNHG1 over-expression
(Figure 4I–L and Figure 5E,F). Taken together, these results demonstrate that SNHG1 over-
expression enhanced its interaction with DNMT3A and promoted the binding of DNMT3A
to the miR-129-2 promoter, resulting in the hyper-methylation of the miR-129-2 promoter
and its transcriptional inhibition.

3.4. Sphered T24T Cells Are More Invasive than Non-Sphered Counterparts

Having demonstrated the effects of the SNHG1/DNMT3A/miR-129-2-5p/Rac1 ef-
fector pathway on promoting bladder cancer cell stemness and invasion, we investigated
more directly the functional relationship between stemness and invasion. Toward this end,
we isolated sphere-forming cells from parental T24T cells and assessed their invasive ability.
As shown in Figure 6A,B, T24T cells that formed spheres exhibited much higher levels of in-
vasion than the parental T24T cells. In contrast, the ability to migrate did not differ between
these two types of cells. In line with the different extents of invasion, the expression levels
of Rac1 protein and SNHG1 were considerably higher in the sphere-forming T24T cells than
in the parental T24T cells (Figure 6C,D). Conversely, miR-129-5p levels were significantly
lower in the sphere-forming T24T cells than in the parental T24T cells (Figure 6E). These
results demonstrate that SNHG1-driven stem-cell-like behavior is functionally linked to
the invasive property of bladder cancer cells (Figure 6F).
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Figure 3. SNHG1 over-expression promoted the stability of Rac1 mRNA by inhibiting miR-129-2-5p
induction in BC cells. (A) The Rac1 mRNA levels were quantified in T24T(Vector) and T24T(SNHG1)
cells by real-time PCR with GAPDH as an internal control. (B) The T24T(Vector) and T24T(SNHG1)
cells were seeded into 6-well plates; after synchronization, the cells were treated with Act-D for 0,
10, and 20h. Total RNA was then isolated and subjected to the real-time PCR quantification of Rac1
mRNA with GAPDH as an internal control. (C) The Rac1 mRNA 3′-UTR luciferase reporter was
transiently transfected into the indicated cells, and the luciferase activity of each transfectant was
assayed and normalized using pRL-TK as an internal control and presented relative to the vector
transfectant. (D) Quantitative real-time PCR was carried out to determine the expression levels of key
miRNAs in the indicated cells. (E) Stable transfection of miR-129-2 plasmids into T24T(SNHG1) cells,
followed by the detection of miR-129-5p by real-time PCR. (F, Top panel) Protein lysates extracted
from the indicated cells were subjected to Western blotting to assess Rac1 expression. β-Actin served
as a loading control. (F, Bottom panel) Relative protein levels determined by densitometry and
expressed as ratios versus β-Actin. (G) Quantitative real-time PCR was carried out to determine
the expression of Rac1 mRNA in the indicated cells. (H) Wild-type Rac1 3′-UTR mRNA luciferase
reporters were transiently co-transfected with pRL-TK into the indicated cells. The luciferase activity
of each transfectant was evaluated, and the results are presented relative to Rac1 3′-UTR activity.
(I) T24T(SNHG1) and T24T(SNHG1/miR-129-2) cells were incubated with Act-D for 0, 10, and 20h.
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Total RNA was isolated, and quantitative real-time PCR was then performed to determine Rac1
mRNA levels. The results are presented as means ± SD from triplicate experiments, and asterisks (*)
indicate a significant difference in comparison to T24T(SNHG1) cells (p < 0.01). (J,K) T24T(SNHG1)
and T24T(SNHG1/miR-129-2) cells were seeded into ultra-low attachment plates to determine sphere
formation. Seven days later, the representative images of spheres were captured under microscopy
(J), and the number of spheres was counted and presented relative to T24T(SNHG1) cells (K). (L,M)
T24T(SNHG1) cells and T24T(SNHG1/miR-129-2) cells were subjected to a transwell invasion assay
(L), and migration and invasion were calculated and presented relative to the T24T(SNHG1) control.
The results are presented as means ± SD from triplicate experiments, and asterisks (*) indicate a
significant decrease in comparison to T24T(SNHG1) cells (p < 0.01) (M). Bars in (J) are equal to 200
µM and equal to 100 µm in (L).
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Figure 4. SNHG1 bound to DNMT3A protein and promoted the interaction of DNMT3A with
the miR-129-2 promoter, thereby hyper-methylating and inhibiting the transcription of miR-129-2.
(A) T24T(Vector) and T24T(SNHG1) cells were incubated with Act-D for 0, 10, and 20h. Total RNA
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was isolated and then subjected to quantitative real-time PCR to determine miR-129-5p levels.
(B) Quantitative real-time PCR was carried out to determine the expression of pre-miR-129-2 in the
indicated cells. (C) The methylation status of the miR-129-2 promoter in the differentially methylated
region (DMR) was determined using a methylation-specific PCR (MS-PCR) assay. Two primer sets
were used to evaluate the methylated (M) and unmethylated (U) copies of the miR-129-2 DMR
gene. Methylated DNA was used as the positive control (P), while unmethylated DNA was used
as the negative control (N). PCR products represented the methylated state and unmethylated
allele. (D, Left panel) Total protein extracts from the indicated cells were extracted and subjected to
Western blotting for DNMT1, DNMT3A, and DNMT3B, with β-Actin as a loading control. (D, Right
panel) Relative protein levels determined by densitometry and expressed as ratios versus β-Actin.
(E) RNA-IP was carried out to examine the specific interaction of SNHG1 with DNMT3A. GAPDH
was employed as a negative control. (F) ChIP assays were performed to determine DNMT3A
binding to the miR-129-2 promoter in T24T(Vector) and T24T(SNHG1) cells (see Materials and
Methods for details). (G,H) CRISPR/Cas9 specifically targeting DNMT3A was stably transfected into
T24T(SNHG1) cells. The cell lysates were subjected to Western blotting to determine DNMT3A and
Rac1 protein expression (G), and the isolated RNAs were subjected to quantitative real-time PCR to
evaluate miR-129-5p levels (H). (I,J) The indicated cells were subjected to a stem-like sphere formation
assay. Representative images of formed spheres were captured under microscopy (I), and the number
of spheres f was counted and presented as sphere formation relative to T24T(SNHG1/Vector) cells
(J). (K,L) T24T(SNHG1/Vector) cells and T24T(SNHG1/KO-DNMT3A) cells were subjected to a
transwell invasion assay, and migration and invasion abilities were calculated and presented in terms
of relative motility to the T24T(SNHG1/Vector) control. The results are presented as means ± SD
from at least triplicate experiments, and asterisks (*) indicate a significant decrease in comparison to
T24T(SNHG1/Vector) cells (p < 0.01). Bars in (I) are equal to 200 µM and equal to 100 µm in (K).
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Figure 5. The binding of SNHG1 to DNMT3A protein inhibited miR-129-5p expression and increased
Rac1 expression in UMUC3 cells. (A, Left panel) The total protein extracts from indicated cells were
subjected to Western blotting to determine the expression of DNMT1, DNMT3A, and DNMT3B.
(A, Right panel) Relative protein levels determined by densitometry and expressed as ratios versus
β-Actin. (B) An RNA pull-down assay was employed to determine the interaction between SNHG1
and DNMT3A. Antisense RNA sequences of SNHG1 were used as negative controls (NC). (C, Left
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panel) The indicated cells were extracted, and protein extracts were subjected to Western blotting
to determine DNMT3A, Rac1, and β-Actin protein expression. (C, Right panel) Relative protein
levels determined by densitometry and expressed as ratios versus β-Actin. (D) Quantitative real-time
PCR was carried out to determine the expression levels of miR-129-5p in the indicated cells. (E,F)
UMUC3(SNHG1) cells and UMUC3(SNHG1/KO-DNMT3A) cells were subjected to a transwell
invasion assay, and migration and invasion abilities were calculated and presented relative to the
UMUC3(SNHG1) control. The results are presented as means ± SD from triplicate experiments, and
asterisks (*) indicate a significant decrease in comparison to UMUC3(SNHG1) cells (p < 0.01). Bars in
(E) are equal to 100 µm.
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Figure 6. The sphere-forming T24T cells with high expression of SNHG1 and Rac1 and low expression
of miR-129-5p were markedly more invasive than the non-sphere-forming T24T cells. (A,B) The
isolated sphered T24T cells were subjected to transwell migration and invasion assays, and the results
are presented relative to their parental T24T cells. (C–E) The parental T24T and sphered T24T cells
were collected, and the proteins were extracted and subjected to either Western blotting to assess the
expression of Rac1 (C) or real-time PCR to determine the expression of SNHG1 (D) and miR-129-5p
levels (E). The results are presented as means ± SD from triplicate experiments, and asterisks (*)
indicate a significant difference (p < 0.01). (F) A schematic model of the SNHG1/DNMT3A/miR-
129-5p/Rac1 signaling pathway in regulating the stem-cell-like and invasive properties of advanced
bladder cancer cells. Bars in (A) are equal to 100 µm.

