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Abstract: This review focuses on the mechanism of adjusting the thermal environment surrounding
the human body via textiles. Recently highlighted technologies for thermal management are based on
the photothermal conversion principle and Joule heating for wearable electronics. Recent innovations
in this technology are described, with a focus on reports in the last three years and are categorized
into three subjects: (1) thermal management technologies of a passive type using light irradiation
of the outside environment (photothermal heating), (2) those of an active type employing external
electrical circuits (Joule heating), and (3) biomimetic structures. Fibers and textiles from the design of
fibers and textiles perspective are also discussed with suggestions for future directions to maximize
thermal storage and to minimize heat loss.

Keywords: photothermal conversion; Joule heating; reduced tungsten oxide; tungsten bronzes;
conjugated polymer nanomaterials; silver nanowires; smart textiles

1. Introduction

Textiles that have specific functions added to their inherent properties have been some of the most
interesting themes for academic and industrial studies and development [1–3]. Functional textiles
originate from attempts to improve the properties of textiles based on synthetic fibers and to make
their properties similar to textiles based on natural fibers. For example, synthetic fibers generally have
lower hydrophilicity than natural fibers, such that clothes made from synthetic fibers generally retard
the removal of sweat and moisture from the human body to the surrounding environment. Various
chemical and physical methodologies, including hydrophilic surface modifications [4–6], blending
with hydrophilic fibers [7,8], co-polymerizations with hydrophilic monomers [9–11], and increasing
fiber surface area by introducing porosity [12–15] or capillaries [16–19], have been applied to synthetic
fibers to enhance the absorption and removal of moisture and water. These treatments significantly
enhance the soft and pleasant feeling of wearing clothes fabricated with such modified synthetic fibers.
These days, the scope of application of functional textiles has been further extended to clothes for health
care [20–22], medical treatments [23–25], sports and leisure [26–28], environmental pollution [29–31],
and wearable optoelectronics [32–35]. Therefore, special functions including antimicrobial [36–39],
warming or cooling [40–42], waterproof [43–45], or windproof properties [46,47] need to be incorporated
into the fibers. As a representative technology, photocatalytic nanomaterials such as titanium dioxide
nanoparticles have been combined with fibers to degrade odor-causing chemicals and microbial species
under light irradiation to remove any unhealthy odor or bacteria [48–50]. In addition, textiles that
have not been wet by rain or snow but can transport sweat across clothes, have been fabricated
by laminating, coating, or densely packing fibers to provide micropores or hydrophilicity, thereby
providing waterproof and windproof properties and maintaining body temperature by controlling the
transport of heat, water, and moisture [40–47].
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Among the many functionalities for textiles, the particular focus of this review is the mechanism
of adjusting the thermal environment surrounding the human body via textiles. A traditional method
for coping with hot or cold weather is to take off or put on clothes. Numerous state-of-art technologies,
however, have enabled the development of functional textiles to maintain warmth or to dissipate
heat for cooling. Commercial products with these functionalities are already available in the market.
One of the most popular products is “Heattech” developed by Uniqlo Co., Ltd. and Toray Industries,
Inc. in 2003 [51]. Heattech uses textiles based on acrylic fibers with a circular cross-sectional shape
and rayon fibers with a sharply edged cross-sectional shape. Because both fibers are hydrophilic,
the resulting textiles efficiently absorb and maintain water molecules from sweat, thereby hindering
heat loss by water evaporation into air and rather releasing heat upon adsorption of water molecules
onto hydrophilic fibers. At the same time, the mismatch in the cross-sectional shapes between the
acrylic and rayon fibers results in increased amounts of air pockets in yarns, resulting in a decrease
in heat transfer across the textiles because of the low thermal conductivity of the air. Other types of
popular products utilize radiation from the human body. The “Omni-Heat” developed by Columbia
Sportswear Co. uses fibers coated with silver or aluminum, which reflect heat from the human body
while efficiently releasing moisture and sweat across the textile structure, thereby providing warmth
and comfort [52]. In contrast, phase change materials (PCMs) have been widely studied and applied
to commercial products because of their controllability over heat absorption and emission. PCMs
with a melting transition are embedded in fibers as microcapsules [53,54], and thus, as an example,
the materials experience heat absorption due to melting transition upon temperature increase and heat
emission due to crystallization upon temperature decrease in the surrounding environment.

