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Abstract: Neuroinflammation plays a significant role in the aging process and the pathophysiology of
neurodegenerative diseases, such as Alzheimer’s disease. Accordingly, possible therapeutic strategies
aimed at anti-inflammatory effects may be beneficial to brain health. Walnut kernels contain large
quantities of unsaturated fatty acids, peptides, and phenolic compounds that have anti-inflammatory
effects. The long-term intake of walnuts has been found to improve cognitive function and memory
in rats and humans. However, the modulatory effect of walnuts on neuroinflammation has received
much less attention. This review focuses on the potential influence and main regulating mechanisms
of walnuts and their active ingredients on neuroinflammation, including the regulation of microglia
activation induced by amyloid β or lipopolysaccharides, inhibition of peripheral inflammation
mediated by macrophages, reduction in oxidative stress by decreasing free radical levels and boosting
antioxidant defenses, and control of gut microbes to maintain homeostasis. However, the majority
of evidence of the beneficial effects of walnuts or their components on neuroinflammation and
neurodegeneration comes from experimental work, whereas evidence from clinical studies on the
beneficial effects is scarcer and less conclusive. This review aims to provide new insights into
the neuroinflammation-regulating mechanisms and natural active ingredients of walnuts and the
development of walnut-based functional foods for the alleviation of neurodegenerative diseases.

Keywords: walnuts; neuroinflammation; neurodegenerative diseases; oxidative stress; antioxidant
activity; gut microbes

1. Introduction

Neuroinflammation, an early event in neurodegenerative diseases, is an innate im-
munological response of the central nervous system (CNS). Systemic inflammation may
predispose the microglia and astrocytes to a proinflammatory state, which is related to
neurodegenerative diseases, such as Alzheimer’s disease (AD) and mild cognitive impair-
ment [1]. Aging is an important cause of these neurodegenerative diseases. Plaque deposits
occur in the aging brain because of reduced clearance of amyloid β (Aβ) plaques [2]
and other toxic substances, which triggers a neuroinflammatory response [3–5], further
inducing microglia and astrocytes to stimulate the production of free radicals and secre-
tion of proinflammatory cytokines [6]. The proinflammatory cytokines released by the
neuroinflammatory cascade may lead to decreased cognitive function [7]. For example,
elevated levels of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α),
interleukin (IL)-1β, and interleukin (IL)-6 are observed in the brains of AD patients [8].
In the process of human aging, neuroinflammation in the brain induces structural and
functional changes in the hippocampus, a region critical for spatial learning and memory,
and is characterized by a progressive decline in learning and memory [9]. Therefore, there
has been increasing interest in strategies based on anti-inflammatory interventions in the
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prevention and treatment of neurocognitive disorders. Because neuroinflammation plays a
pivotal role in the pathogenic cascade of neurodegenerative diseases, treatment strategies
for inhibiting neuroinflammation are beneficial in the prevention of neurocognitive disor-
ders. Rational intake of food nutrients and nutraceuticals may be a more comprehensive
means of improving the health of patients with neurodegenerative diseases in addition
to medication. Intervention strategies for preventing AD or delaying cognitive decline
are of great significance for elderly individuals. A healthy diet rich in antioxidants and
anti-inflammatory phytochemicals provides one of the most effective and inexpensive
methods for the early prevention of neurodegenerative diseases.

Walnuts (Juglans regia) have been used for thousands of years as a healthy food and
folk medicine. Many studies have confirmed that walnuts have strong antioxidant and
anti-inflammatory functions. Walnut kernels contain large quantities of unsaturated fatty
acids, peptides, proteins, and phenolic compounds, which have anti-inflammatory proper-
ties [10,11]. The long-term intake of walnuts has been found to improve cognitive function
and memory in rats and humans. In animal experiments, consuming a walnut-enriched diet
for up to 14 and 19 months significantly improved the cognitive ability of elderly mice and
rats, respectively [12,13]. In human clinical trials, healthy adults aged 67–75 years without
any cognitive impairment were supplemented with 15 g of walnuts daily, and they showed
better cognitive function and memory compared to a control group that did not receive
walnuts in their daily diet [14,15]. A population-based prospective cohort study related to
all types of nuts suggested that a higher long-term intake of walnuts was associated with
the better cognitive performance of older women (mean age: 74 years) [16]. Furthermore,
Cahoon et al. conducted a systematic review and meta-analysis suggesting that walnut
intake may have a beneficial effect on cognition-related outcomes, although with a low
level of confidence [17]. The large 2-year Walnuts and Healthy Aging (WAHA) randomized
controlled trial of walnuts for treatment of age-related cognitive decline found no major
improvement in the whole cohort but cognitive benefit in the more at-risk participants [18].
These studies indicated that walnuts could be used as an ingredient in functional foods to
attenuate cognitive dysfunction. In addition, neuroinflammation plays a significant role
in cognitive decline, indicating that the beneficial effects of walnuts on cognitive function
may be associated with anti-inflammatory activity, which may be supported by other
relevant results from the WAHA trial [19]. However, there are no definitive efficacy data
or mechanisms that confirm the relationship between neuroinflammation and individual
walnut components. Against this background, our review summarizes previous reports on
the relationship between walnut intake and neuroinflammation attenuation and describes
the role of individual walnut components in their anti-inflammatory function. A literature
search was performed using Pubmed and Web of Science. The search was based on key-
words such as walnuts, neuroinflammation, anti-inflammatory activity, neurodegenerative
diseases, aging, Alzheimer’s disease, oxidative stress, antioxidant activity, gut microbes,
unsaturated fatty acid, peptide, and phenolic compound. The search strategy included
human studies, animal studies, and in vitro studies. Standard verification tools were used
to assess the risk of bias and the strength of the evidence.