4. Discussion

In this study, we present several key findings with significant implications for the
improved understanding of the biology of muscle-invasive bladder cancer. Firstly, we found
a functional link between the over-expression of SNHG1 and the stem-cell-like behavior of
bladder cancer cells. T24T cells over-expressing SNHG1 had a markedly increased ability
to form stem-cell-like tumor spheres compared to their control counterparts (Figure 1A,B),
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while SNHG1 knockdown blocked this effect (Figure 1H,I). Because the stemness of cancer
cells is preferentially associated with aggressive forms of cancer [10,20], our finding may
provide a molecular explanation as to why SNHG1 is over-expressed in ~95% of MIBCs
but not in non-muscle-invasive bladder cancers [39]. SNHG1, therefore, is worthy of
further evaluation as a new adjunct biomarker to predict the progression and prognosis
of advanced bladder cancers [40]. Additionally, as stemness is a major contributor to
tumor heterogeneity [41], SNHG1 could be a key epigenetic regulator influencing the
diverse molecular subtypes that have recently been described in bladder cancer [8,18].
Advanced bladder cancers are now known to undergo diverse forms of differentiation
into different cellular lineages, including urothelial (luminal; ~65% of all muscle-invasive
bladder cancers), squamous (~35%), and neuronal phenotypes (5%) [8]. The reason behind
such a high degree of lineage diversity is presently unclear. Experimental evidence suggests
that the altered expression of certain transcription factors, such as Foxa1, Gata3, and Pparg,
can affect the molecular subtypes of bladder cancer [42]. It remains to be seen whether
the over-expression of SNHG1 simply keeps bladder cancer cells at the stem/progenitor
cell state, so that they are pluripotent and capable of differentiating into different cellular
lineages, or whether SNHG1 affects bladder cancer subtypes by indirectly altering the
expression of the aforementioned transcription factors.

Secondly, we found that the stemness and the invasiveness of bladder cancer cells
induced by SNHG1 over-expression are closely linked and are both driven by the over-
expression of Rac1. This was evidenced by the fact that the knockdown of Rac1 by shRNA
in SNHG1-over-expressing T24T and UMUC3 cells dramatically blocked the stimulating ef-
fects of SNHG1 on sphere formation and invasion (Figure 2B–F,K–M). Among the common
factors involved in cancer cell stemness, Rac1 stood out as the most upregulated protein
in both T24T (Figure 2A) and UMUC3 cells (Figure 2J). T24T cells that formed spheres
expressed markedly more SNHG1 and Rac1 protein and were over twofold more invasive
than the T24T parental cells (Figure 6A–D). Rac1 is a member of the Rac subfamily of
Rho small GTPases [43] and plays a pleiotropic role in actin cytoskeleton reorganization,
cell growth, cell-cell adhesion and motility, and epithelial differentiation [44]. Interest-
ingly, Rac1 was recently shown to be important in maintaining stem cells of the normal
epidermis [45] and cancer stem cells in gastric adenocarcinoma [46]. To date, however,
nothing is known about the role of Rac1 in bladder cancer stemness and invasion or about
the functional relationship linking Rac1 with SNHG1. Our findings here are, therefore,
entirely novel. It should be noted that the Rac1-mediated effects on invasion and migra-
tion appeared to be separable in all our functional assays. These included the enforced
over-expression of SNHG1 (Figure 1C,D and Figure 2H,I), the knockdown of SNHG1 by
shRNA (Figure 1F,G), the knockout of Rac1 (Figure 2D–F,K–M), the enforced expression of
miR-129-2 (Figure 3L,M and Figure S4D,E; and see also later in this work), the knockout
of DNMT3A (Figure 4K,L and Figure 5E,F), and the migration vs. invasion in sphered
vs. non-sphered cells (Figure 6A,B). In all these experiments performed in parallel and
simultaneously, only cell invasion was significantly affected. Our observation is similar
to that previously reported in macrophages, where Rac1 was found to be necessary for
invasion but dispensable for migration [47]. It is possible that the separable effects of Rac1
on migration and invasion are unique to SNHG1 and/or its downstream effector pathway.
Alternatively, Rac1 may specifically upregulate signals that promote invasion, such as
matrix-degrading enzymes, that are not involved in cell migration [48]. Such regulatory
mechanisms for invasion may even be cell-type-specific and context-dependent. These
possibilities warrant further investigation.

