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Abstract
Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure

uncompromised development to adulthood as well as species propagation, respectively.

Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to

have important roles in embryonic stem cells; in particular, regulation of conversion to glyco-

lytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In

the present study, we sought to assess whether Hif1α was also expressed in the primitive

cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos,

specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also

observed in male and female primordial germ cells. We subsequently assessed whether

Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly

expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old)

males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as

assessed both in situ and in individual oocytes flushed from super-ovulated females. Analy-

sis of Hif1α transcript levels indicates a mechanism of regulation during early development

that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protec-

tion from hypoxic stress until the gene is re-activated at the blastocyst stage. Together,

these observations show that Hif1α is expressed throughout the life-cycle, including both

the male and female germ line, and point to an important role for Hif1α in early progenitor

cells.

Introduction
Hallmark features of the primitive progenitor cells of the early embryo include both pluripo-
tency and an extensive capacity to proliferate. The former is attributed to the expression of
pluripotency factors, including transcription factors Oct4, Klf4, Sox2 and Nanog [1]. The latter
is attributed to maintenance of relatively long telomeres by the enzymatic complex telomerase
[2]. However, much remains to be discovered to allow full elucidation of the cell and molecular
mechanisms that regulate the function of these cells.
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The primitive progenitor cells of the developing embryo include both cells of the pre-
implantation embryo, and the inner cell mass of the blastocyst; as well as the early germline
stem cells of the embryo, known as primordial germ cells (PGCs), which give rise to both the
male and female germ lineages. In murine embryos, PGCs are equivalent for both male and
female embryos from 7days post coitus (dpc) through 11dpc [3]. Beginning at 9dpc, PGCs
begin to migrate to the developing genital ridge of the embryo, and undergo continuous prolif-
eration to expand the PGC pool. By 13dpc of development the PGCs reside entirely in the
developing gonads, and have both committed to sex-specific differentiation and entered a state
of quiescence [4]. Shortly after birth, the male germ line resumes proliferation as the testis
develop, and the female germ line produces immature oocytes as the ovaries develop. Interest-
ingly, both PGCs and spermatogonial stem cells [5,6] express the pluripotent factor Oct4.

A number of studies have shown that hypoxia promotes pluripotency in both embryonic
stem cells (ESC) and induced pluripotent stem cells (iPSC). It has been shown that human ESC
(hESC) cultured in hypoxic condition (3–5% O2) exhibit reduced amount of spontaneous dif-
ferentiation compared to control cells cultured in normoxic condition (21% O2) [7]. When co-
cultured with feeder cells overexpressing hypoxia inducible factor 1 alpha (Hif1α), hESC
remain undifferentiated and show higher Oct4 and Nanog expressions [8]. It has also been
reported that the efficiency of iPSC generation from mouse and human somatic cells is
improved in hypoxic environment [9]. More recently, one study has shown that hESC and
iPSC derived differentiated cells can return back to a pluripotent state when cultured under
hypoxia (2% O2) [10]. Both neural crest stem cells and neural stem cells derived from rats also
exhibit increased proliferation and survival in lower oxygen tension [11,12].

Hypoxia occurs when a supply of oxygen decreases and compromises the biological func-
tions. Cells respond to hypoxia by activating one of the key regulators of metabolism, Hif1α.
Under normoxic condition, prolyl hydroxylases (PHD) are responsible for hydroxylating a spe-
cific proline residue within the oxygen dependent degradation domain of Hif1α. This reaction
recruits VHL-ubiquitin-ligase complex to bind to the same region of the Hif1α protein and
allows the proteasomal degradation of the protein. However, in the low oxygen environment,
the interaction between PHD and Hif1α is inhibited and hydroxylation of Hif1α does not
occur. This causes Hif1α to be stabilized and allows the translocation of Hif1α into the nucleus.
Once Hif1α is in the nucleus, it dimerizes with HIF1b (ARNT) and binds to specific sites (Hyp-
oxia response element; HRE) allowing regulation of transcription of target genes, such as EPO
and VEGF [13].

