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Brain-wide projection reconstruction of single
functionally defined neurons
Meng Wang1,2,3,13, Ke Liu1,2,13, Junxia Pan1,2,13, Jialin Li3,13, Pei Sun1,2,13, Yongsheng Zhang4,5,13, Longhui Li3,6,

Wenyan Guo4,5, Qianqian Xin1,2, Zhikai Zhao1,2, Yurong Liu4,5, Zhenqiao Zhou 7, Jing Lyu7, Ting Zheng4,5,

Yunyun Han 8, Chunqing Zhang1,2, Xiang Liao 3✉, Shaoqun Zeng 4,5✉, Hongbo Jia 6,7,9,10✉ &

Xiaowei Chen 1,2,11,12✉

Reconstructing axonal projections of single neurons at the whole-brain level is currently a

converging goal of the neuroscience community that is fundamental for understanding the

logic of information flow in the brain. Thousands of single neurons from different brain

regions have recently been morphologically reconstructed, but the corresponding physiolo-

gical functional features of these reconstructed neurons are unclear. By combining two-

photon Ca2+ imaging with targeted single-cell plasmid electroporation, we reconstruct the

brain-wide morphologies of single neurons that are defined by a sound-evoked response map

in the auditory cortices (AUDs) of awake mice. Long-range interhemispheric projections can

be reliably labelled via co-injection with an adeno-associated virus, which enables enhanced

expression of indicator protein in the targeted neurons. Here we show that this method

avoids the randomness and ambiguity of conventional methods of neuronal morphological

reconstruction, offering an avenue for developing a precise one-to-one map of neuronal

projection patterns and physiological functional features.
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Understanding how neuronal functions are related to mor-
phology is a central goal of modern neuroscience1–3. Axonal
projections determine how neurons route their physiological

functional output information to target brain regions4,5. However,
even within a small brain region, neurons often exhibit extraordinary
functional diversity and are spatially intermingled6–10. Thus, there is
a great demand for axonal projection reconstructions of neurons
that are defined by physiological functional features in a given brain
region. In principle, three levels of methods are available for this
purpose. The first-level methods enable non-specific labelling of
neurons via expression of fluorescent proteins11–13 for visualization
and reconstruction using whole-brain serial sectioning imaging
techniques14–16. At this level, the neurons to be labelled are usually
randomly selected from a defined brain region. The second-level
methods label neurons with fluorescent proteins based on specific
molecular markers through a Cre-dependent expression procedure
to enable the reconstruction of molecularly defined neuronal types17.
Although highly relevant, molecularly defined cell types do not
unambiguously define specific physiological functional features
under in vivo conditions. The third-level methods involve both
electrophysiological recording and plasmid delivery to express
fluorescent proteins in vivo via a patch pipette on the same
neurons18,19. These methods enable direct matching of single-cell
physiological functional features and axonal projections but with the
same caveat that chance largely determines which exact neurons are
reconstructed. In addition, these methods have not yet yielded a
complete reconstruction of neuronal morphology at the whole-brain
level.

With the help of either recently developed high-throughput
techniques13,20 or extensive human labour21, it may someday
become possible for neurons with different types of physiological
functional features to be sufficiently sampled and reconstructed.
However, many neurons with specific response patterns, such as
those related to learning, memory, and behaviour, are sparse, con-
stituting only a small percentage of neurons in the relevant brain
regions10,22, which raises concerns that high-throughput techniques
may yield highly ambiguous results. Thus, there is a strong but unmet
demand for a method that enables precise, targeted labelling of
neurons whose physiological functional features have been defined
in vivo. Here, we report the 2-SPARSE (two-photon imaging-assisted
Single-cell Plasmid electroporation and Adeno-associated virus
(AAV) injection for Reconstructing Single nEurons) method that
seamlessly combines two-photon Ca2+ imaging of cortical neuronal
populations in awake mice10,23 and postmortem whole-brain serial
section imaging of dendrites and axonal projections using fluores-
cence micro-optical sectioning tomography (fMOST)24. As an
example demonstration of this method, we identified single neurons
with specific tone-tuning response profiles6 in the AUDs of awake
mice and electroporated these neurons one by one to label their
dendrites and axons. Using retrograde labelling12 from the distant
projection target area as a control, we confirmed that long-range
interhemispheric cortico-cortical projections can be reliably labelled
by 2-SPARSE. Furthermore, we also validated the labelling efficiency
of 2-SPARSE by comparing it in side-by-side experiments with that
of other previously reported strategies (e.g., binary AAV expression
for labelling sparse neurons). We also demonstrated the extended
application of the 2-SPARSE method in other brain regions and
deeper layers (e.g., the motor cortex and layer 5). Importantly,
2-SPARSE can be readily implemented in a broad range of labora-
tories that have been equipped with a standard two-photon micro-
scope and conventional electrophysiological devices.