Thirdly, by working backwards from Rac1, we identified the key signaling molecules
acting between SNHG1 and Rac1. Specifically, we found that the increased Rac1 protein
in bladder cancer cells over-expressing SNHG1 was due to the increased stability of Rac1
mRNA (Figure 3B), and that this was associated with low levels of miR-129-5p (Figure 3D).
We proved this hypothesis to be valid by over-expressing miR-129-2, which led to the
decreased stability of Rac1 mRNA (Figure 3I) and Rac1 downregulation (Figure 3E–G). We
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next identified DNMT3A, a DNA methyltransferase, as a functional link between SNHG1
and miR-129-2. Through RNA immunoprecipitation, we established that SNHG1 binds
DNMT3A, and this binding leads DNMT3A to interact with, hyper-methylate, and prevent
the transcription of the promoter of miR-129-5p (Figures 4C–F and 5B). DNMT3A is one
of the three major members of the DNA methyltransferase family, consisting of DNMT1,
DNMT3A, and DNMT3B [38]. DNMT1 was over-expressed, whereas DNMT3B was down-
regulated in bladder cancer cells [49,50]. However, the expression status of DNMT3A
in different bladder cancer variants has not been carefully assessed. Our study, to our
knowledge, represents the first attempt to examine the role of DNMT3A in bladder cancer
stemness and invasion. By identifying the DNMT3A/miR-129-2-5p/Rac1 signaling path-
way downstream of SNHG1 that is operative in advanced bladder cancer cells, we are in no
way ruling out other potential pathways or components that might also mediate the activi-
ties of SNHG1. Global transcriptomic profiling in some of our cell lines over-expressing or
downregulating SNHG1 will be useful in addressing this question. Additionally, in vivo
studies, such as xenograft (subcutaneous or orthotopic) and syngeneic models, should be
helpful in further validating whether what we observed here could be extended to in vivo
conditions. Some of these studies are already underway in the authors’ laboratories.

By defining a functional signaling pathway, i.e., SNHG1/DNMT3A/miR-129-2-5p/Rac1,
that drives stemness and invasion in advanced bladder cancer cells, our study should spur
additional investigation into the value of therapeutically targeting components of this
pathway. While the technical aspects of targeting lncRNAs remain to be refined, several
chemical inhibitors of Rac1 have already been developed. For instance, Rac1 Inhibitor CAS
1177865-17-6, a cell-permeable, reversible inhibitor of Rac1 GDP/GTP exchange, interferes
with the interaction between Rac1 and Rac-specific GEFs [51]. More recently, Ciarlantini
and colleagues identified a new family of chemical inhibitors against Rac1–GEF interaction
that exhibited significant anti-proliferative activities in vitro and in a lung cancer animal
model [52]. Furthermore, inhibitors have been developed that exhibited dual effects against
Rac1 as well as Cdc42. These inhibitors, such as MBQ-167, have shown impressive effects
in reducing tumor burden and metastasis in triple-negative breast cancer [53]. Finally,
preliminary evidence suggests that Rac1 inhibitors could be combined with other target-
based inhibitors to achieve synergistic effects [54]. Our search of the Human Protein Atlas
database for muscle-invasive bladder cancer showed that patients with high levels of Rac1
expression faired significantly worse than patients with low levels of Rac1 expression
(p = 0.0087; Figure S3). It would be of considerable interest to next test the various Rac1 in-
hibitors, first in cell-based systems and then in animal models of bladder cancer, to sort out
which specific inhibitors are effective in curtailing bladder cancer growth and progression.

DNMT3A could serve as another target for inhibition because such inhibition could
reduce or even reverse the hyper-methylation and silencing effects of DNMT3A on the
transcription of miR-129-2, thus restoring the levels of miR-129-2 and downregulating Rac1.
The inhibition of DNA methylation using nucleoside analogues, such as 5-azacytidine and
decitabine, has been tested as a potential therapeutic for bladder cancer [55]. As single
agents, these inhibitors have yielded variable tumor-inhibitory effects, as well as toxicities
that prevented their use in patients. However, it is possible that the combined use of these
inhibitors with conventional chemotherapeutics and/or immune checkpoint inhibitors
could reduce the dosage and, hence, the toxicities associated with the single agents; such a
development would increase the effectiveness against bladder cancer cell invasion and pro-
gression. Intrinsic and acquired resistance to platinum-based chemotherapeutics is a main
reason for treatment failure in managing advanced bladder cancers [56]. The stem-cell-like
and invasive behaviors are major contributors to cancer heterogeneity and chemoresis-
tance [10]. Overall, we believe that the identification of the SNHG1/DNMT3A/miR-129-2-
5p/Rac1 effector pathway that plays a major role in driving bladder cancer stemness and
invasion may help develop a new therapeutic approach to treat this difficult disease.
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5. Conclusions