Recently, novel technologies based on the photothermal conversion principle and Joule heating
for wearable electronics have been highlighted as promising technologies for future functional fibers
and textiles. They should be an important element for personal thermal management by raising
the human body’s temperature when applied to normal clothes. Furthermore, heating fabrics and
composite films have become promising materials in biomedical and cosmetic applications. This is
because thermotherapy can open blood vessels and increase blood flow, bringing nutrients for healing
wounds, as demonstrated by a thermoelectric heat patch for clinical care based on Joule heating [55].
In addition, they can significantly accelerate the transdermal deliveries of medicines or cosmetic
agents when put in contact with human skin by providing fluidity to the epidermis at an elevated
temperature, thereby increasing mass transportation across the human skin [56–58]. Furthermore,
photothermal heating materials such as gold nanorods were loaded in the stratum corneum of the skin
and presented photothermally-driven antibacterial activity [59], and a thermoelectric heat patch based
on Joule heating. In this review, we focus on the recent innovation in these technologies over the last
three years. Such a timely review is necessary due to the numerous papers regarding this issue that
have been reported.

This review is organized as follows: Section 2 provides an overview of the methodologies based
on photothermal heating, focusing on materials that can efficiently absorb solar energy under sunlight
irradiation and emit the energy as heat. These technologies should be useful for the fabrication of
clothes for harsh and cold environments where clothes are naturally exposed to sunlight. Inorganic
materials such as zirconium-based materials are first described, followed by an introduction of recent
studies using metal oxides and conjugated polymers with excellent light harvesting and photothermal
properties. Section 3 details the recent innovations in functional fibers and textiles based on the Joule
heating principle. The incorporation of electrical conductors with resistance into fibers is a direct
method for controlling the thermal properties of textiles based on electrically resistive heating. These
technologies are some of the most widely studied, in combination with wearable displays, sensors,
and therapeutic devices. Section 4 analyzes fibers and textiles from a viewpoint of the design of fibers
and textiles. In Section 5, the recent innovations are summarized, and future directions are suggested.
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2. Functional Fibers, Textiles, and Composites Based on Photothermal Heating

2.1. Photothermal Heating by Inorganic Materials

Metals, metal oxides, metal carbides, and metal sulfides have been widely used for photothermal
solar energy conversion because of their efficient light absorption properties based on surface plasmon
resonance in metals [60], sub-band transitions in metal oxides [61,62], and match in inherent frequencies
of ceramics for resonance with light [58]. In this section, a few examples of recently reported metal
oxides and ceramics are discussed, while metallic materials are described in the section based on the
Joule heating principle.

Zirconium carbide (ZrC) is one of the most popular ceramics for photothermal applications based
on solar energy conversion. It has been widely used as a coating in nuclear reactors, abrasive parts,
and cutting tools because of its excellent refractory properties, relatively low density (6.73 g/cm3 at
24 ◦C) compared to that of other carbides, high melting point (~3530 ◦C), and high modulus (~440 GPa)
and hardness (25~35 GPa) [63]. It has been highlighted as an efficient photothermal material because
its light absorption spectrum overlaps significantly with the sunlight spectrum that reaches the surface
of the earth (Figure 1a,b) [64–67]. The sunlight that reaches sea level on earth is comprised of 5%
ultraviolet (UV), 46% visible, and 49% near infrared (NIR) light [64]. ZrC can absorb a vast amount of
solar energy below a wavelength of less than 2 µm and can convert it to heat. Recently, ZrC fluids
containing only 0.02 wt % of ZrC nanoparticles were reported to absorb almost 100% of the solar
irradiation in the full spectrum, thus showing that ZrC is an ideal solar irradiation absorber [67].
The incorporation of ZrC into polymeric fibers and textiles has been limited because of high processing
temperatures, although ZrC-only nanofibers can be conveniently fabricated via a pyrolysis process after
electrospinning from precursor polymer solutions. Textiles or fabrics with a ZrC coating, however, can
be easily prepared because ZrC films can be deposited via sputtering [68], pulsed-laser deposition [69],
chemical vapor deposition [70], or e-beam deposition processes [71]. The resulting polyester fabrics
with a ZrC coating are heated to a maximum of 52.5 ◦C with a temperature increase rate of 11.0 ◦C/min
under infrared lamp illumination [72]. Technologies to incorporate ZrC nanomaterials into polymeric
fibers and textiles remain rare and need to be actively developed in the future.
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Reduced tungsten oxides and tungsten bronze nanomaterials are also efficient photothermal
materials. The band gap of tungsten trioxide (WO3) is 2.62 eV, which makes it suitable for photovoltaic
and photocatalytic applications that require strong UV-vis absorption [73], but it is not appropriate for
NIR absorption. When WO3 is reduced to WO3−x, however, a unique defect structure due to oxygen
vacancies is introduced with the partial reduction of W6+ [74]. In contrast, when alkali metal ions
(M = Li+, Na+, K+ and Cs+) are incorporated into the crystal structure of WO3, a part of W6+ in the