Results
The 2-SPARSE workflow. Briefly, 2-SPARSE consists of four key
steps to achieve brain-wide reconstruction of functionally defined

neurons in the mouse brain (see critical milestones in Supple-
mentary Table 1). As an example, we describe the steps used to
reconstruct targeted AUD neurons with defined tone-tuning
response properties (Fig. 1a and Supplementary Video 1). (1) A
bulk population of neurons located in layer 2/3 (L2/3) of the
AUD in awake mice was labelled by local injection of a Ca2+

fluorescent indicator dye, Cal-520 AM. Sound-evoked Ca2+

transients were recorded by two-photon Ca2+ imaging, and the
frequency response area (FRA) and best frequency (BF) of each
neuron were determined6. (2) Single neurons with specific tone-
tuning properties (as shown in the examples in Figs. 1 and 4)
were chosen to be targeted for expression of a Cre-GFP (hSyn-
eGFP-P2A-Cre-pA; see “Methods” for details) plasmid by single-
cell electroporation25. To enhance fluorescent protein expression
in long-range projection axons, an AAV that contained a Cre-
dependent expression cassette encoding membrane green fluor-
escent protein (mGFP) (AAV-hSyn-DIO-mGFP) was injected
laterally to the site of the electroporated neurons. (3) Thirty days
after single-cell electroporation, the animals were perfused, their
brains were removed and transferred to the fMOST imaging
device, and whole-brain serial sectioning imaging datasets were
acquired at submicron voxel resolution. (4) Morphological
reconstruction and quantitative analysis were performed to study
axonal projection patterns of the imaged neurons. Next, we
illustrate how and why we configured the relevant basic techni-
ques and combined them to enable complete reconstruction of
brain-wide projections of single functionally defined neurons.

Online identification of functional features of single neurons
in vivo. In the first step, we used a Ca2+ fluorescent indicator dye
for two-photon neuronal population imaging in awake mice,
recorded sound-evoked Ca2+ responses over multiple trials, and
then analyzed the FRA and BF for individual neurons (Fig. 1b–d
and Supplementary Fig. 1). We first chose two example neurons
(Fig. 1b, c) with similar response features according to the defi-
nition of BF= 16.3 kHz and targeted them for morphology
labelling. In this approach, it is critical to perform acute func-
tional imaging with a synthetic Ca2+ dye that is gene free to avoid
interference with the subsequent morphological labelling proce-
dure (which relies on genetic approaches).

Targeted single-cell plasmid electroporation in vivo. In the
second step, we combined two genetic approaches to achieve
complete fluorescent labelling of individual neurons. A micro-
pipette (electrical resistance of ~12 MΩ) containing intracellular
solution and a Cre-GFP plasmid was advanced towards the soma
of each functionally defined target neuron one by one under live
two-photon imaging guidance (Fig. 1e). The same micropipette
was used to apply electrical current pulses (pulse amplitude:
−450 nA, duration: 500 µs per pulse, train of 100 pulses at a
frequency of 50 Hz) to perforate the cellular membrane and
deliver the plasmid into the cell body. Electroporation was
deemed successful when pores on the membrane of the target
neuron were first opened by electrical shock. An intracellular
Ca2+ dye, OGB-1 potassium salt, was added to the micropipette
solution to visualize whether the cell body was filled after the
electrical pulses (Fig. 1e). We also monitored Ca2+ activity to test
whether the electroporated neuron remained alive. We compared
spontaneous Ca2+ transients before (Fig. 2a) and after (Fig. 2b)
electroporation and found no significant difference in either
signal amplitude (P= 0.2844, before: n= 252 transients; after:
n= 260 transients) or frequency (P= 0.7228, n= 78 trials for
both cases, 39 neurons from 16 mice; Fig. 2c, d). The success rate
of electroporation reached >90% (36 out of 39 neurons in 16
animals) in consecutive experiments (Supplementary Table 2).
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For each animal, after one or several neurons were successfully
electroporated, the electroporation pipette was retracted, and
another micropipette loaded with AAV solution was inserted
through the same track towards the target zone. The AAV
contained a Cre-dependent expression cassette (double-floxed
inverse open reading frame, DIO) encoding mGFP. The AAV
solution was pressure-injected into the extracellular space near
the location of the electroporated neurons (see “Methods” for
details). The combination of single-cell Cre plasmid electropora-
tion and nearby local AAV injection is a key feature of our
method, which utilizes Cre to activate and amplify robust
fluorescence expression in targeted neurons without risk of virus
spill-over. After in vivo functional identification, targeted
electroporation and AAV injection, we sealed the craniotomy
with a glass window and monitored the expression level of GFP in
the targeted neurons over time (days) through chronic in vivo
two-photon imaging (Fig. 1f). Successful labelling was defined by
the electroporated neuron remaining clearly visible without signs
of damage or death for 30 days after electroporation. The overall
success rate of all the steps until full labelling of functionally
identified single neurons in vivo reached >80% in consecutive
experiments (32 out of 39 neurons in 16 animals, Supplementary
Table 2).

The key part of this step is the combination of single-cell
plasmid electroporation and nearby local AAV injection to
unlock robust fluorescence expression in target neurons. Using
this step, we achieve an optimal balance between expression level
and cellular toxicity, thus bypassing the challenge of titrating the
plasmid concentration. Moreover, the number of labelled neurons
per imaging region can be determined by the number of neurons
electroporated (Supplementary Fig. 2). Axon crossovers can
introduce ambiguity into reconstruction. However, we were able
to precisely reconstruct the two neurons with a soma distance of
~100 µm in Fig. 1. Based on this experience, we then used our
method to label a maximum of four neurons within a single two-

photon imaging field of view (200 µm × 200 µm), consequently
avoiding separability issues with post-mortem morphological
reconstruction, which was consistent with a previous study12.