Hif1α can also be regulated by oxygen-independent means. The RACK1 protein has been
shown to mediate Hif1α destruction by binding to Hif1α and recruiting the ubiquitin-ligase
complex to Hif1α without the involvement of the VHL [14]. The presence of SSAT1 is known
to stabilize the interaction between RACK1 and Hif1α [15]. However, when RACK1 is dephos-
phorylated by calcineurin A, Hif1α cannot be ubiquitinated due to the failure of RACK1
dimerization, leading to the stabilization of Hif1α [16]. In addition, GSK3 has been shown to
down-regulate Hif1α by phosphorylating ODD domain of Hif1α and promoting ubiquitina-
tion and proteasomal degradation [17].

The microenvironment, or niche, that stem cells reside in is both specific for different types
of stem cells, and critical to the long term regulation of the stem cell pool. Studies have now
demonstrated that the niche of some stem cells is hypoxic. For example, hematopoietic stem
cells (HSCs) reside in hypoxic regions of the bone marrow [18] and express Hif1α [19,20]. It is
also widely accepted that early embryo development occurs in low oxygen environment. Uter-
ine oxygen concentration is known to be significantly low in various mammalian species [21].
Hif1α and HIF2a have also been shown to be involved in trophoblast and placental develop-
ment [22].
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Recently, Hif1α has been shown to play important regulatory roles in stem cells. In embry-
onic stem cells, Hif1α has been shown to be essential in the conversion of metabolism from aer-
obic to glycolytic metabolism [23], and also for maintenance of telomerase expression, and
stable telomere length [24]. Hypoxia inducible factor 1 also promotes telomere length exten-
sion during establishment of iPSC [25]. Furthermore, conditional ablation of Hif1α in murine
HSC markedly abrogates long term self-renewal capacity upon serial transplantation [26].
Together, these observations point to an important role for Hif1α in stem cell biology for both
pluripotent and adult stem cells.

In this study, we examined whether Hif1α is expressed in primitive stem cells and germ
cells in mice. Our results show persistent expression of Hif1α in in the early embryo, PGCs,
and in both male and female adult germ cells, suggesting that Hif1αmay be involved in the
maintenance of germ stem cells.

Materials and Methods

Mice
Mice were fed with a standard diet and maintained in a temperature- and light-controlled
room (22°C, 14L:10D; light starting at 0700 h), in accordance with the guidelines of the Labora-
tory Animal Services at the University of Hawaii and the Committee on Care and Use of Labo-
ratory Animals of the Institute of Laboratory Resources National Research Council (DHEW
publication 80–23, revised in 1985). The protocol (#03–046) for animal handling and treat-
ment procedures was reviewed and approved by the Animal Care and Use Committee at the
University of Hawaii, and conducted in accordance with the Society for the Study of Reproduc-
tion’s guidelines and standards.

FACS isolation of PGCs
Lower halves of 9.5dpc and the gonads of 15.5dpc Oct4-GFP embryos were dissected out and
dissociated in 0.05% Trypsin-EDTA (Gibco) for 4 minutes at 37C°. The reaction was stopped
with 10% Fetal Bovine Serum (FBS) in Phosphate Buffered Saline (PBS). The cell suspension
was filtrated through a 30μm nylon mesh. GFP+ cells were FACS sorted using FACSAria III
(BD Biosciences) following identification of the single cell population by forward scatter gating
and removal of dead cells by gating cells negative for 7-Aminoactinomycin D staining.