2. Studies of the Inhibitory Effects of Walnuts on Neuroinflammatory Cascades Using
In Vivo and In Vitro Models

Several in vivo animal models, such as aged rats, and mice injected with lipopolysac-
charide (LPS), Aβ protein, and D-galactose (D-gal), were used to evaluate memory function
and detect neuroinflammation. A study found that feeding 19-month-old rats with a 6%
or 9% walnut diet significantly reduced phosphorylation of nuclear factor-κB (NF-κB) in
the hippocampus [20]. Intraperitoneal injection of LPS, which stimulates inflammatory
responses and exerts detrimental neurobiological effects, was utilized to induce neuroin-
flammation and thus triggered memory deficits in a mouse model. The walnut (J. regia)
protein hydrolysate (666 mg/kg) ameliorated the memory deficits induced by LPS by
normalizing the inflammatory response [21]. Accumulating evidence suggests that extra-
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cellular deposition of Aβ is an important marker of the pathogenesis of neurodegenerative
diseases such as AD. Numerous studies have demonstrated that the injection of Aβ into
the hippocampi of mice results in subsequent deposition of Aβ and triggers a neurode-
generative cascade in the brain, leading to cognitive impairments [22,23], and for this
reason, Aβ-induced mice have been considered an animal model of neurodegenerative
disease. Zou et al. reported that the expression levels of proinflammatory cytokines, in-
cluding IL-6, IL-1β, and TNF-α, increased significantly in Aβ25-35-induced AD mice, and
these factors were markedly attenuated by oral gavage of walnut (Juglans sigilata Dode)
protein hydrolysate at doses of 200, 400, or 800 mg/kg in distilled water once daily for
5 weeks [24]. Kim and colleagues also demonstrated that walnut (Juglans regia L.) ex-
tract regulated the expression of IL-1β, TNF-α, tumor necrosis factor receptor 1 (TNFR1),
and cyclooxygenase-2 (COX-2) related to neuroinflammation in Aβ1-42-induced mice [25].
Chronic exposure to D-gal, which is widely used to establish a model of accelerated aging,
induced oxidative stress and inflammation, and thus resulted in neurodegeneration in
mice [26]. Treatment with walnut protein hydrolysates (1 g/kg) for 90 days alleviated
oxidative stress, reversed cholinergic dysfunction, and suppressed the release of TNF-α
and IL-1β in the hippocampus of the D-gal-treated mice [27].