Post-mortem whole-brain serial sectioning and imaging. In the
third step, we performed whole-brain serial sectioning and ima-
ging at a resolution of 0.3 × 0.3 × 1 μm3 (see “Methods” for
details) with the fMOST technique (Supplementary Fig. 3). Thirty
days after electroporation, the expression of GFP reached a suf-
ficiently high level for post-mortem fMOST imaging. We chose
the fMOST imaging technique because of its high z-resolution,
important for resolving axons, which is ensured by mechanical
sectioning. We fixed the post-mortem mouse brain samples at the
in vivo two-photon imaging setup and then transferred them to
the fMOST imaging system, the latter of which also offers globally
accessible fMOST imaging services for such a workflow. With our
labelling technique from the second step, we were able to clearly
identify the soma, dendrites, and distant axons of each targeted
neuron in the raw images (Supplementary Fig. 4). The complete
morphology of each labelled neuron was reconstructed by manual
tracing (Supplementary Fig. 5). In order to sufficiently balance
reconstruction accuracy and throughput, each neuron was traced
by two experienced annotators, and the consensus result was
approved (Supplementary Fig. 6)26. Then, all the reconstructed
neurons were registered to the template of the Allen Brain Atlas,
i.e., the Allen Mouse Common Coordinate Framework (CCF v3),
combining the approaches of greyscale-based three-dimensional
(3D) registration and dense landmark-based two-dimensional
(2D) registration in the local regions (Supplementary Fig. 7).

Brain-wide reconstruction of individual functionally defined
neurons. In the last step, both the dendrites and axonal projec-
tions of labelled neurons were completely traced, reconstructed
and analyzed (Fig. 3). In a representative whole-brain dataset
consisting of two L2/3 neurons (neurons #1 and #2, the same cells
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as in Fig. 1) from the same AUD and with the same tone-
responding properties (BF= 16.3 kHz), we found that these two
neurons exhibited distinct projection patterns (Fig. 3a) as well as
various projection strengths within diverse brain regions (Fig. 3b).
For instance, neuron #1 exhibited a bilateral projection pattern,
with projections to the ipsilateral auditory cortex (AUD_i),
temporal association areas (TEa_i) and caudatoputamen (CP_i),
and with a major axon crossing the corpus callosum and finally
forming dense axonal terminal fields at the contralateral target
areas, mainly the auditory cortex (AUD_c). In contrast, the
projections from neuron #2 were mainly distributed in regions
including the ipsilateral striatum (CP_i) and auditory areas
(AUD_i) (Fig. 3c). We performed a quantitative analysis of both
axons and dendrites of these two neurons (Fig. 3c, d) and found
that the length and total number of branches of the axons were
much larger for neuron #1 than for neuron #2. As axonal length
per area in the cerebral cortex has previously been reported to
correlate strongly with the number of recipient neurons27, these
results suggested that neuron #1 may have more output recipients
than neuron #2. In addition, the length and total number of
branches of dendrites were also much larger for neuron #1 than
for neuron #2, indicating that neuron #1 may receive more
synaptic inputs than neuron #2 (Fig. 3e).

Example of 2-SPARSE for neurons with different functional
features. In the experiments described above, two neurons in the
same animal with similar response features were targeted by
electroporation (steps 1 and 2). Next, we provide a demonstration
of the use of 2-SPARSE for two neurons with distinct response
features. In this example, we targeted two neurons (neurons #3
and #4 in Fig. 4a) that exhibited distinct response patterns to
pure-tone stimulation, as indicated by the analyses of FRA and BF
(Fig. 4b, c). We reconstructed their axonal projections using the
same protocol for fMOST imaging followed by neuronal recon-
struction and analysis (Fig. 4d, e). In this example, neurons #3
and #4 exhibited a similar ipsilateral-to-contralateral projection
pattern, with main axons that passed through the corpus callo-
sum and formed dense terminal fields at the contralateral AUD
(Fig. 4f). Some minor differences between these two neurons
included their different projection strengths in specific brain
regions, such as the TEa and supplemental somatosensory area
(Fig. 4e), and the location of the neuron #3 soma was deeper than
that of neuron #4 (Fig. 4g). Similarly, we also quantitatively
analyzed the length and a total number of branches for both the
axons and dendrites of the two neurons. Interestingly, although
neurons #3 and #4 exhibited distinct response features, their
brain-wide projection patterns were very similar, in contrast to
the previous example in which neurons #1 and #2 were func-
tionally similar but morphologically distinct (Fig. 4h). Data from
these example neurons are consistent with previous findings
obtained using bulk labelling methods for L2/3 cortical
neurons28,29 in which a fraction of L2/3 sensory cortical neurons
exhibited long-range interhemispheric projections. However, the
lack of interhemispheric projection of neuron #2 raised the
important question of whether or not this morphology was due to
incomplete labelling. We, therefore, addressed this issue in the
following set of experiments.