Although the invasion of the smooth muscle layers of the bladder is a centrally impor-
tant step that fundamentally changes the outcome of patients with bladder cancer, moving
them to the difficult-to-cure or incurable stage, very little is known about the molecular
events driving this step. This study provides direct experimental evidence establishing
the long non-coding RNA SNHG1 as a key player in bladder cancer cell invasion. SNHG1
does so by upregulating Rho GTPase, Rac1, in a cell-invasion-dependent but cell-migration-
independent manner. Through Rac1, SNHG1 also markedly stimulates the stem-cell-like
sphere formation of bladder cancer cells. The signaling effectors downstream of SNHG1
that trigger the invasion and stem-cell-like behaviors also involve DNMT3A and miR-129-2-
5p. Because SNHG1 is over-expressed in ~95% of human muscle-invasive bladder cancers,
it may serve as a useful predictive marker for bladder cancer invasion and progression.
Additionally, components of the SNHG1/DNMT3A/miR-129-2-5p/Rac1 signaling cascade
could be targeted as therapeutic options for muscle-invasive bladder cancer, for which
effective treatments remain very limited at the present time.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14174159/s1, Figure S1: Expression of SNHG1 in human bladder
cancer and enforced expression of SNHG1 in bladder cancer cell line; Figure S2: Expression of Rac1
mRNA in human bladder cancer; Figure S3: Rac1 mRNA expression in human bladder cancer; Figure
S4: SNHG1 over-expression inhibited miR-129-5p expression in UMUC3 cells; Figure S5: SNHG1
inhibition decreased Rac1 expression and promoted miR-129-5p expression in UMUC3 cells; Table S1:
The potential miRNA binding sites in the Rac1 mRNA 3′UTR region; File S1: Uncropped gel images.

Author Contributions: Conceptualization, J.X., J.L., M.C. (Max Costa) and X.-R.W.; methodology,
J.X., R.Y. and J.L.; software, J.X., R.Y. and J.L.; validation, J.X., R.Y. and J.L.; formal analysis, J.X., R.Y.,
J.L., L.W., D.M.S., M.C. (Max Costa) and X.-R.W.; investigation, J.X., R.Y. and J.L.; resources, M.C.
(Max Costa), D.M.S. and X.-R.W.; data curation, J.X., R.Y. and J.L.; writing—original draft preparation,
J.X. and J.L.; writing—review and editing, M.C. (Mitchell Cohen), D.M.S., M.C. (Max Costa) and
X.-R.W.; visualization, J.X.; supervision, M.C. (Max Costa), D.M.S. and X.-R.W.; project administration,
M.C. (Max Costa), D.M.S. and X.-R.W.; funding acquisition, M.C. (Max Costa), D.M.S. and X.-R.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from the U.S. National Institutes of Health (5P01CA165980
to X.-R.W. and D.M.S.; CA217923 to M. Costa) and the U.S. Veterans Affairs Office of Research and
Development (Biomedical Laboratory Research and Development Service: Merit Review grants
(1I01BX002049 and 1I01BX005602) and the Research Career Scientist Award (BX004479) to X.-R.W.).

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study will be included in
the published article (and its Supplementary Materials).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. American Cancer Society. Cancer Facts and Figures 2022; American Cancer Society: Atlanta, GA, USA, 2022.
2. Wu, X.R. Urothelial tumorigenesis: A tale of divergent pathways. Nat. Rev. Cancer 2005, 5, 713–725. [CrossRef] [PubMed]
3. Boormans, J.L.; Zwarthoff, E.C. Limited Funds for Bladder Cancer Research and What Can We Do about It. Bladder Cancer 2016, 2,

49–51. [CrossRef] [PubMed]
4. Lokeshwar, S.D.; Lopez, M.; Sarcan, S.; Aguilar, K.; Morera, D.S.; Shaheen, D.M.; Lokeshwar, B.L.; Lokeshwar, V.B. Molecular

Oncology of Bladder Cancer from Inception to Modern Perspective. Cancers 2022, 14, 2578. [CrossRef] [PubMed]
5. Said, N.; Theodorescu, D. Pathways of metastasis suppression in bladder cancer. Cancer Metastasis Rev. 2009, 28, 327–333.

[CrossRef] [PubMed]
6. Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmstrom, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder

cancer. Lancet 2016, 388, 2796–2810. [CrossRef]
7. TCGA. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers14174159/s1
https://www.mdpi.com/article/10.3390/cancers14174159/s1
http://doi.org/10.1038/nrc1697
http://www.ncbi.nlm.nih.gov/pubmed/16110317
http://doi.org/10.3233/BLC-150042
http://www.ncbi.nlm.nih.gov/pubmed/27376124
http://doi.org/10.3390/cancers14112578
http://www.ncbi.nlm.nih.gov/pubmed/35681556
http://doi.org/10.1007/s10555-009-9197-4
http://www.ncbi.nlm.nih.gov/pubmed/20013033
http://doi.org/10.1016/S0140-6736(16)30512-8
http://doi.org/10.1038/nature12965


Cancers 2022, 14, 4159 17 of 18

8. Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.;
Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25.
[CrossRef]

9. Thomsen, M.B.; Nordentoft, I.; Lamy, P.; Høyer, S.; Vang, S.; Hedegaard, J.; Borre, M.; Jensen, J.B.; Ørntoft, T.F.; Dyrskjøt, L.
Spatial and temporal clonal evolution during development of metastatic urothelial carcinoma. Mol. Oncol. 2016, 10, 1450–1460.
[CrossRef]

10. Weiss, F.; Lauffenburger, D.; Friedl, P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat.
Rev. Cancer 2022, 22, 157–173. [CrossRef]

11. Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene 2010,
29, 4741–4751. [CrossRef]

12. Kurtova, A.V.; Xiao, J.; Mo, Q.; Pazhanisamy, S.; Krasnow, R.; Lerner, S.P.; Chen, F.; Roh, T.T.; Lay, E.; Ho, P.L.; et al. Blocking
PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015, 517, 209–213. [CrossRef] [PubMed]

13. Bodgi, L.; Bahmad, H.F.; Araji, T.; Al Choboq, J.; Bou-Gharios, J.; Cheaito, K.; Zeidan, Y.H.; Eid, T.; Geara, F.; Abou-Kheir, W.
Assessing Radiosensitivity of Bladder Cancer in vitro: A 2D vs. 3D Approach. Front. Oncol. 2019, 9, 153. [CrossRef] [PubMed]

14. Pan, C.X.; Zhang, H.; Tepper, C.G.; Lin, T.Y.; Davis, R.R.; Keck, J.; Ghosh, P.M.; Gill, P.; Airhart, S.; Bult, C.; et al. Development and
Characterization of Bladder Cancer Patient-Derived Xenografts for Molecularly Guided Targeted Therapy. PLoS ONE 2015, 10,
e0134346.