The protective effects of walnuts against neuroinflammation have also been studied
in various neural cell culture models. The progression of neurodegenerative diseases
frequently involves the activation of microglia. Microglia are resident macrophages of the
CNS that are activated only when stimulation occurs. Additionally, microglia participate in
host defense and tissue repair by secreting a variety of inflammatory cytokines such as TNF-
α, IL-6, and IL-1β [28,29]. However, prolonged chronic inflammation induces sustained
proliferation of microglia and continuous secretion of inflammatory cytokines, leading to
neuronal damage and dysfunction associated with the inflammatory response. A number
of studies confirmed that microglia in neuroglia cultures secrete proinflammatory cytokines
when treated with Aβ or LPS, and thus Aβ or LPS-treated microglia cells were considered
an in vitro model of microglial activation [30]. Thangthaeng et al. demonstrated that treat-
ment with whole walnut (J. regia) extract (1%, 3%, or 6%) 1 h prior to LPS treatment was
effective in preventing LPS-induced upregulation of inducible nitric oxide synthase (iNOS)
expression in HAPI microglial cells [31]. The protective effects of the walnut extract on
LPS-induced activation were also identified in BV-2 microglial cells. Treatment of cells with
walnut extract (J. regia) prior to LPS stimulation attenuated the production of nitric oxide
and expression of iNOS. The walnut extract also induced a decrease in TNF-α production.
These anti-inflammatory effects of walnut were dependent on the activation of phospho-
lipase D2 [32]. Another study further reported that serum metabolites from walnut-fed
aged rats attenuated LPS-induced proinflammatory factor TNF-α, COX-2, and iNOS in
BV-2 microglial cells, suggesting that walnut serum metabolites provide anti-inflammatory
protection in brain cells [33]. The synergy between peripheral inflammation and central
nervous inflammation deserves attention. Macrophages induced by LPS can stimulate
the inflammatory response of microglia, indicating that macrophage-mediated peripheral
inflammation promotes neuroinflammation. [34]. Furthermore, inflammatory microglia
attracted peripheral innate immune cells by secreting various chemokines and thus ag-
gravated neuroinflammation. The complex interactions between these innate immunity
cells exacerbated the damage to the central nervous system. Therefore, neurodegener-
ative diseases can be alleviated by blocking signaling between peripheral cells and the
central nervous system [35]. Wang et al. reported a low molecular weight peptide, leucine–
proline–phenylalanine (LPF), isolated from walnut protein hydrolysates, which attenuated
memory impairment by reducing neuroinflammation and oxidative stress in the brain
tissue of mice induced by intraperitoneal injection of LPS, and this was also associated
with the suppression of iNOS, COX-2, and TNF-αmRNA expression in macrophages [36].
The rat pheochromocytoma cell line PC12 with a morphology and physiological function
similar to neurons is a well-established cell model for studying the cellular biology of neu-
rons [37]. Hydrogen peroxide-treated PC12 cells were used to investigate oxidative stress
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and inflammation-associated neuronal injury [38]. A previous study reported that treat-
ment with a walnut (Juglans mandshurica Maxim) protein-derived peptide EVSGPGLSPN
inhibited NF-κB pathway activation, suppressing the downstream inflammatory factors
IL-1β and TNF-α in H2O2-induced PC12 cells. This information indicated the potential
of the walnut peptide to inhibit the neurotoxic cascade in the brain and thus prevent
aging-related neurodegeneration [39].

3. Anti-Inflammatory Components of Walnuts
3.1. Polyunsaturated Fatty Acids

Walnuts are rich sources of polyunsaturated fatty acids, such as linoleic acid (LA,
C18:2n-6) and alpha-linolenic acid (ALA, C18:3n-3) [40]. Accumulating evidence has shown
that LA has neuroprotective properties. Tu et al. observed that microglial inflammation
induced by palmitic acid treatment can be effectively reduced by LA, suggesting that LA ex-
erts neuroprotective effects by alleviating microglia activation [41]. In a study using an AD
drosophila model, LA inhibited the cytotoxicity of Aβ [42]. Consistently, LA demonstrated
potential anti-inflammatory effects on Aβ-stimulated PC12 cells. The elevated TNF-α and
IL-1β levels decreased; the increased production of proinflammatory mediators, including
nitric oxide and prostaglandin E2 (PGE2), was inhibited; and LA produced a decrease in
the expression of phosphorylated nuclear factor of kappa B (p-p65) and phosphorylated
nuclear factor of kappa light polypeptide gene enhancer in the B-cell inhibitor (p-IκB) [43].
Moreover, LA was found to suppress the expression of proinflammatory cytokines in-
cluding TNF-α, IL-6, and IL-1β in RAW 264.7 macrophage cells [44], further extending
its potential inhibition on neuroinflammation. Conjugated linoleic acid (CLA), positional,
and geometric isomers of LA [45] induce a decrease in inflammatory factors, including
TNF-α and IL-1β in primary human astrocyte cultures, suggesting a potential nutritional
role in regulating astrocyte inflammatory responses [46,47]. Furthermore, CLA can be
integrated and metabolized into brain tissue, further extending its antineuroinflammatory
effects [48]. In addition, CLA isomers (trans-10, cis-12 and cis-9 CLA, and trans-11 CLA)
were observed to reduce the concentration of PGE2 and the expression of proinflammatory
cytokines in macrophages obtained from blood [49]. Treatment with ALA increased glial
cell viability and significantly attenuated Aβ25−35-induced excessive production of nitric
oxide and inflammatory cytokines IL-6 and TNF-α [50]. Peripheral blood mononuclear
cells from hypercholesterolemic humans supplemented with ALA secreted lower levels of
proinflammatory cytokines (TNFα, IL-6, and IL-1β) compared with the control group [51].
Similarly, ALA had a strong inhibitory effect on the expression level of iNOS and the
production of LPS-induced TNF-α and IL-6 by reducing the translocation of an NF-κB
subunit, whereas ALA also increased the secretion of the anti-inflammatory cytokines IL-10
in RAW264.7 macrophages [52–54]. Moreover, in vivo studies further demonstrated that
the oral administration of ALA regulated NF-κB and IL-1β in the mouse brain [55].