Evaluation of the quality of 2-SPARSE for long-range projec-
tion labelling. We evaluated the axonal labelling quality achieved
by 2-SPARSE through an independent set of experiments invol-
ving long-range retrograde labelling, which is an acknowledged
standard established previously12. The long-range projection
between bilateral AUDs was considered a challenging test metric
because this contralateral cortico-cortical projection distance is

~9.6 mm long, which is more than twice the ipsilateral cortico-
striatal projection of 4.7 mm and is one of the longest possible
projections for L2/3 neurons in the mouse neocortex (Fig. 5a).
First, we performed bulk retrograde labelling with AAV2/2-Retro
expressing a red fluorescent protein (mRuby3) starting from L2/3
of the contralateral AUD (the injection site of AAV2/2-Retro-
hSyn-H2B-mRuby3-WPRE-pA is indicated by an arrow in the
left AUD in Fig. 5b). This approach resulted in the labelling of a
fraction of neurons in L2/3 of the AUD on our single-neuron
targeting side (the right AUD in Fig. 5b). Then, by 2-SPARSE, we
targeted a few neurons whose long-range interhemispheric con-
tralateral projections were verified by mRuby3 signal following
AAV2/2-Retro virus injection into the contralateral AUD (the
two targeted neurons are shown in Fig. 5c, d). At thirty days after
electroporation, the axonal terminals in the contralateral AUD of
our targeted neurons were clearly visible in all tested cases
(Fig. 5e, f and Supplementary Fig. 8a, b; 9 neurons from 5 mice),
indicating a high success rate of 2-SPARSE in filling long-range
axon collaterals (see also Supplementary Video 2). In a parallel set
of control experiments, we labelled L2/3 contralateral AUD-
projecting neurons in the AUD that were identified by AAV2/2-
Retro virus injection followed by single-cell electroporation of the
Cre-GFP plasmid, as described above but without the assistance
of AAV injection. For these control neurons, the axonal projec-
tions extended out of the local AUD but could not reach the
confirmed destination of the contralateral AUD (Fig. 5g, h and
Supplementary Fig. 8c; 9 neurons from 5 mice), suggesting that
AAV injection was important for enhancing the labelling of long-
range interhemispheric projections and which showed a success
rate close to 100% through our combined method.

Comparison of 2-SPARSE with conventional AAV-based
labelling. AAV-based labelling has served as a powerful tool to
elucidate the hierarchies of neural circuits due to its extraordinary
properties, such as a high infection efficiency and relatively low
disturbance to host cells. Previous studies13,30 have employed a
binary AAV expression system in which a diluted Cre-expressing
AAV was used in combination with another AAV that expressed
Cre-responsive elements (e.g., DIO) to label a limited number of
neurons in the cerebral cortex (see Methods for details). To
evaluate the quality of 2-SPARSE single-neuron labelling by
comparison with that of the binary AAV expression system, we
reproduced the binary AAV expression method in the AUDs. We
reconstructed the morphologies of 6 neurons (neurons #23–28)
labelled with the binary AAV expression system (Fig. 6a). The cell
bodies of these 6 neurons were all located in L2/3 (2 neurons in
L2 and 4 neurons in L3) (Fig. 6b). We compared these neurons
with the previous set of 13 neurons (neurons #1–13) labelled and
reconstructed by 2-SPARSE, as mentioned above (Figs. 3–5), by
analyzing the length and total number of branches for both axons
and dendrites. We found no significant differences in dendrite
length (P= 0.8314), a total number of dendrite branches
(P= 0.3556), axon length (P= 0.4155), or the total number of
axon branches (P= 0.4524) between groups labelled by these two
different methods (Fig. 6c). These results demonstrate that the
quality of single-neuronal labelling using 2-SPARSE is compar-
able to that of the currently prevalent binary AAV expression
system.

Extended applications of 2-SPARSE in the motor cortex and its
deeper layers. To further demonstrate the application of 2-
SPARSE, we performed an additional set of experiments in the
motor cortex, where a rich pool of axonal projection patterns was
recently revealed by a high-throughput study13. After single-cell
plasmid electroporation and local AAV injection, we performed
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fMOST imaging and reconstructed eight intratelencephalic (IT)
neurons (neurons #29–36) from two brain samples. We then
registered these neurons and aligned them to the standard Allen
Brain Atlas (Fig. 7a). With brain-wide axonal reconstruction and
quantitative analysis, we found that these eight neurons exhibited
highly diverse projection patterns, which were reflected by the

projection strengths of axon targets in diverse brain regions
(Fig. 7b) as well as by the axonal morphology of each neuron
(Fig. 7c).

In this dataset, there were four neurons in layer 5 (L5) and four
neurons in L2/3 (Fig. 7c, d). The projection patterns of L5
neurons were more complex than those of most L2/3 neurons, as
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reflected by the quantitative analysis of axon length (P= 0.0286,
two-sided Wilcoxon rank-sum test) (Fig. 7e). The total axon
length of the representative L5 neurons (neuron #34) reached as
high as 212 mm, which was comparable to the axon length of
representative L5 neurons (over 180 mm) reported by several
previous studies13,31. This finding indicates that 2-SPARSE can
reliably label individual neurons and enable complex reconstruc-
tion of neurons in the motor cortex.

Discussion
Here, we developed 2-SPARSE, a method that combines two-
photon Ca2+ imaging in awake mice, targeted plasmid electro-
poration, and local viral injection guided by two-photon imaging,
post-mortem whole-brain sectioning and imaging, and morpho-
logical tracing. With 2-SPARSE, we were able to precisely label
single neurons with distinct sound frequency tuning features in
the AUD of awake mice (Fig. 1) and reconstruct long-range
axonal projections that spanned the entire brain (Figs. 4, 5).
2-SPARSE enables 100% accuracy in matching brain-wide mor-
phology with selected functional features for individual neurons.
A key feature of this method is its combination of single-cell
electroporation of a Cre-expressing plasmid with close, local
injection of AAV injection to enable Cre-mediated activation and
amplification of robust fluorescence expression in targeted neu-
rons. This approach provides higher accuracy than that of con-
ventional methods that are based only on conventional filling of
cells with biocytin or EGFP plasmids32–34. When we compared
our findings with the mesoscale projection patterns from the
Allen Mouse Brain Atlas, we found that the single-cell target
brain regions we identified in the AUD were highly concordant
with those of the mesoscale data3,11. This finding suggests that the
high-fidelity of 2-SPARSE supports its use in cross-validation of
results obtained by high-throughput methods that have high
variability among individual cells in the integrity of labelling.