Primary and secondary antibodies
The primary antibodies used were as follows: anti-HIFα rabbit polyclonal (1:200 for preim-
plantation embryos and 1:500 for the others, cat# NB100-479, Novus Biologicals); anti-Oct3/4
mouse monoclonal (1:200, cat# sc-5279, Santa Cruz Biotechnology); and anti-GFP mouse
monoclonal (1:500, cat# G6539, Sigma-Aldrich). The following secondary antibodies were
used at a dilution of 1:1000: DyLight 594 goat anti-rabbit IgG (cat# DI-1594, Vector Laborato-
ries); DyLight 488 horse anti-mouse IgG (cat# DI-2488, Vector Laboratories); FITC-conju-
gated goat anti-mouse IgG2b (cat# ab98702, Abcam); and biotinylated donkey anti-rabbit IgG
(cat# 711-065-152, Jackson ImmunoResearch).

Whole-mount staining
For whole-mount embryo staining, preimplantation embryos and 9.5dpc embryos were fixed
in 4% paraformaldehyde (PFA) at room temperature (RT) for 30 minutes and 2 hours, respec-
tively. Preimplantation embryos were incubated with primary antibodies overnight at 4C° and
with secondary antibodies for 2 hrs at RT. 9.5dpc embryos were incubated with primary
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antibodies for 72 hours at 4C° and with secondary antibodies overnight at 4C°. Both preim-
plantation embryos and 9.5dpc embryos were mounted in VECTASHIELD (Vector Laborato-
ries) for observation by confocal microscopy (LSM 5 PASCAL, Zeiss). A total 14 pre-
implantation embryos and eight 9.5dpc embryos were assessed.

Immunofluorescence staining
For immunostaining of 15.5dpc gonads, the testes and ovaries were fixed in 4% PFA overnight
at 4C°, placed in 30% sucrose, embedded in OCT compound and cryosectioned at 10μm. The
cryosections were incubated with primary antibodies for 2 hours at RT, with secondary anti-
bodies for 90 minutes at RT and mounted with in VECTASHIELD. Images were acquired with
a fluorescence microscope (BX41, Olympus). A total of eight male and female 15.5dpc gonads
and 12 ovaries from female mice were examined, and at least 6 fields of view were analyzed per
sample.

DAB immunoperoxidase staining
For immunoperoxidase staining of gonads, the adult testes were fixed in Bouin’s fixative over-
night at 4C°. The tissues were embedded in paraffin and sectioned at 5μm. The sections were
incubated with primary antibody for 2 hours at RT and with biotinylated secondary antibody
for 30 minutes at RT. R.T.U. Vectastain ABC kit and ImmPACT DAB peroxidase substrate
(Vector Laboratories) were used for detection. A total of five testes were examined, and ten
fields of view analyzed per sample.

Immunocytochemistry
FACS sorted GFP+ cells from 9.5dpc and 15.5dpc embryos were placed on the slides by cytos-
pinning and were fixed in 4% PFA for 15 minutes at RT. The slides were incubated with pri-
mary antibodies for 2 hours at RT and with secondary antibodies for 90 minutes at RT and
mounted in VECTASHIELD with DAPI. A total of ten fields of view were assessed per sample.

Western blot analysis
Tissues and deferoxamine treated cells were homogenized in lysis buffer (50mM Tris (pH 7.6),
150mMNaCl, 80mMNaF, 1 mM PMSF (phenylmethylsulfonyl fluoride), 1:100 protease inhib-
itor cocktail (Sigma P8340), and 0.5% Nonidet P-40) and incubated on ice for 20 minutes.
Cellular debris was separated by centrifugation at 10,000 x g for 5 minutes at 4°C. The superna-
tant’s protein content was quantified using a BCA assay (Pierce). 50μg of protein was loaded
on a 6% SDS-PAGE gel. Protein was transferred from gel to PVDF membrane then blocked
with 5% milk in TBS-T for 2 hours at room temp. Membrane was then put into primary anti-
body against Hif1α (NB100-134, Novus Biologicals) diluted in blocking solution at 1:1000 for
1 hour. Membrane was then washed 3 times 10 minutes each with TBS-T. Secondary antibody
(horseradish peroxidase-conjugated anti-rabbit IgG) was then added for 1 hour at a 1:100,000
dilution in blocking solution. Membrane was then washed an additional 3 times for 10 minutes
each with TBS-T. Advanced ECL kit (Amersham) was applied to the membrane for 5 minutes
and then membrane was exposed to film.