15. Jäger, W.; Xue, H.; Hayashi, T.; Janssen, C.; Awrey, S.; Wyatt, A.W.; Anderson, S.; Moskalev, I.; Haegert, A.; Alshalalfa, M.; et al. Patient-
derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget 2015, 6, 21522–21532.
[CrossRef]

16. Gouin, K.H., 3rd; Ing, N.; Plummer, J.T.; Rosser, C.J.; Ben Cheikh, B.; Oh, C.; Chen, S.S.; Chan, K.S.; Furuya, H.; Tourtellotte, W.G.;
et al. An N-Cadherin 2 expressing epithelial cell subpopulation predicts response to surgery, chemotherapy and immunotherapy
in bladder cancer. Nat. Commun. 2021, 12, 4906. [CrossRef]

17. Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.L.; et al.
Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline
chemotherapy. Cancer Cell 2014, 25, 152–165. [CrossRef]

18. Choi, W.; Czerniak, B.; Ochoa, A.; Su, X.; Siefker-Radtke, A.; Dinney, C.; McConkey, D.J. Intrinsic basal and luminal subtypes of
muscle-invasive bladder cancer. Nat. Rev. Urol. 2014, 11, 400–410. [CrossRef]

19. Guo, C.C.; Majewski, T.; Zhang, L.; Yao, H.; Bondaruk, J.; Wang, Y.; Zhang, S.; Wang, Z.; Lee, J.G.; Lee, S.; et al. Dysregulation of
EMT Drives the Progression to Clinically Aggressive Sarcomatoid Bladder Cancer. Cell Rep. 2019, 27, 1781–1793.e4. [CrossRef]

20. He, F.; Melamed, J.; Tang, M.S.; Huang, C.; Wu, X.R. Oncogenic HRAS Activates Epithelial-to-Mesenchymal Transition and
Confers Stemness to p53-Deficient Urothelial Cells to Drive Muscle Invasion of Basal Subtype Carcinomas. Cancer Res. 2015, 75,
2017–2028. [CrossRef]

21. Schardt, J.; Roth, B.; Seiler, R. Forty years of cisplatin-based chemotherapy in muscle-invasive bladder cancer: Are we under-
standing how, who and when? World J. Urol. 2019, 37, 1759–1765. [CrossRef]

22. Evans, J.R.; Feng, F.Y.; Chinnaiyan, A.M. The bright side of dark matter: lncRNAs in cancer. J. Clin. Investig. 2016, 126, 2775–2782.
[CrossRef] [PubMed]

23. Wang, F.; Wu, D.; Chen, J.; Chen, S.; He, F.; Fu, H.; Wu, Q.; Shuan, L.; Wang, W.; Li, X. Long non-coding RNA HOXA-AS2
promotes the migration, invasion and stemness of bladder cancer via regulating miR-125b/Smad2 axis. Exp. Cell Res. 2019, 375,
1–10. [CrossRef] [PubMed]

24. Huang, L.; Jiang, X.; Wang, Z.; Zhong, X.; Tai, S.; Cui, Y. Small nucleolar RNA host gene 1: A new biomarker and therapeutic
target for cancers. Pathol. Res. Pract. 2018, 214, 1247–1252. [CrossRef] [PubMed]

25. Zhang, M.; Wang, W.; Li, T.Y.; Yu, X.D.; Zhu, Y.F.; Ding, F.; Li, D.S.; Yang, T. Long noncoding RNA SNHG1 predicts a poor
prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed. Pharmacother. 2016, 80, 73–79. [CrossRef]

26. Lu, Q.; Shan, S.; Li, Y.; Zhu, D.; Jin, W.; Ren, T. Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by
up-regulating MTDH via sponging miR-145-5p. FASEB J. 2018, 32, 3957–3967. [CrossRef]

27. Cui, L.; Dong, Y.; Wang, X.; Zhao, X.; Kong, C.; Liu, Y.; Jiang, X.; Zhang, X. Downregulation of long noncoding RNA SNHG1
inhibits cell proliferation, metastasis, and invasion by suppressing the Notch-1 signaling pathway in pancreatic cancer. J. Cell.
Biochem. 2018, 120, 6106–6112. [CrossRef]

28. Guo, X.; Huang, H.; Jin, H.; Xu, J.; Risal, S.; Li, J.; Li, X.; Yan, H.; Zeng, X.; Xue, L.; et al. ISO, via Upregulating MiR-137
Transcription, Inhibits GSK3beta-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. Mol. Ther.-Nucleic
Acids 2018, 12, 337–349. [CrossRef]

29. Xia, Y.; Liu, Y.; Yang, C.; Simeone, D.M.; Sun, T.T.; DeGraff, D.J.; Tang, M.S.; Zhang, Y.; Wu, X.R. Dominant role of
CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat. Commun. 2021, 12, 2047.
[CrossRef]

30. Murphy, S.K.; Wylie, A.A.; Coveler, K.J.; Cotter, P.D.; Papenhausen, P.R.; Sutton, V.R.; Shaffer, L.G.; Jirtle, R.L. Epigenetic detection
of human chromosome 14 uniparental disomy. Hum. Mutat. 2003, 22, 92–97. [CrossRef]

http://doi.org/10.1016/j.cell.2017.09.007
http://doi.org/10.1016/j.molonc.2016.08.003
http://doi.org/10.1038/s41568-021-00427-0
http://doi.org/10.1038/onc.2010.215
http://doi.org/10.1038/nature14034
http://www.ncbi.nlm.nih.gov/pubmed/25470039
http://doi.org/10.3389/fonc.2019.00153
http://www.ncbi.nlm.nih.gov/pubmed/30941305
http://doi.org/10.18632/oncotarget.3974
http://doi.org/10.1038/s41467-021-25103-7
http://doi.org/10.1016/j.ccr.2014.01.009
http://doi.org/10.1038/nrurol.2014.129
http://doi.org/10.1016/j.celrep.2019.04.048
http://doi.org/10.1158/0008-5472.CAN-14-3067
http://doi.org/10.1007/s00345-018-2544-8
http://doi.org/10.1172/JCI84421
http://www.ncbi.nlm.nih.gov/pubmed/27479746
http://doi.org/10.1016/j.yexcr.2018.11.005
http://www.ncbi.nlm.nih.gov/pubmed/30412716
http://doi.org/10.1016/j.prp.2018.07.033
http://www.ncbi.nlm.nih.gov/pubmed/30107989
http://doi.org/10.1016/j.biopha.2016.02.036
http://doi.org/10.1096/fj.201701237RR
http://doi.org/10.1002/jcb.27897
http://doi.org/10.1016/j.omtn.2018.05.017
http://doi.org/10.1038/s41467-021-22327-5
http://doi.org/10.1002/humu.10237