Compared with widely used high-throughput approaches that
primarily involve viral vector-mediated gene transfer13,17,35 with
uncontrollable randomness in cell targeting, 2-SPARSE has a
unique advantage in that it enables precisely targeted labelling of
single, functionally defined neurons after functional population
imaging (Fig. 1). This precision is particularly useful when the
functionally defined neurons in a specific brain region are sparse
in number but exhibit wide spatial distribution and are inter-
mingled with other neurons in the same region. In recent decades,
many such neuronal types have been identified across multiple
brain regions. For example, feature-specific neurons have been
identified in the AUD6 and visual cortex36 for processing of
sensory information; place cells37 and grid cells38 have been
identified in the hippocampus and the entorhinal cortex that
participate in spatial navigation; engram cells39–41 have been
identified in the hippocampus and cortex for memory processing,
and holistic bursting cells10 have been identified in the AUD for
complex sound encoding. These types of functionally defined cells
constitute just a small proportion of the neuronal population in
specific brain regions (e.g., grid cells, ~20%; engram cells, ~4%;
and holistic bursting cells, ~5%) and are inevitably spatially

intermingled. Moreover, these functional neuron types largely
lack known molecular markers. Thus, molecular approaches
alone42–45 are frequently limited in their potential application for
mapping between functional and morphological features. In this
case, 2-SPARSE not only provides an ideal solution for acquiring
precise data but can also serve as an annotation reference for
benchmarking and calibration of high-throughput population
mapping methods used to correlate functional and morphological
features of neurons.

It warrants mention that 2-SPARSE, although extremely precise,
has several drawbacks. First, the workflow requires intensive real-
time interactive operations. However, once well established and
practised, an overall success rate of >80% can be achieved in con-
secutive experiments (Supplementary Tables 2–5). Notably, the
success of each step can be readily confirmed by visualization before
proceeding to the next step, thus allowing the valuable experience to
be gained after short cycles of troubleshooting. Second, visual gui-
dance by two-photon imaging is required for precise single-cell
targeting; thus, 2-SPARSE is limited to brain regions that are opti-
cally accessible by two-photon imaging with a cranial window that
allows micropipette manipulation under the microscope objective.
Here, we demonstrated the extended application of 2-SPARSE in L5
neurons of the mouse motor cortex (Fig. 7). In principle, 2-SPARSE
could also be applied to hippocampal regions in which a combi-
nation of two-photon imaging and single-cell electrophysiology
in vivo was feasible in previous reports by experienced
researchers46–48, although analysis of this region is likely to be more
difficult. Third, to avoid optical interference, we did not use fluor-
escent Ca2+-sensitive proteins for two-photon imaging but rather
used chemical Ca2+ dyes that faded after 1 day. The use of these
dyes may be a limitation for studies that are aimed at chronic
tracking of changes in the functional features of individual cells10. A
possible solution to address this limitation is to employ Ca2+-sen-
sitive proteins and morphology indicator proteins with different
colours.

Implementation of 2-SPARSE does not require new instru-
ments or reagents beyond those commonly used in neuroscience
research, but requires the effective combination of these instru-
ments, as demonstrated in this study. The aspects of this tech-
nique that require the most care and expertize are the integration
of a conventional micropipette manipulator and an electropora-
tion amplifier into a standard two-photon microscope with video-
rate full-frame imaging capability. In our experience, considerable
training and practice are essential to simultaneously operate these
devices in one experiment. We anticipate that the successful
implementation of 2-SPARSE will enable major breakthroughs in
brain connectomics through this advance in single-neuron
functional projectomics, thus bridging neuroanatomy and neu-
rophysiology with single-cell precision in vivo.

Methods
Animals. All experimental procedures related to the use of animals were approved
by the Third Military Medical University Animal Care and Use Committee and
were carried out in accordance with institutional animal welfare guidelines. Adult
(8- to 12-week-old) male C57BL/6J mice were obtained from the Laboratory
Animal Centre at the Third Military Medical University. The mice were given

Fig. 4 Whole-brain reconstruction of single functionally distinct neurons. a A representative two-photon image showing L2/3 neurons of the AUD of a
head-fixed awake mouse. b Colour-coded FRAs of the two neurons marked in (a). c Best frequency map of all the neurons in the imaging plane shown in
(a). The colour code is on the right. d Two reconstructed neurons (neurons #3 and #4) registered to the standard Allen Brain Atlas are shown in horizontal
(left), sagittal (upper right), and coronal (lower right) views. e Projection strengths of the two neurons. The colour code reflecting the projection strength is
on the right. f The two reconstructed neurons are displayed separately. The target areas are coloured as indicated. g The dendrites of the two brain-wide
reconstructed neurons are displayed in different colours. The grey dashed lines indicate laminar borders. The two neuronal somata are located in L2/3.
h Comparisons of the dendritic and axonal lengths and total numbers of axonal and dendritic branches between neuron #3 and neuron #4. AUD auditory
areas; SSs supplemental somatosensory area; TEa temporal association areas.
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access to food and water ad libitum, and they were housed in a humidity-(40–50%)
and temperature-(20–22 °C) controlled room with a 12 h light/dark cycle (lights off
at 19:00).