Polymers 2020, 12, 189 4 of 25

WO3 crystal is reduced to W5+, generating sub-bands in its conduction band [75,76]. Both reduced
states form localized surface plasmon resonance and sub-band transitions that enable the reduced
WO3 and MxWO3 materials to strongly absorb NIR and emit heat [77]. In addition, nanometer-scale
reduced WO3 materials present a strongly enhanced photothermal conversion property because of the
increase in surface area and the resulting surface plasmon resonance [78]. Recently, these reduced WO3

nanomaterials have been used for biomedical applications due to their photothermal properties [79–81].
Cancer cells are more susceptible to local heating than normal cells. Thus, targeting photothermal
materials to cancer tissues, followed by light irradiation to ablate the cancer cells by heat emitted from
the photothermal materials, has been a popular area of study as a promising technology for cancer
therapy. In addition, photoacoustic imaging that utilizes pulsed laser irradiation and subsequent
local density fluctuation upon heating, followed by the generation of acoustic waves, has been an
efficient diagnostic tool. Tissues and blood components scatter light strongly, and therefore, the use of
NIR should be a solution by providing energy from an outside source to photothermal nanomaterials
targeted to cancer tissues inside the human body. This is because NIR can be efficiently transmitted into
the human body and is the reason the reduced WO3 nanomaterials have been tested for photothermal
therapeutic applications.

Applications of these reduced WO3 nanomaterials to polymeric fibers and textiles have rarely been
observed. Recently, the applications of polymer nanocomposites as solar collectors, functional coatings,
and energy-saving applications were reported. Cheng et al. prepared nanocomposites of reduced
tungsten oxide and polyurethane (PU) and showed that the photothermal temperature increases,
depending on WO3−x concentrations and the degree of reduction [82]. Nanoparticles of reduced WO3