3.2. Phenolic Compounds

Walnuts contain significant quantities of phenolic compounds, of which phenolic
acids and flavonoids are the main phenolic types [56]. In particular, ellagic acid, gallic
acid, chlorogenic acid, catechin, and quercetin, which exhibit a high relative abundance in
walnuts [57,58], have been studied for their effects on neuroinflammation [59,60]. Ellagic
acid (2,3,7,8-tetrahydroxybenzopyrano [5,4,3-cde] benzopyran-5-10-dione, EA) has long
been known for its antioxidant and anti-inflammatory properties [61]. Recent studies have
shown that EA has a neuroprotective effect against the excessive production of proinflam-
matory cytokines. In a study using EA to treat an LPS-induced dopamine neuronal damage
rat model, EA had a profound effect on protecting dopamine neurons via suppression
of the microglial nucleotide-binding domain-like receptor protein 3 (NLRP3) inflamma-
some signaling activation and reduction of proinflammatory cytokine (IL-1β, TNF-α, and
IL-18) expression [62]. In another study of Sprague Dawley rats fed with a high-fat diet
supplemented with equimolar concentrations of EA for 13 weeks, EA exhibited good
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anti-inflammatory performance, for example by reducing serum cytokines IL-6, IL-1β, and
TNF-α [63]. Gallic acid (3,4,5-trihydroxybenzoic acid, GA) has a wide range of antioxidant,
anti-inflammatory, and antimicrobial properties [64]. GA was found to significantly inhibit
PGE2 production in LPS-treated RAW 264.7 cells [65]. Furthermore, GA-treated mice exhib-
ited reduced levels of proinflammatory cytokines and reduced infiltration of CD4+CD45+ T
cells and monocytes into the central nervous system, suggesting that GA can be considered
a potential inflammatory therapeutic agent [66]. Chlorogenic acid ((1S,3R,4R,5R)-3-[[3-(3,4-
dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]-1,4,5-trihydroxycyclohexanecarboxylic acid,
CGA) is an ester formed from caffeic acid and L-quinic acid. It was reported that the
antioxidant and anti-inflammatory properties of CGA were expected to help to alleviate
cognitive and memory impairment [67–69]. CGA was found to have an anti-inflammatory
effect on IL-1β, TNF-α, and IL-6 production [70]. It was also found to repress the activation
of the NLRP3 inflammasome [71] in LPS-stimulated murine RAW 264.7 macrophages and
in BV-2 microglial cells by effectively downregulating the NF-κB pathway [72]. As the
important catechin in walnuts, epigallocatechin 3-gallate (EGCG) is a typical flavone-3-ol
polyphenolic compound with eight hydroxyl groups, showing notable anti-inflammatory
activities [73]. Bao et al. showed that oral administration of EGCG (50 mg/kg) for 4 months
markedly attenuated the cognitive impairments in APP/PS1 transgenic mice used as an
AD model, alleviated microglia activation and expression of the proinflammatory cytokine
IL-1β, and increased the level of anti-inflammatory cytokines IL-10 and IL-13 [74]. Kawai
et al. reported that EGCG downregulated CD11b expression in CD8+ T cells and further
inhibited their infiltration into sites of inflammation [75]. Li et al. found that treatment
with EGCG significantly reduced IL-1β, interferon-γ (INF-γ), and TNF-α levels in an au-
toimmune thyroiditis rat model through suppression of the NF-κB pathway [76]. Cheng
et al. demonstrated that EGCG-loaded liposomes could reduce the production of nitric
oxide and TNF-α in BV-2 microglia following LPS exposure [77]. Epicatechin (EC), another
important catechin in walnut, was found to downregulate the proinflammatory cytokines
IL-1β, IL-6, and TNF-α in LPS-induced RAW264.7 cells [78]. Quercetin, a representative of
the flavonol family of compounds abundant in walnuts [79], was reported to reduce the
expression of iNOS in LPS-activated BV-2 microglia and restrain the activation of NF-kB,
indicating its potential to attenuate inflammatory diseases of the central nervous system.
In addition, quercetin inhibited the production of proinflammatory cytokines, such as
TNF-α, IL-1β, and IL-6, and reduced cyclooxygenase and lipoxygenase expression in mast
cells [80]. Quercetin was also reported to inhibit the production of TNF-α, IL-6, and IL-1β
in LPS-activated human mononuclear U937 cells [81].