Auditory stimulation. Auditory stimuli were delivered through a free-field
ES1 speaker using an ED1 electrostatic speaker driver (Tucker Davis

Technologies, USA). The speaker was placed ~6 cm from the mouse ear that
was contralateral to the recorded AUD49–51. The auditory stimuli were gen-
erated by a custom LabVIEW 2016 programme (National Instruments, USA)
and converted to analogue voltages with a PCI6731 card (National Instru-
ments, USA). A pre-polarized condenser microphone (377A01 microphone,
PCB Piezotronics Inc., USA) was used to calibrate the generated sounds. To
establish the FRA of each neuron, sequences of pure tones (50 ms duration)
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consisting of 5 sound levels (30–80 dB sound pressure level (SPL), 10 dB
attenuation), and 11 frequencies (logarithmic scale from 2 to 40 kHz) were
presented with 8 repetitions and randomized intervals of 2–4 s. During audi-
tory stimulation, no other sensory stimulus was present to the mouse.

Two-photon Ca2+ imaging in the mouse AUD in vivo. To conduct Ca2+ imaging
in awake mice23, we habituated each mouse to head fixation with a titanium head
post and exposed the right primary AUD under isoflurane anaesthesia. A custom-
made recording chamber was attached to the skull with cyanoacrylate glue (UHU).
A craniotomy (~2 mm × 2mm) was performed above the AUD (location centre:
−3.0 mm from the bregma, 4.5 mm lateral to the midline) and filled with 1.5% low-
melting-point agarose. The recording chamber was perfused with normal artificial
cerebrospinal fluid (ACSF) containing (in mM) 125 NaCl, 4.5 KCl, 26 NaHCO3,

1.25 NaH2PO4, 2 CaCl2, 1 MgCl2 and 20 glucose, and the pH was 7.40 when
equilibrated with 95% oxygen and 5% CO2. To perform bolus loading, Cal-520
AM52 at a concentration of 567 μM was obtained by dissolution in DMSO with
20% Pluronic F-127. A puller (PC-10; Narishige, Tokyo, Japan) was used to make a
borosilicate glass micropipette for dye injection with the pulling mode set as two-
stage and a heavy type. The injection pipette was filled with normal ACSF, and its
tip maintained a resistance of 2 MΩ. The injection pipette was controlled to
approach the area of interest with a pressure of 30 mbar and to inject dye solution
with a pressure of 600 mbar (3 min). Two hours after dye injection and complete
removal of isoflurane anaesthesia, Ca2+ imaging was performed. A custom-built
two-photon microscope (LotosScan 1.0, Suzhou Institute of Biomedical Engi-
neering and Technology, Chinese Academy of Sciences, China)53 was used to
perform two-photon Ca2+ imaging experiments. Excitation light of 920 nm
wavelength was delivered to the brain with a Ti:Sa laser (power of 30–120 mW,

Fig. 5 Axons projecting to the contralateral AUD can be reliably labelled and reconstructed. a The distance between the ipsilateral and contralateral
AUDs is twice as long as that between the ipsilateral AUD and striatum. b Brain-wide distributions of AUD-projecting neurons achieved by a retrograde
labelling strategy (AAV2/2-Retro-mRuby3). The detected somata were registered to the standard Allen Brain Atlas, as denoted by red dots. The white
dashed arrow indicates the injection site. Three different views are shown (left: horizontal; upper right: sagittal; lower right: coronal). c Demonstration of
single-cell electroporation. d Representative example showing two-photon imaging of two dual-colour labelled neurons (neurons #5 and #6) on day 7 after
electroporation. e Left, reconstruction of two representative neurons (neurons #5–6; obtained from one mouse) labelled with a plasmid together with local
AAV injection. Right, reconstruction of nine neurons (neurons #5–13; obtained from five mice) labelled with a plasmid with local AAV injection.
f Reconstructed dendrites of the two representative neurons (top) in (e) (left) and all nine neurons (bottom) in (e) (right). g Left, reconstruction of two
representative neurons (neurons #14–15; obtained from one mouse) labelled with a plasmid without nearby AAV injection. Right panel, reconstruction of
nine neurons (neurons #14–22; obtained from five brains) labelled with a plasmid without nearby AAV injection. h Comparison of the success rates of
axonal terminal filling in the contralateral AUD with a plasmid with AAV injection and without AAV injection (n= 9 neurons from 5 mice for each group).
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locked mode, Mai-Tai DeepSee, Spectra Physics) and a water-immersion objective
(40×, 0.8 NA, Nikon Corporation). Two-photon images (600 pixels × 600 pixels)
were recorded at a 40 Hz frame rate.

Data analysis for Ca2+ transients. We analyzed the Ca2+ imaging data with
custom-written software in MATLAB 2018b (MathWorks)54. Individual neurons
were visually/semiautomatically identified and segmented as regions of interest
(ROIs) according to cell morphology and fluorescence intensity. Fluorescence
values (f) across time for each neuron were obtained by averaging the intensity
values corresponding to the pixels within each ROI for each imaging frame. For
each neuron, the baseline fluorescence f0 was estimated as the 25th percentile of the
entire fluorescence recording, and then Ca2+ signals were calculated as relative
fluorescence changes Δf/f= (f− f0)/f0. Detection of Ca2+ transients was carried out
based on an integrated thresholding approach used in our previous studies51. The
FRA of each neuron was constructed by calculating the responses for the defined
frequency-intensity conditions.