Reverse Transcriptase—Polymerase Chain Reaction
Oocytes were collected following hormone-induced ovulation of BA mice; blastocysts were
likewise collected 3.5 days after timed-mating of the same. Primordial germ cells were collected
at 9.5 dpc from Oct4-GFP mice by FACS sorting as described above. 100 oocytes, 20
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blastocysts, and 20,000 PGCs were processed with the CellsDirect One-Step qRT-PCR Kit
(LifeTechnologies) directly to cDNA, Total RNA was extracted from 100 ug of testes tissue,
and mouse embryo fibroblast (MEF) cells exposed to 2% oxygen for 6 hours, with TRIZOL
then converted to cDNA with an iScript cDNA Synthesis Kit (Bio-Rad). NoRT reactions were
run concurrently with the processing of each sample. RT-PCR was performed using Hypoxan-
thine-guanine phosphoribosyltransferase (HPRT) and Hif1α primers designed to span exon-
exon junctions in 25ul reactions with 2ul of oocyte, blastocyst, and PGC cDNA and 100ng of
testes or MEF cDNA per reaction. The PCR products were resolved on 3% agarose gels in 1X
Sodium Borate buffer with ethidium bromide staining.

Results

Hif1α expression in preimplantation embryos
Hif1α is readily detectable in murine embryonic stem cell cultures [27]. To assess if this reflects
true physiological expression of Hif1α, we measured Hif1α levels in preimplantation embryos at
three different stages– 2-cell embryo, morula and blastocyst. Following superovulation with PMSG
and hCG and timed mating, embryos were harvested by flushing out the oviducts and the uterus.
Whole-mount immunostaining of the embryos showed Hif1α expression in both cytoplasm and
nucleus of two-cell stage embryo at 1.5dpc as well as in morula at 3.5dpc (Fig 1A). Hif1α was also
detected in the OCT4-positive inner cell mass of blastocysts at 4.0dpc (Fig 1B). Interestingly, unlike
Oct4 expression, we also detected Hif1α expression in the trophectoderm (Fig 1B).

Hif1α expression in migratory PGCs
We then examined whether Hif1α persists in the primordial stem cell compartment in more
developed embryo at 9.5dpc. Here we utilized the Oct4-GFP transgenic strain [28], in which
GFP expression is driven by Oct4 promoter. Previous work has shown that nearly all GFP
+ cells obtained from the Oct4-GFP transgenic embryos at 9.5dpc are PGCs [28]. At this stage
of development, male and female PGCs are equivalent, and are actively migrating from the
hindgut towards the developing gonadal ridges (reviewed by Richardson & Lehmann, 2010
[29]). We performed whole-mount staining of these embryos and observed co-localization of
GFP and Hif1α in migrating PGCs (Fig 2A). FACS sorted GFP+ cells from d9.5 Oct4-GFP
embryos also exhibited co-localization of GFP and Hif1α as expected (Fig 2B).

Hif1α expression in developing gonads
We investigated whether the expression of Hif1α observed in the primitive germline at 9.5dpc con-
tinues to be present after PGCs reach the developing gonads and commit to either the male or
female germ lineage. Both male and female gonads from 15.5dpc Oct4-GFP embryos were used for
this experiment. Immunostaining of cryo-sections revealed that Hif1α is expressed in male PGCs
located within the testis cords at 15.5dpc (Fig 3A top). Hif1αwas also detected in female PGCs
within germ cell cysts (Fig 3A bottom). We also FACS sorted GFP+ cells from 15.5dpc Oct4-GFP
male and female gonads and observed the co-localization of GFP and Hif1α in both (Fig 3B).