3.3. Walnut Protein-Derived Peptides

A growing number of bioactive peptides have been identified in the protein fraction of
walnuts [82]. It was found that walnut peptides decreased the neuroinflammation caused
by superfluous quantities of inflammatory cytokines in neurodegenerative disorders [83].
For example, treatment with the walnut peptides LPF, GVYY, or APTLW inhibited the
overproduction of proinflammatory mediators, including nitric oxide and PGE2, and
reduced the expression level of TNF-α, IL-1β, and IL-6 in BV-2 microglia stimulated with
LPS [21]. Another walnut peptide, WEKPPVSH, was also found to significantly mitigate
the secretion of TNF-α, IL-1β, and IL-6, and downregulated the expression of iNOS, COX-
2, and p-IkB/IkB in LPS-activated BV-2 microglia [84]. In addition, the walnut-derived
peptide EVSGPGLSPN attenuated inflammatory factors IL-1β and TNF-α in H2O2-induced
PC12 cells. This indicated the potential of the walnut peptide to inhibit inflammatory
cascades in the brain and thus prevent aging-related neurodegeneration [39]. It was found
that LPS-induced macrophages stimulated the activation of microglia, indicating that
macrophage-mediated peripheral inflammation may accelerate neuroinflammation [34].
Wang et al. showed that the walnut peptide leucine–proline–phenylalanine downregulated
the mRNA expression of inflammatory mediators, such as INOS, COX-2, and TNF-α,
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in LPS-treated RAW264.7 macrophage cells, suggesting the potential of walnut peptides
against neuroinflammation through regulation of peripheral immune cells [36].

4. Possible Mechanisms
4.1. Antioxidant and Anti-Inflammatory Activity

The imbalance between reactive oxygen species (ROS) and the cellular defense an-
tioxidant mechanisms, known as oxidative stress, is a vital factor in aging and disease.
The brain is particularly vulnerable to oxidative damage because the brain tissues have
high oxygen consumption but low antioxidant levels and poor regeneration. Moreover,
oxidative stress is considered to induce a variety of inflammatory responses [85]. Some ROS
can promote intracellular signaling cascades, upregulating the expression of related proin-
flammatory genes. Excessive oxidative stress and inflammatory toxicity are considered to
be among the main causes of cerebral neurodegeneration [86]. Growing evidence indicates
that neuroinflammation is an early event in neurodegeneration pathogenesis, which is
usually related to oxidative damage [87]. Oxidative stress and inflammation also play
pivotal roles in other brain disorders, such as Parkinson’s disease and several age-related
chronic diseases [88,89].

Walnuts are rich in components that have antioxidant and anti-inflammatory prop-
erties that work together to inhibit inflammation and oxidative damage. The antiox-
idants of walnuts are mainly composed of flavonoids, phenolic acid, folate, gamma-
tocopherol, selenium, juglone, proanthocyanidins, and polyunsaturated fatty acids. These
antioxidant ingredients may also have highly potent anti-inflammatory effects [90,91]. A
study showed that walnut extract suppressed Aβ-induced abnormalities of mitochondrial
function by ameliorating ROS in mouse brain tissue. Furthermore, the expressions of
neuroinflammation-associated molecules including TNF-α, TNFR1, p-IκB, COX-2, and
IL-1β, were regulated by walnut extract [25]. Another study showed that ROS levels,
lipid peroxidation, and protein oxidation in AD transgenic mice fed a diet containing
6% or 9% walnuts were significantly reduced, whereas the activities of antioxidant en-
zymes were significantly increased [92]. Similarly, the walnut extract was observed to
regulate superoxide dismutase (SOD) and glutathione (GSH) levels in Aβ1-42-induced
mice [24]. These findings suggested that walnuts, in addition to reducing free radical levels,
enhance antioxidant defenses and reduce oxidative damage to lipids and proteins [93].
Among the active ingredients of walnuts, phenolic compounds have been shown to pos-
sess significant antioxidative and anti-inflammatory properties. Catechins were found to
scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and improve the production of
BV-2 microglia-derived nitric oxide and TNF-α following LPS treatment [82]. Quercetin
attenuated ROS production by regulating the heme oxygenase1/nuclear factor erythroid
2-related factor (Nrf2) pathway and inhibited the activation of the NF-kB pathway in
LPS-activated BV-2 microglial cells and macrophages [80]. Ellagic acid administration
downregulated abnormal ROS generation in a dose-dependent manner in the hippocampi
of Wistar rats, and significantly altered inflammatory markers, including IL-1β, TNF-α,
and INF-γ [61]. Gallic acid significantly increased the expression and activity of antioxidant
enzymes [94], and showed a significant decrease in oxidative stress markers and inflamma-
tory cytokines, including TNF-α, IL-1β, and IL-6 in H2O2-treated rat embryonic fibroblast
cells [95]. Walnut protein-derived peptides, another important type of walnut component,
were observed to ameliorate memory deficits induced by LPS, a process that is associated
with the normalization of the inflammatory response in the brain of mice. ROS homeostasis
might contribute to the anti-inflammatory effects, as the activities of SOD and catalase
(CAT) increased significantly, and the extensive increase in the level of malondialdehyde
(MDA) in the brain was reversed after treatment with walnut protein hydrolysates [21].
These results are consistent with other studies showing that supplementation with walnut
peptides regulated levels of antioxidant enzymes as well as inflammatory mediators in
the brain tissue of mice [24]. The walnut peptide DWMPH was found to attenuate D-gal-
induced neuronal dysfunction by increasing the activities of SOD and GSH-peroxidase
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and suppressing the release of proinflammatory cytokines [27]. Another walnut peptide,
EVSGPGLSPN, was also observed to increase SOD, GSH-peroxidase, and CAT activities
in a dose-dependent manner in H2O2-induced PC12 cells, attenuating the overexpression
of IL-1β and TNF-α [39]. These findings demonstrate that walnuts and their main compo-
nents could be effective against neurodegenerative diseases because of their antioxidative
and anti-inflammatory activities, which may exert additive or synergistic effects. In addi-
tion, the attenuation of inflammation may be associated with the increase in antioxidant
enzymes, which involves the Nrf2 signaling pathways (Figure 1).
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4.2. Gut Modulation Activity