Two-photon-targeted plasmid electroporation. To label a single neuron12 in the
AUD (location centre:−3.0 mm from the bregma, 4.5 mm lateral to the midline) or
the motor cortex (location centre: +1.5 mm from the bregma, 1.6 mm lateral to the
midline), a patch pipette (10–12M resistance) containing intracellular solution,
OGB-1-6K+ (100 μM; Invitrogen) and plasmid DNA (100 ng/μl of hSyn-eGFP-
P2A-Cre-pA) was placed over the craniotomy within the microscope’s field of view.
The electroporation pipette was advanced through the dura, while high positive
pressure pulses (>100 mbar) were applied to the back of the pipette with a syringe.
The pipette was then inserted into the brain and advanced to L2/3 or L5 with a
reduced pipette pressure of 50 mbar. Positive pressure was applied to the back of
the pipette to fill the extracellular space with dye. A cloud of fluorescent dye
surrounding the pipette was visible in the brain. Single neurons and the tip of the
pipette were identified using shadow imaging. In some cases, high positive pressure
was applied for 3–5 s to clean the tip, and then we continued to search for neurons
under low positive pressure (~30–50 mbar). Once the pipette was in close proxi-
mity to the targeted neuron, the pressure was lowered to approximately 10 mbar.
The pipette was slowly advanced towards the centre of the soma of the neuron. The
positioning of the pipette close to the neuron membrane was crucial for successful
filling. After the tip of the pipette was in contact with the neuron membrane, it was
moved very gently to the centre of the cell body, with a mean distance of 2 μm. A
small dimple filled with dye was observed around the pipette tip in the neuron
membrane. At this moment, the pressure on the pipette was released. Then,
electroporation pulses (NPI Electronic, Germany) were delivered by an MVCS-01
iontophoresis system. The parameters of the electrical pulses were as follows: a
pulse amplitude of −450 nA (note the negative polarity, which should be set on the
device), a single pulse duration of 500 µs, and a train of 100 pulses at 50 Hz pulsing
frequency were applied.

Successful electroporation was verified by immediately filling the neuron body
with dye. After verification, the pipette was slowly withdrawn and exchanged for
electroporation of another neuron. To minimize damage to the cortex, it is critical
to avoid making very large lateral or vertical pipette movements within the brain.
In our experiments, we did not move the pipette more than 50 μm laterally or
vertically within the brain. Spontaneous activity was recorded for several minutes
to ensure that the electroporated neuron was still alive. In consecutive experiments,
more than 90% of neurons remained functional after electroporation (Fig. 2 and
Supplementary Table 2).

AAV injection and craniotomy sealing. After electroporation of one or a few
neurons, the electroporation pipette was retracted. Then, an injection pipette (2 M
resistance) containing intracellular solution, OGB-1-6K+ (10 μM, Invitrogen, or
Alexa Fluor 594, 50 μM), and AAV-DIO-mGFP was placed over the craniotomy
within the microscope’s field of view. The pipette was advanced through the dura
with high positive pressure pulses (>100 mbar). The pipette was then inserted into
the brain and advanced to L2/3 with a reduced pipette holding pressure of 50 mbar.
After the tip of the pipette was approximately 30 μm away from the electroporated
neuron, the holding pressure was released on the pipette. Then, a high positive
pressure (~300 mbar, 2 min) injection was applied near the location of the elec-
troporated neurons. No more than nine penetrations were conducted per mouse.

Following virus injection, the craniotomy was covered with two pieces of
coverslip glass and sealed. A small (1.5 mm diameter) coverslip was positioned
below and a large (2.5 mm diameter) coverslip was positioned above the
craniotomy to cover the brain and part of the skull, respectively. Afterwards, dental
acrylic and ultraviolet-cured optical adhesives (Norland Products Inc., USA) were
used to seal the skull. The mice were carefully monitored during recovery. All mice
showed normal behaviour, with no signs of distress. Successful recovery of the
electroporated cells was determined by two-photon imaging through the cranial
glass window for five days after the electroporation day. For this test imaging, mice
were briefly anaesthetized with isoflurane.

Retrograde tracing (control experiment). To label the contralateral AUD-
projecting neurons located in the AUD, we injected a viral solution (AAV2/2-
Retro-hSyn-H2B-mRuby3-WPRE-pA) into the contralateral AUD with a patch

pipette (resistance 2 MΩ)12. The viral solution was loaded by applying pressure
(~300 mbar, 2 min) to the pipette. Fourteen days after viral injection, the somata of
labelled neurons were observed in the AUD by two-photon imaging in vivo. A
subgroup of the labelled auditory neurons was chosen for electroporation, as shown
in Fig. 5.