Hif1α expression in the neonatal testis and adult testis
To assess whether Hif1α expression persists in the developing gonads postpartum, we next
examined Hif1α expression pattern in neonatal gonads. Double staining of P5 testis with Hif1α
and a cytoplasmic germ cell marker, mouse VASA homolog (MVH), revealed Hif1α expression
in gonocytes within the seminiferous tubules (Fig 4A). We also performed western blot analysis
of whole P5 testis and confirmed an abundant level of Hif1α expression at this stage (Fig 4B).
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To assess whether Hif1α expression continues in adult male germ cells, we performed
immunostaining of testis from adult (three-month old) male mice and observed Hif1α

Fig 1. Hif1α expression in preimplantation embryos. (A) Hif1α staining in two-cell stage embryo and morula
(top) and negative control images without primary antibody (bottom). (B) Co-staining of OCT4 and Hif1α in inner
cell mass of blastocyst (top) and negative control images without primary antibodies (bottom). Scale bar: 30μm.

doi:10.1371/journal.pone.0154309.g001
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expression in the nucleus of spermatogonial population (Fig 4C). The same expression pattern
was also observed in testis from young adult mice (six-week old) testis (S1 Fig). We performed
western blot analysis of whole adult testis and confirmed the presence of abundant levels of
Hif1α in the adult testis; human embryonic kidney 293 (HEK293) cells with Hif1α stabilization
achieved by treatment with the iron chelator deferoxamine (DFX), a hypoxia mimetic, were
used as a positive control (Fig 4D).

Hif1α expression in the neonatal and adult ovary
Double staining of P5 ovary with Hif1α and MVH revealed Hif1α expression in these early
stage oocytes, and at particularly high levels in the nuclei of very small oocytes located in the
cortical region of the neonatal ovary (Fig 5A). However, Hif1α was not detected in larger
oocytes found towards the center of the tissue.

In contrast, we did not detect Hif1α localization to smaller oocytes in the adult ovary (Fig
5B), rather, Hif1α expression was observed in larger, mature oocytes from ovaries of mice 6
weeks and 3 months of age (S1 Fig and Fig 5C). These Hif1α positive oocytes from adult mice
are surrounded by several layers of granulosa cells, an indication of a more mature state of
development than the smaller Hif1α-positive oocytes found in the neonatal ovary. To deter-
mine whether Hif1α expression continues in the oocyte after ovulation (Metaphase II oocyte),
we performed immunostaining of oocytes collected from adult (3 month-old) female mice that

Fig 2. Hif1α expression in 9.5dpc primordial germ cells. (A) Whole-mount staining of Hif1α and GFP in Oct4-GFP embryo (lateral view). Scale bar:
100μm. (B) Hif1α and GFP staining of FACS-sorted PGCs. Scale bar: 20μm.

doi:10.1371/journal.pone.0154309.g002
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had been superovulated with PMSG and hCG. We observed a very clear, robust expression of
Hif1α throughout the metaphase II oocyte (Fig 5D).

Regulation of Hif1α expression during early development
To begin to assess the regulatory mechanisms controlling Hif1α expression during early devel-
opment, we performed RT-PCR analysis of Hif1αmRNA in blastocysts, 9.5 dpc PGCs, whole

Fig 3. Hif1α expression in 15.5dpc germ cells. (A) Sections of male (top) and female (bottom) gonads from 15.5 dpc Oct4-GFP embryos showing
Oct4-GFP and Hif1α expressions in germ cells. Scale bars: 50μm (male) and 20μm (female). (B) FACS-sorted male (top) and female (bottom) 15.5dpc germ
cells showing Oct4-GFP and Hif1α expressions. Scale bars: 100μm (male) and 50μm (female).

doi:10.1371/journal.pone.0154309.g003

Germ Cell Hif1alpha Expression

PLOS ONE | DOI:10.1371/journal.pone.0154309 May 5, 2016 8 / 14



testes, and mature oocytes. Mouse embryonic fibroblast (MEF) cells exposed to hypoxic condi-
tions were used as a positive control for Hif1α expression. Blastocysts, PGCs, and testes all
showed the presence of Hif1α transcript, while mature oocytes did not (Fig 6), despite the abun-
dant presence of the protein (Fig 5D). This suggests that the Hif1α protein is stockpiled in mature
oocytes, to provide sufficient reserves of Hif1α in the hypoxic microenvironment of the early
embryo, until the gene is re-activated, at approximately the blastocyst stage of development.