Gut microbiota participates in brain–gut–microbe bidirectional communication through
neural, immune, humoral, and endocrine connections. The pathogenic bacteria-derived
LPS induces gastrointestinal inflammation and even systemic inflammation [96]. In addi-
tion, chronic intestinal inflammation may accelerate disruption of the blood–brain barrier,
increasing the permeability of LPS and proinflammatory cytokines in the brain [97]. Intesti-
nal bacteria secrete signaling factors passing through the CNS via lymphatic and systemic
circulation. This information implies that a balanced gut microbiome helps to control
neuroinflammation and maintain normal CNS function [98].

Walnut consumption was found to affect the composition of the human gastrointestinal
microbiota and reduce microbially derived proinflammatory factors [97]. This suggested
that modulation of gastrointestinal microbiota may contribute to the beneficial health effects
of walnut consumption [99]. Animals consuming walnuts displayed significantly greater
microbiota species diversity. Walnut consumption enriched the probiotic-type bacteria,
including Lactobacillus, Ruminococcaceae, and Roseburia while reducing neuroinflammation-
related bacteria, including Bacteroides and Anaerotruncus [100]. Furthermore, some bioactive
walnut components have been reported to improve dysbiosis of gut microbiota. A study
showed that walnut oil exerted anti-inflammatory effects by decreasing the expression
of TNF-α in the duodenal mucosa of mice, and the relative abundance in gut microbiota
shifted from more pathogenic bacteria, such as Helicobacter, toward the probiotic Lacto-
bacillus [101]. Another study found defatted walnut powder extract also remodeled the
disordered microflora in C57BL/6 mice caused by a long-term high-fat diet, producing a
decrease in Erysipelotrichia, Firmicutes, and Actinobacteria, and an increase in Bacteroidetes,
Clostridiales, Bacteroidales S24-7, Prevotellaceae, and Bacteroides [102]. The walnut-derived
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peptide leucine–proline–phenylalanine mitigated serum inflammatory cytokine levels in
a dextran sulfate sodium-induced colitis mice model and reversed the dysbiosis of gut
microbiota, including recovery of microbiota diversity and an increase in the relative abun-
dance of the families Lachnospiraceae and Ruminococcaceae [103]. Furthermore, polyphenol
extract from walnut meal was found to significantly limit the serum LPS, TNF-α, and
IL-6 levels, and impede changes in intestinal flora in feces, mainly Firmicutes, Bacteroidetes,
and Proteobacteria [104]. In addition, the ingestion of walnut meal dietary fiber (WMDF)
effectively improved the gut microbiota disorder caused by a high fructose (HF) diet, pro-
ducing higher relative abundance of Firmicutes, Actinobacteria, Proteobacteria, Deferribacteres,
Tenericutes, and Patescibacteria, and a much lower relative abundance of Bacteroidetes and
Verrucomicrobia. Consistently, the concentrations of IL-1β, IL-6, and TNF-α in the serum
of HF-fed mice were restored by WMDF administration [105]. Peripheral inflammation
has been shown to aggravate LPS and proinflammatory cytokine-induced activation of
microglia and astrocytes. Walnut consumption was found to attenuate peripheral inflam-
mation by remodeling disordered gut microflora, which may contribute to prevention of
inflammation in the CNS (Figure 2). However, the correlation between changes in the
gut microbial communities following a walnut diet and inflammation are complicated,
and the microbial markers remain unclear, requiring further elucidation by data from
epidemiological investigations and clinical studies.
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5. Conclusions