Neuronal sparse labelling with AAVs (control experiment). To achieve neu-
ronal sparse labelling, i.e., labelling of a limited number of neurons in the AUD, we
performed virus injection with an AAV-mediated binary expression system based
mainly on previously reported protocols13,30. Briefly, a Cre-expressing AAV
(AAV2/8-hSyn-Cre-WPRE-pA) was diluted with 0.01M phosphate-buffered saline
(PBS) at a 1:10000 ratio and then mixed with an equal volume of the other Cre-
responsive AAV (AAV2/9-hSyn-DIO-mGFP-WPRE-pA). The 0.01M PBS con-
tained 0.138 M NaCl and 0.0027M KCl, pH 7.40 as measured by a pH metre,
accurate to two decimal places (Sigma-Aldrich, cat. no. P3813-10PAK). A 100 nl
total volume of virus mixture was injected into the AUDs of wild-type mice with
the following coordinates: −3.0 mm from the bregma and 4.5 mm lateral to the
midline according to The Mouse Brain in Stereotaxic Coordinates55.

Plasmid and AAVs. The plasmid used in this study for single-cell electroporation
was Cre-GFP (hSyn-eGFP-P2A-Cre-pA, 100 ng/μl). The plasmid was purchased
from Genscript Co., Ltd. (Nanjing, China). The AAVs used in this study were
AAV2/8-hSyn-Cre-WPRE-pA (AAV2/8, titre: 1.30 × 1013 viral particles/mL),
AAV-hSyn-DIO-mGFP-WPRE-pA (AAV2/9, titre: 2.59 × 1012 viral particles/mL)
and AAV-Retro-hSyn-H2B-mRuby3-WPRE-pA (AAV2/2, titre: 2.59 × 1012 viral
particles/mL). All AAVs used in our experiments were obtained from Taitool
Bioscience Co., Ltd. (Shanghai, China).

fMOST imaging. In brief, brain samples were first dissected, postfixed in 4%
paraformaldehyde at 4 °C for 24 h, rinsed with 0.01 M PBS and embedded in
Lowicryl HM20 (Electron Microscopy Sciences, cat. no. 14340) before the imaging
experiment. Afterwards, the resin-embedded brains were transferred to an fMOST
system (BioMapping5000, Wuhan OE-Bio Co., Ltd.)56,57 with an imaging resolu-
tion of 0.3 × 0.3 × 1 μm3 and imaged in a water bath filled with propidium iodide
(PI). The entire brain sample was imaged (fMOSTViewer, version 1.0) in the
coronal plane for both the GFP and PI channels and then sliced to 1 μm or 2 μm
with a diamond knife. The cycle of brain imaging and sample sectioning was
conducted continuously until data acquisition was complete58.

Single-cell reconstruction. To improve the signal-to-noise ratio of the fMOST
imaging data obtained from both the GFP and PI channels, image preprocessing
procedures were performed that included image stitching, brightness adjustment,
and noise filtering. The preprocessed imaging data were saved for both the PI and
GFP channels. We transformed the preprocessed data into cuboid data via TDat
2017 software59. After importing the data into Amira software (version 6.1.1, FEI),
we viewed the image stacks and traced the neurite skeletons in an interactive
manner using the filament editor17. Two experienced annotators traced each
neuron independently and then compared their reconstructions to produce a final
consensus. To make direct comparisons between the morphologies of L2/3 long-
range axonal projections labelled by 2-SPARSE and those labelled by the con-
ventional binary AAV expression system, we randomly selected axon branches in
contralateral cortices as starting points and performed manual neuronal tracing in
retrograde directions, that is, from the contralateral hemispheres to the somata in
the injection site, following the same tracing procedures for both groups. For
neuronal reconstruction in all other cases, tracing was performed in anterograde
directions (from the somata in the injection site to diverse target regions). All
traced points for reconstructing neurons were saved in SWC format.

Image registration and quantitative analysis. The whole-brain imaging data
were registered to a 3D reference brain atlas called the Allen Common Coordinate
Framework (CCF)60. The imaging data recorded from the PI channel were
downsampled to a spatial resolution of 10 × 10 × 10 μm3. First, the imaged brains
were corrected with rigid registration. A greyscale-based 3D affine registration was
used for alignment to the Allen Brain Atlas, after which dense landmark-based 2D
registration was performed in local regions. All registration processes were per-
formed using Elastix61. Subsequently, the traced points of neuron reconstructions
were transformed into Allen Brain Atlas space using the parameters for the
registration transformation. Two experienced analysts checked the image regis-
tration results by back-to-back manual confirmation. Morphological features were
quantitatively analyzed using Amira and custom-written software in MATLAB.
The branch lengths for both axons and dendrites were measured by summing the
distances from the traced points to their parent nodes. The branch numbers for
both axons and dendrites were measured by counting the segments that connected
to the parent nodes.

Statistics and reproducibility. In the figurest, summarized data are presented as
the mean ± SEM. To compare data between groups, we used non-parametric
Wilcoxon rank-sum test (unpaired) and Wilcoxon signed-rank test (paired) to
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determine statistical significance between them. For the representative experiments
in Figs. 1b, e, 4a, 5c, d; Supplementary Figs. 2, 3a, b, 4a–d, 5b, c, these experiments
were repeated independently, and similar results were obtained from n= 2, 7, 2, 5,
4, 7, 7, and 7 mice, respectively.

Reporting summary. Further information on the research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw unprocessed data have a large size (>100 TB), but the original data that support the
findings of this study are available from the corresponding author upon request. Source
data underlying Figs. 1–7 and Supplementary Fig. 1 are available as a Source data file.
Source data are provided with this paper.

Code availability
The code supporting the current study has not been deposited in a public repository, but
it is available from the corresponding author upon request.
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