Discussion
Hif1α is a key regulator for a number of adaptive responses to hypoxia, such as changes in
energy metabolism and stimulation of angiogenesis. In addition, Hif1α has also been shown to

Fig 4. Hif1α expression in neonatal and adult testis. (A) Section of testis from 5-day old (P5) male new born pups showing Hif1α expression in MVH
+ gonocytes within the seminiferous tubules (top) and negative control images without primary antibodies (bottom). Scale bar: 50μm. (B) Western blot
analysis of Hif1α expression in P5 testes (left) compared to extract of the adult brain sub-ventricular zone (SVZ) (right). Loading control (β-Actin) is shown
below. (C) Section of adult (3 month old) testis showing Hif1α expression in spermatogonia. Scale bar: 30μm. (D) Western blot analysis of whole adult testis.
HEK293 cells treated with DFX were used as a positive control and intestinal tissue was used as a negative control. Loading control (β-Actin) is shown
below.

doi:10.1371/journal.pone.0154309.g004
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be involved in maintenance of various types of stem and progenitor cells, including ESCs [30],
neural stem cells [31], mesenchymal stem cells [32] and HSCs [20]. However, the expression
and regulation of Hif1α in primitive stem cells and the germ cell compartment has not been
extensively studied. Interestingly, our results show that Hif1α is expressed throughout the life
cycle in mice, throughout early development, in PGCs, and in adult germ cells, suggesting that
hypoxia and Hif1αmay play an important role in early development, the maturation of germ
cells, as well as the maintenance of germ stem cells.

Immunohistochemical analyses revealed that Hif1α is expressed in pre-implantation
embryos at two cell, morula and blastocyst stages (Fig 1A and 1B). In blastocysts, the OCT4-
positive, pluripotent inner cell mass expresses Hif1α. This observation agrees with the findings
from our previous study showing that Hif1α is present in mouse ESC cultured under normoxic
condition [24]. Hif1α continues to be expressed in migrating PGCs at 9.5 dpc before they are

Fig 5. Hif1α expression in neonatal and adult ovary. (A) Section of P5 ovary showing MVH expression in all oocytes and Hif1α expression only in small
oocytes (primary follicles; top). Negative control images without primary antibodies (bottom). Scale bar: 50μm. (B) Section of adult ovary showing absence of
Hif1α expression in primary follicles detected with MVH staining (top). Negative control without primary antibody (bottom). Scale bar: 50μm. (C) Section of
adult ovary showing Hif1α expression in mature primary oocyte (arrow). Negative control without primary antibody (bottom). Scale bar: 100μm. (D) Image of
a Metaphase II oocyte from superovulated three-month-old female showing Hif1α expression. Scale bar: 50μm.

doi:10.1371/journal.pone.0154309.g005
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committed to a germ cell lineage (Fig 2), and persists in both male and female PGCs at 15.5
dpc (Fig 3) as well as in neonatal reproductive tissues (Figs 4 and 5).