Cancers 2022, 14, 4159 18 of 18

31. Bagheri, V.; Memar, B.; Behzadi, R.; Aliakbarian, M.; Jangjoo, A.; Bahar, M.M.; Talebi, S.; Gholamin, M.; Abbaszadegan, M.R.
Isolation and identification of chemotherapy-enriched sphere-forming cells from a patient with gastric cancer. J. Cell. Physiol.
2018, 233, 7036–7046. [CrossRef]

32. Bak, M.J.; Furmanski, P.; Shan, N.L.; Lee, H.J.; Bao, C.; Lin, Y.; Shih, W.J.; Yang, C.S.; Suh, N. Tocopherols inhibit estrogen-induced
cancer stemness and OCT4 signaling in breast cancer. Carcinogenesis 2018, 39, 1045–1055. [CrossRef] [PubMed]

33. Dai, X.M.; Yang, S.L.; Zheng, X.M.; Chen, G.G.; Chen, J.; Zhang, T. CD133 expression and alpha-fetoprotein levels define novel
prognostic subtypes of HBV-associated hepatocellular carcinoma: A long-term follow-up analysis. Oncol. Lett. 2018, 15, 2985–2991.
[PubMed]

34. Yoon, C.H.; Hyun, K.H.; Kim, R.K.; Lee, H.; Lim, E.J.; Chung, H.Y.; An, S.; Park, M.J.; Suh, Y.; Kim, M.J.; et al. The small GTPase
Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Lett. 2011, 585, 2331–2338.
[CrossRef] [PubMed]

35. Steri, M.; Idda, M.L.; Whalen, M.B.; Orru, V. Genetic variants in mRNA untranslated regions. Wiley Interdiscip. Rev. RNA 2018,
9, e1474. [CrossRef] [PubMed]

36. Torres, M.; Becquet, D.; Franc, J.L.; Francois-Bellan, A.M. Circadian processes in the RNA life cycle. Wiley Interdiscip. Rev. RNA
2018, 9, e1467. [CrossRef] [PubMed]

37. Gao, Y.; Feng, B.; Han, S.; Lu, L.; Chen, Y.; Chu, X.; Wang, R.; Chen, L. MicroRNA-129 in Human Cancers: From Tumorigenesis to
Clinical Treatment. Cell. Physiol. Biochem. 2016, 39, 2186–2202. [CrossRef]

38. Subramaniam, D.; Thombre, R.; Dhar, A.; Anant, S. DNA methyltransferases: A novel target for prevention and therapy. Front.
Oncol. 2014, 4. [CrossRef]

39. Guo, C.; Li, X.; Xie, J.; Liu, D.; Geng, J.; Ye, L.; Yan, Y.; Yao, X.; Luo, M. Long Noncoding RNA SNHG1 Activates Autophagy and
Promotes Cell Invasion in Bladder Cancer. Front. Oncol. 2021, 11, 660551. [CrossRef]

40. Feldman, A.S.; Lokeshwar, V.; Lin, D.W. A 25-year perspective on evaluation and understanding of biomarkers in urologic
cancers. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 602–617. [CrossRef]

41. Prasetyanti, P.R.; Medema, J.P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 2017, 16, 41. [CrossRef]
42. Warrick, J.I.; Walter, V.; Yamashita, H.; Chung, E.; Shuman, L.; Amponsa, V.O.; Zheng, Z.; Chan, W.; Whitcomb, T.L.; Yue, F.; et al.

FOXA1, GATA3 and PPAR

Cancers 2022, 14, x FOR PEER REVIEW 18 of 18 
 

 

31. Bagheri, V.; Memar, B.; Behzadi, R.; Aliakbarian, M.; Jangjoo, A.; Bahar, M.M.; Talebi, S.; Gholamin, M.; Abbaszadegan, M.R. 
Isolation and identification of chemotherapy-enriched sphere-forming cells from a patient with gastric cancer. J. Cell. Physiol. 
2018, 233, 7036–7046. 

32. Bak, M.J.; Furmanski, P.; Shan, N.L.; Lee, H.J.; Bao, C.; Lin, Y.; Shih, W.J.; Yang, C.S.; Suh, N. Tocopherols inhibit estro-
gen-induced cancer stemness and OCT4 signaling in breast cancer. Carcinogenesis 2018, 39, 1045–1055. 

33. Dai, X.M.; Yang, S.L.; Zheng, X.M.; Chen, G.G.; Chen, J.; Zhang, T. CD133 expression and alpha-fetoprotein levels define novel 
prognostic subtypes of HBV-associated hepatocellular carcinoma: A long-term follow-up analysis. Oncol. Lett. 2018, 15, 2985–
2991. 

34. Yoon, C.H.; Hyun, K.H.; Kim, R.K.; Lee, H.; Lim, E.J.; Chung, H.Y.; An, S.; Park, M.J.; Suh, Y.; Kim, M.J.; et al. The small GTPase 
Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Lett. 2011, 585, 2331–2338. 

35. Steri, M.; Idda, M.L.; Whalen, M.B.; Orru, V. Genetic variants in mRNA untranslated regions. Wiley Interdiscip. Rev. RNA 2018, 
9, e1474. 

36. Torres, M.; Becquet, D.; Franc, J.L.; Francois-Bellan, A.M. Circadian processes in the RNA life cycle. Wiley Interdiscip. Rev. RNA 
2018, 9, e1467. 

37. Gao, Y.; Feng, B.; Han, S.; Lu, L.; Chen, Y.; Chu, X.; Wang, R.; Chen, L. MicroRNA-129 in Human Cancers: From Tumorigenesis 
to Clinical Treatment. Cell. Physiol. Biochem. 2016, 39, 2186–2202. 

38. Subramaniam, D.; Thombre, R.; Dhar, A.; Anant, S. DNA methyltransferases: A novel target for prevention and therapy. Front. 
Oncol. 2014, 4, 80. 

39. Guo, C.; Li, X.; Xie, J.; Liu, D.; Geng, J.; Ye, L.; Yan, Y.; Yao, X.; Luo, M. Long Noncoding RNA SNHG1 Activates Autophagy 
and Promotes Cell Invasion in Bladder Cancer. Front. Oncol. 2021, 11, 660551. 