Inflammation plays a significant role in the pathophysiology of neurodegenerative
diseases. A walnut diet was found to significantly reduce the phosphorylation of NF-κB,
amyloid beta, and oxidative stress in mouse hippocampi induced by LPS, and to attenuate
the expression of proinflammatory cytokines, including IL-6, IL-1β, and TNF-α. These
findings suggest that a nutritional diet rich in walnuts may be effective in improving
chronic inflammation and neurodegeneration. Walnuts have multiple anti-inflammatory
ingredients which may have additive or synergistic effects in inhibiting inflammation
(Table 1). However, the level of evidence is weak given that the bulk of the studies were
not clinical trials.
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Table 1. Effect of walnut ingredients on inflammatory responses of neuronal and peripheral immune cells.

Types of Active Ingredient Model Dose Results Ref.

Fatty acids

Linoleic acid Aβ25−35-treated PC12 cells 10, 50 or 100 µM
Decreased the Aβ25-35-elevated TNF-α and IL-1β levels by 50%;
inhibited increased NO production by reducing iNOS; inhibited

PGE2 by decreasing COX-2; decreased the level of p-p65 and p-IκB.
[43]

Linoleic acid
trans-10, cis-12 CLA
cis-9, trans-11 CLA

Human macrophages 20 or 40 µM

Reduced PGE2 concentration by 23%; reduced COX-2 activity.
Reduced PGE2 concentration by 39%; reduced the quantity of the

active p65 NF-κB subunit by 55%.
Reduced PGE2 concentration by 32%; reduced the quantity of the

active p65 NF-κB subunit by 58%.

[49]

Alpha-linolenic acid

LPS-stimulated RAW 264.7 cells 5, 10, 20 or 40 µg/mL
Inhibited translocation of the NF-κB subunit;

downregulated inflammatory iNOS, COX-2, and TNF-α gene
expression in a dose-dependent manner.

[52]

LPS-stimulated RAW 264.7 cells 50 µM Decreased expression levels of TNF-α and IL-6;
increased the secretion of the anti-inflammatory cytokines IL-10. [53]

Carrageenan-induced hind paw
edema in SD rats

LPS-stimulated RAW 264.7 cells
5 or 10 mg/kg

Reduced rat paw edema;
inhibited the accumulation of nitrite and PGE2.

Inhibited the protein and mRNA expression levels of iNOS and
COX-2 enzymes in a dose-dependent manner.

[54]

Phenolic acids Ellagic acid

Arsenic-treated rats
10–20 mg/kg by mouth,

in drinking water for
8–11 days

Decreased levels of mRNA and proteins TNF-α, IL-1β, and INF-γ
in the hippocampus. [61]

LPS-elicited DA neuronal loss in
SD rats

LPS-stimulated BV-2 cells

50 mg/kg (oral)
1 µM

Suppressed LPS-induced activation of NLRP3 inflammasome
signaling and IL-1β, TNF-α, and IL-18 protein expressions in the

rat brain.
Inhibited LPS-induced activation of microglial NLRP3

inflammasome signaling; eliminated production of TNF-α, IL-1β,
and IL-18 in the culture medium.

[62]

Macrophage migration inhibitory
factor (MIF)-treated human

peripheral blood mononuclear
cells

50 µM Inhibited MIF-mediated nuclear translocation of NF-κB. [107]

LPS-stimulated RAW 264.7 cells 6.25 µM
25 µM

Inhibited LPS-stimulated TNF-α.
Inhibited LPS-stimulated IL-6 and PGE2 production. [65]
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Table 1. Cont.

Types of Active Ingredient Model Dose Results Ref.

Gallic acid

LPS-stimulated RAW 264.7 cells 6.25 µM Inhibited LPS-stimulated PGE2 production. [65]

MOG 35-55-immunized C57BL/6
mice

2 mg/day for 10 days,
injected intraperitoneally

Reduced infiltration of CD4+CD45+T cells and monocytes into the
central nervous system. [66]

Phorbol 12-myristate 13-acetate
(PMA) + calcium ionophore

A23187-stimulated human mast
cells (HMC-1)

1–10 µM for 2–4 h
Inhibited TNF-α and IL-6 gene expression, degradation of IκBα,
and nuclear translocation of p65 NF-κB induced by PMA with

A23187.
[108]

Chlorogenic acid
LPS-stimulated RAW 264.7 cells 2–20 µM for 24 h Attenuated NO, IL-1β, TNF-α, IL-6, cyclooxygenase-2, and NF-κB

expression. [70]