In adult testis, the expression of Hif1α is detected in the spermatogonial stem cell compart-
ment along the basement membrane of the seminiferous tubules. As those cells differentiate
into spermatocytes, Hif1α signal becomes less visible by immunohistochemical assay. Towards
the end of spermatogenesis, specifically during the process of spermiogenesis, Hif1α is again
detected in the elongated spermatids (Fig 4C). As it has been shown that the activity of telome-
rase is the highest in the spermatogonial stem cells and decreases as the cells differentiate [33],
and also that Hif1α regulates telomerase activity and telomere length in mouse ESC [24], it is
possible that Hif1α is involved in the maintenance of spermatogonial stem cells by up-regulat-
ing telomerase, or more specifically, telomerase reverse transcriptase. Our observation of Hif1α
expression in elongated spermatids, as well as the previously reported Hif1α expression in the
mature spermatozoa [34] suggest that Hif1αmight also play a protective role in haploid male
germ cells. Further evaluation is necessary in order to assess the mechanisms for Hif1α regula-
tion as well as possible Hif1α function in spermatogenic stem cells and during
spermatogenesis.

In neonatal ovary, we detected Hif1α in small oocytes in the cortical region, but not in larger
oocytes found towards the center of the ovary (Fig 5). However, in adult ovaries, Hif1α is
detected in more mature oocytes located within secondary and antral follicles and not in
smaller oocytes (Fig 5). It is possible that small Hif1α-positive oocytes in the neonatal ovary
still reside within the germ cell cysts, which would explain why we did not observe any Hif1α-
positive small oocytes in adult ovary because the breakdown of the germ cell cysts into individ-
ual follicles, completed several days after birth, would cause the leakage of Hif1α protein out of
the cells.

There are a number of intriguing roles Hif1αmay play in primitive stem cells and germ
cells. Given the importance of telomerase in maintenance of telomeres in the early embryo,
and in germ cells, particularly male germ cells, Hif1αmay play a role in regulation of telome-
rase, as we have observed previously in murine ESC [24]. Indeed, telomerase activity is readily
detected in male gonads [35], PGCs [36], and primitive cells in the early embryo [37]. The role
of Hif1α in these cells certainly goes beyond regulation of telomerase. In ESC and iPSC Hif1α
is required to switch energy metabolism from oxygen-dependent respiration to glycolysis,
which may have fundamental roles in the maintenance of pluripotency [23]. Furthermore,
other studies have linked Hif1α to the oxidative stress response pathway involving FOXO3
[38,39].

Hif1α levels may also be regulated at translational level. It has been shown that IGF-1
increases Hif1α synthesis through PI3K and MAPK pathways in colon cancer cells [40]. In kid-
ney cancer cells, the ability of mTOR to promote Hif1α translation has also been studied [41].
Therefore, it is possible that the expression of Hif1α we observed throughout the murine

Fig 6. Transcription of Hif1α during early stages of development. RT-PCR analysis of Hif1α transcription
in 3.5 dpc blastocysts, 9.5 dpc PGCs, whole testes tissue, mature oocytes, and hypoxic-cultured MEFs. Hif1α
PCR products are shown in the upper row with HPRT single-copy gene control reactions in the bottom row,
cDNA reactions are shown with complementary noRT reactions for each gene and sample (left and right
respectively).

doi:10.1371/journal.pone.0154309.g006
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lifecycle is regulated at translational level, although the mechanism might be different at vari-
ous developmental stages and also between sexes. In support of this notion, we have observed
stable and abundant Hif1α protein in mature oocytes in the absence of detectable Hif1α tran-
script (Fig 6). This likely reflects an oxygen independent stabilization of Hif1α. This high level
of Hif1α in oocytes presumably serves as a reserve to last until the Hif1α gene is re-activated at
around the blastocyst stage.

In summary, the present study shows that Hif1α is expressed throughout the life cycle of
mouse germ cells, indicating the importance of Hif1α during normal development of germ
cells. It is likely that Hif1α has multiple functions during the process of germ cell development,
considering the fact that it is present in both male and female germ cells. Future experiments
using a germ cell specific Hif1α knockout mouse model will allow us to evaluate the specific
roles of Hif1α in germ cell development.

Supporting Information
S1 Fig. Analysis of Hif1α expression in young mice. Sections of 6-week-old testis and ovary
showing Hif1α expression in spermatogonia (left) and oocytes (right). Scale bar: 50μm.
(TIF)
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