40. Feldman, A.S.; Lokeshwar, V.; Lin, D.W. A 25-year perspective on evaluation and understanding of biomarkers in urologic 
cancers. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 602–617. 

41. Prasetyanti, P.R.; Medema, J.P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 2017, 16, 41. 
42. Warrick, J.I.; Walter, V.; Yamashita, H.; Chung, E.; Shuman, L.; Amponsa, V.O.; Zheng, Z.; Chan, W.; Whitcomb, T.L.; Yue, F.; 

et al. FOXA1, GATA3 and PPARɣ Cooperate to Drive Luminal Subtype in Bladder Cancer: A Molecular Analysis of Estab-
lished Human Cell Lines. Sci. Rep. 2016, 6, 38531. 

43. Aspenstrom, P.; Fransson, A.; Saras, J. Rho GTPases have diverse effects on the organization of the actin filament system. Bio-
chem. J. 2004, 377, 327–337. 

44. Chianale, F.; Cutrupi, S.; Rainero, E.; Baldanzi, G.; Porporato, P.E.; Traini, S.; Filigheddu, N.; Gnocchi, V.F.; Santoro, M.M.; 
Parolini, O.; et al. Diacylglycerol kinase-alpha mediates hepatocyte growth factor-induced epithelial cell scatter by regulating 
Rac activation and membrane ruffling. Mol. Biol. Cell 2007, 18, 4859–4871. 

45. Castilho, R.M.; Squarize, C.H.; Leelahavanichkul, K.; Zheng, Y.; Bugge, T.; Gutkind, J.S. Rac1 is required for epithelial stem cell 
function during dermal and oral mucosal wound healing but not for tissue homeostasis in mice. PLoS ONE 2010, 5, e10503. 

46. Yoon, C.; Cho, S.J.; Chang, K.K.; Park, D.J.; Ryeom, S.W.; Yoon, S.S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Tran-
sition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol. Cancer Res. 2017, 15, 1106–1116. 

47. Wheeler, A.P.; Wells, C.M.; Smith, S.D.; Vega, F.M.; Henderson, R.B.; Tybulewicz, V.L.; Ridley, A.J. Rac1 and Rac2 regulate 
macrophage morphology but are not essential for migration. J. Cell Sci. 2006, 119, 2749–2757. 

48. Lozano, E.; Betson, M.; Braga, V.M. Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays 2003, 25, 452–
463. 

49. Nakagawa, T.; Kanai, Y.; Saito, Y.; Kitamura, T.; Kakizoe, T.; Hirohashi, S. Increased DNA methyltransferase 1 protein expres-
sion in human transitional cell carcinoma of the bladder. J. Urol. 2003, 170, 2463–2466. 

50. Peres, R.; Furuya, H.; Pagano, I.; Shimizu, Y.; Hokutan, K.; Rosser, C.J. Angiogenin contributes to bladder cancer tumorigenesis 
by DNMT3b-mediated MMP2 activation. Oncotarget 2016, 7, 43109–43123. 

51. Gao, Y.; Dickerson, J.B.; Guo, F.; Zheng, J.; Zheng, Y. Rational design and characterization of a Rac GTPase-specific small 
molecule inhibitor. Proc. Natl. Acad. Sci. USA 2004, 101, 7618–7623. 

52. Ciarlantini, M.S.; Barquero, A.; Bayo, J.; Wetzler, D.; Dodes Traian, M.M.; Bucci, H.A.; Fiore, E.J.; Gandolfi Donadío, L.; De-
felipe, L.; Turjanski, A.; et al. Development of an Improved Guanidine-Based Rac1 Inhibitor with in vivo Activity against 
Non-Small Cell Lung Cancer. ChemMedChem 2021, 16, 1011–1021. 

53. Cruz-Collazo, A.; Ruiz-Calderon, J.F.; Picon, H.; Borrero-Garcia, L.D.; Lopez, I.; Castillo-Pichardo, L.; Del Mar, M.M.; Duconge, 
J.; Medina, J.I.; Bayro, M.J.; et al. Efficacy of Rac and Cdc42 Inhibitor MBQ-167 in Triple-negative breast cancer. Mol. Cancer 
Ther. 2021, 20, 2420–2432. 

54. Goka, E.T.; Chaturvedi, P.; Lopez, D.T.M.; Lippman, M.E. Rac signaling drives clear cell renal carcinoma tumor growth by 
priming the tumor microenvironment for an angiogenic switch. Mol. Cancer Ther. 2020, 19, 1462–1473. 

55. Nunes, S.P.; Henrique, R.; Jerónimo, C.; Paramio, J.M. DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020, 
9, 1850. 

56. Zuiverloon, T.C.; Theodorescu, D. Pharmacogenomic considerations in the treatment of muscle-invasive bladder cancer. 
Pharmacogenomics 2017, 18, 1167–1178. 

Cooperate to Drive Luminal Subtype in Bladder Cancer: A Molecular Analysis of Established Human
Cell Lines. Sci. Rep. 2016, 6, 38531. [CrossRef] [PubMed]

43. Aspenstrom, P.; Fransson, A.; Saras, J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem.
J. 2004, 377, 327–337. [CrossRef] [PubMed]

44. Chianale, F.; Cutrupi, S.; Rainero, E.; Baldanzi, G.; Porporato, P.E.; Traini, S.; Filigheddu, N.; Gnocchi, V.F.; Santoro, M.M.;
Parolini, O.; et al. Diacylglycerol kinase-alpha mediates hepatocyte growth factor-induced epithelial cell scatter by regulating Rac
activation and membrane ruffling. Mol. Biol. Cell 2007, 18, 4859–4871. [CrossRef] [PubMed]

45. Castilho, R.M.; Squarize, C.H.; Leelahavanichkul, K.; Zheng, Y.; Bugge, T.; Gutkind, J.S. Rac1 is required for epithelial stem cell
function during dermal and oral mucosal wound healing but not for tissue homeostasis in mice. PLoS ONE 2010, 5, e10503.
[CrossRef] [PubMed]

46. Yoon, C.; Cho, S.J.; Chang, K.K.; Park, D.J.; Ryeom, S.W.; Yoon, S.S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition
and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol. Cancer Res. 2017, 15, 1106–1116. [CrossRef]