Mongolian gerbil model of
transient forebrain ischemia 30 mg/kg Attenuated IL-2 and IL-4 protein expressions in pyramidal

neurons. [69]

Flavonoids

EGCG

Isolated peripheral blood
mononuclear cells and

CD8+T cells
25–100 µM Inhibited infiltration of CD8+T cells into the sites of inflammation. [75]

Autoimmune thyroiditis rat
model

0.5 mg/kg, three times at
a 1 h interval for 3 h,

injected intraperitoneally

Reduced IL-1β, INF-γ, and TNF-α levels in thyroid tissue through
suppression of the NF-κB pathway. [76]

Rat model of cerebral
ischemia/reperfusion injury

50 mg/kg, intraperitoneal
injection

Inhibited cerebral ischemia/reperfusion injury by ameliorating
inflammation-related molecules TNF-α, IL-1β, IL-6, NF-κB/p65,

COX-2, and iNOS in the cerebellum.
[109]

Quercetin

Human mast cells HMC-1 10 µM Inhibited mast cell tryptase and IL-6 release. [80]

LPS-stimulated U937
macrophages 30 µM Reduced the levels of TNF-α, IL-6, and IL-1. [81]

LPS-stimulated RAW 264.7 cells 12.5 µM Inhibited LPS-stimulated IL-6 and PGE2 production. [65]



Nutrients 2022, 14, 4360 11 of 16

Table 1. Cont.

Types of Active Ingredient Model Dose Results Ref.

Peptides

Hydrolysate (<3 kDa)
Viscozyme L + pancreatin LPS-treated mice 666 mg/kg for

21 days
Reduced NO content, normalized the overproduction of IL-6,

IL-1β, and TNF-α in the brain. [21]

Hydrolysate Aβ25−35-injected mice 400 or 800 mg/kg for
5 weeks

Decreased the levels of NO, iNOS, NF-κB p65, TNF-α, IL-1β, and
IL-6 in the hippocampus. [24]

Hydrolysate (<1 kDa)
pepsin + pancreatin D-gal + AlCl3-treated mice 1 g/kg for

90 days
Suppressed the expression of TNF-α and IL-1β in the

hippocampus. [27]

LPF LPS-stimulated RAW264.7 cells 250, 500, or 1000 µg/mL
for 24 h or 48 h Suppressed the mRNA expression of iNOS, COX-2, and TNF-α. [36]

LPF, GVYY, APTLW LPS-stimulated BV-2 cells 0.10 mM
Inhibited the overproduction of proinflammatory mediators (NO

and PGE2); reduced the expression level of
TNF-α,IL-1β, and IL-6.

[21]

WEKPPVSH LPS-stimulated BV-2 cells 25 or 50 mM
Mitigated the secretion of TNF-α, IL-1β, and IL-6; downregulated

the expression of iNOS, COX-2, and p-IkB/IkB. [84]

EVSGPGLSPN H2O2-treated PC12 cells 100 µM
Suppressed the expression of IKKβ and p65 to inhibit NF-κB

pathway activation; attenuated the neurotoxic cascade by
overexpression of IL-1β and TNF-α.

[39]

Aβ, amyloid β; TNF-α, tumor necrosis factor-α; IL, interleukin; iNOS, inducible nitric oxide synthase; PGE2, prostaglandin E2; COX-2, cyclooxygenase-2; p-p65, phosphorylated nuclear factor
of kappa B; p-IκB, B-cell inhibitor; CLA, conjugated linoleic acid; NF-κB, nuclear factor-κB; LPS, lipopolysaccharide; INF-γ, interferon-γ; NLRP3, nucleotide-binding domain-like receptor
protein 3; MIF, migration inhibitory factor; PMA, phorbol 12-myristate 13-acetate; HMC-1, human mast cells; EGCG, epigallocatechin 3-gallate; LPF, leucine–proline–phenylalanine.



Nutrients 2022, 14, 4360 12 of 16

Oxidative stress promotes the development of inflammation. In addition to reducing
free radical levels, walnuts enhanced antioxidant defenses and thus reduced systemic
inflammation and neuroinflammation. In addition, LPS and proinflammatory cytokines
induced by gut microbiota were shown to transfer via lymphatic and systemic circulation
throughout the CNS, and walnut consumption attenuated this process by remodeling
disordered microflora. In order to clearly understand the inhibitory effects of walnuts on
neuroinflammation and the underlying mechanisms, further studies are required to inves-
tigate how walnut products regulate signals and cytokines to inhibit neuroinflammation
in neurodegenerative diseases. In addition, more clinical trials are needed to determine
whether the neuroinflammatory effects translate to humans.
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