47. Wheeler, A.P.; Wells, C.M.; Smith, S.D.; Vega, F.M.; Henderson, R.B.; Tybulewicz, V.L.; Ridley, A.J. Rac1 and Rac2 regulate
macrophage morphology but are not essential for migration. J. Cell Sci. 2006, 119, 2749–2757. [CrossRef]

48. Lozano, E.; Betson, M.; Braga, V.M. Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays 2003, 25, 452–463.
[CrossRef]

49. Nakagawa, T.; Kanai, Y.; Saito, Y.; Kitamura, T.; Kakizoe, T.; Hirohashi, S. Increased DNA methyltransferase 1 protein expression
in human transitional cell carcinoma of the bladder. J. Urol. 2003, 170, 2463–2466. [CrossRef]

50. Peres, R.; Furuya, H.; Pagano, I.; Shimizu, Y.; Hokutan, K.; Rosser, C.J. Angiogenin contributes to bladder cancer tumorigenesis
by DNMT3b-mediated MMP2 activation. Oncotarget 2016, 7, 43109–43123. [CrossRef]

51. Gao, Y.; Dickerson, J.B.; Guo, F.; Zheng, J.; Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule
inhibitor. Proc. Natl. Acad. Sci. USA 2004, 101, 7618–7623. [CrossRef]

52. Ciarlantini, M.S.; Barquero, A.; Bayo, J.; Wetzler, D.; Dodes Traian, M.M.; Bucci, H.A.; Fiore, E.J.; Gandolfi Donadío, L.; Defelipe, L.;
Turjanski, A.; et al. Development of an Improved Guanidine-Based Rac1 Inhibitor with in vivo Activity against Non-Small Cell
Lung Cancer. ChemMedChem 2021, 16, 1011–1021. [CrossRef] [PubMed]

53. Cruz-Collazo, A.; Ruiz-Calderon, J.F.; Picon, H.; Borrero-Garcia, L.D.; Lopez, I.; Castillo-Pichardo, L.; Del Mar, M.M.; Duconge, J.;
Medina, J.I.; Bayro, M.J.; et al. Efficacy of Rac and Cdc42 Inhibitor MBQ-167 in Triple-negative breast cancer. Mol. Cancer Ther.
2021, 20, 2420–2432. [CrossRef] [PubMed]

54. Goka, E.T.; Chaturvedi, P.; Lopez, D.T.M.; Lippman, M.E. Rac signaling drives clear cell renal carcinoma tumor growth by priming
the tumor microenvironment for an angiogenic switch. Mol. Cancer Ther. 2020, 19, 1462–1473. [CrossRef]

55. Nunes, S.P.; Henrique, R.; Jerónimo, C.; Paramio, J.M. DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020,
9, 1850. [CrossRef] [PubMed]

56. Zuiverloon, T.C.; Theodorescu, D. Pharmacogenomic considerations in the treatment of muscle-invasive bladder cancer.
Pharmacogenomics 2017, 18, 1167–1178. [CrossRef]

http://doi.org/10.1002/jcp.26627
http://doi.org/10.1093/carcin/bgy071
http://www.ncbi.nlm.nih.gov/pubmed/29846560
http://www.ncbi.nlm.nih.gov/pubmed/29435028
http://doi.org/10.1016/j.febslet.2011.05.070
http://www.ncbi.nlm.nih.gov/pubmed/21704033
http://doi.org/10.1002/wrna.1474
http://www.ncbi.nlm.nih.gov/pubmed/29582564
http://doi.org/10.1002/wrna.1467
http://www.ncbi.nlm.nih.gov/pubmed/29424086
http://doi.org/10.1159/000447913
http://doi.org/10.3389/fonc.2014.00080
http://doi.org/10.3389/fonc.2021.660551
http://doi.org/10.1016/j.urolonc.2021.06.010
http://doi.org/10.1186/s12943-017-0600-4
http://doi.org/10.1038/srep38531
http://www.ncbi.nlm.nih.gov/pubmed/27924948
http://doi.org/10.1042/bj20031041
http://www.ncbi.nlm.nih.gov/pubmed/14521508
http://doi.org/10.1091/mbc.e07-02-0177
http://www.ncbi.nlm.nih.gov/pubmed/17898083
http://doi.org/10.1371/journal.pone.0010503
http://www.ncbi.nlm.nih.gov/pubmed/20463891
http://doi.org/10.1158/1541-7786.MCR-17-0053
http://doi.org/10.1242/jcs.03024
http://doi.org/10.1002/bies.10262
http://doi.org/10.1097/01.ju.0000095919.50869.c9
http://doi.org/10.18632/oncotarget.10097
http://doi.org/10.1073/pnas.0307512101
http://doi.org/10.1002/cmdc.202000763
http://www.ncbi.nlm.nih.gov/pubmed/33284505
http://doi.org/10.1158/1535-7163.MCT-21-0348
http://www.ncbi.nlm.nih.gov/pubmed/34607932
http://doi.org/10.1158/1535-7163.MCT-19-0762
http://doi.org/10.3390/cells9081850
http://www.ncbi.nlm.nih.gov/pubmed/32784599
http://doi.org/10.2217/pgs-2017-0055

	Introduction 
	Materials and Methods 
	Reagents, Antibodies, and Plasmids 
	Cell Lines, Culture, and Transfection 
	Sphere Formation Assay 
	Cell Invasion Assay 
	Luciferase Reporter Assay 
	Immunoblotting Analysis 
	Chromatin Immunoprecipitation (ChIP) Assay 
	RNA Immunoprecipitation (RIP) 
	Quantitative Real-Time PCR 
	DNA Extraction, Bisulfite DNA Modification, and Methylation-Specific PCR 
	RNA Pull-Down 
	Statistical Analysis 

	Results 
	SNHG1 Over-Expression Induces the Stem-Cell-like and Invasive Behaviors of Cultured Bladder Cancer Cells by Upregulating Rac1 Expression 
	SNHG1 Stabilizes Rac1 mRNA by Suppressing miR-129-2-5p Transcription 
	SNHG1 Binds DNMT3A, and the Binding Tethers DNMT3A to the miR-129-2 Promoter, Hyper-Methylates It, and Suppresses Its Transcription 
	Sphered T24T Cells Are More Invasive than Non-Sphered Counterparts 

	Discussion 
	Conclusions 
	References