with a sub-100 nm diameter were prepared by ball milling WO3 powders, followed by their reduction
in a tubular furnace under a CO atmosphere. WO3−x nanoparticles were then mixed with PU in
dimethyl formamide (DMF), resulting in WO3−x/PU nanocomposites upon solvent drying. At a 7 wt %
concentration of WO2.72, the polymer nanocomposites presented a photothermal temperature increase
of up to 120 ◦C, with an extremely high heating rate of approximately 100 ◦C/min under IR irradiation
at a power of 150 W (Figure 2). Park et al. reported polymer nanocomposite films of tungsten bronze
nanorods (TBNRs, Na0.33WO3) and ethylene propylene diene monomer (EPDM) [83]. TBNRs with a
14-nm length, a 2- to 3-nm width, and an oleyl amine surface capping layer were synthesized via one-pot
solvothermal decomposition of ammonium metatungstate hydrate. It is noteworthy that TBNRs were
synthesized when sodium ions were introduced into the crystal structure of WO3, but only tungsten
bronze nanoparticles (TBNPs, Cs0.33WO3) were prepared when cesium ions were intercalated. Polymer
nanocomposites containing both TBNRs and TBNPs at 3 wt % concentration showed a photothermal
temperature increase of 3.5–3.7 ◦C/min, reaching approximately 40 ◦C in 2.5 min of NIR irradiation
from a solar simulator (Figure 3). It was noted that polymer nanocomposites with 3 wt % TBNRs
showed a tensile strain of 165%, which was higher than pristine EPDM films which showed a tensile
strain of 120%. All other polymer nanocomposites with 1, 2, and 3 wt % of TBNPs and 1 and 2 wt % of
TBNRs presented poorer tensile strains than those of the pristine film. Angle-dependent small angle
X-ray scattering and HR-TEM experiments revealed that the autophobic dewetting phenomenon due
to entropic penalty of short surface alkyls in comparison to long polymer chains in the EPDM matrix
caused micrometer-scale aggregation of TBNRs at 1 and 2 wt % concentrations. These aggregates
could act as sites for stress concentration upon tensile strain experiments, resulting in mechanical
failure at low tensile strains. In comparison, at 3 wt % of the TBNR content, TBNRs formed ellipsoidal
particulates with a 46-nm length and 20-nm width that were evenly distributed in the EPDM matrix
because of the alleviation of entropic penalty with increasing TBNR concentrations. Reports for fibers,
yarns, and textiles fabricated via a melt extrusion or solution spinning process utilizing photothermal
inorganic nanomaterials as fillers for polymer nanocomposites are currently limited. The results in the
study of TBNR/EPDM nanocomposites suggest that photothermal inorganic nanorods can be suitable
for manufacturing fibers and yarns via conventional melting and solution processes due to enhanced
mechanical properties at low filler contents.
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Figure 2. (a) UV-vis-NIR transmittance spectra of WO2.72/polyurethane (PU) nanocomposites 
prepared with different weight fractions of WO2.72 (0–7 wt %) with an inserted image of cross-sectional 
high-resolution transmission electron microscopy (HR-TEM) at 7 wt % and (b) corresponding 
photothermal temperature distribution at the different weight factions. Reproduced from Ref. [82]. 
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Figure 3. HR-TEM images of (a) Na0.33WO3 TBNRs, (b) EPDM/TBNR nanocomposites with 3 wt % 
TBNR, (c) an optical image of an arm with a patch of a nanocomposite film with 3 wt % TBNRs under 
NIR irradiation by a medical NIR lamp, (d) NIR images of the arm at 0 and 10 min under NIR 
irradiation, and (e) photothermal temperature increases of the skin and patch including 3-wt % 
Na0.33WO3 TBNRs under NIR light irradiation for 10 min, followed by temperature decreases after 
turning off the light. Reproduced from Ref. [83]. 
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TBNR, (c) an optical image of an arm with a patch of a nanocomposite film with 3 wt % TBNRs under
NIR irradiation by a medical NIR lamp, (d) NIR images of the arm at 0 and 10 min under NIR irradiation,
and (e) photothermal temperature increases of the skin and patch including 3-wt % Na0.33WO3 TBNRs
under NIR light irradiation for 10 min, followed by temperature decreases after turning off the light.
Reproduced from Ref. [83].
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2.2. Photothermal Heating by Conjugated Polymer Nanomaterials (CPNs)

Conjugated polymers that have π-delocalization along their conjugated backbones have been
one of the most useful semiconductors for optoelectronic devices such as light-emitting diodes [84],
thin-film transistors [85], and photovoltaic cells [86]. In particular, when the structural units of
both a donor and an acceptor comprise a repeating unit of the conjugated polymers, intramolecular
charge transfer exists from the donor structure unit to the acceptor unit, thereby suppressing
charge recombination between electrons and holes and light emission [82–88]. The subsequent
intra- and intermolecular charge transfer processes emit heat rather than light, thus making the
donor-acceptor-type conjugated polymers ideal materials for photothermal energy conversion
applications [64,87–94]. Furthermore, such donor-acceptor-type conjugated polymers have narrow
band gaps, enabling the efficient absorption of NIR (Figure 4a) [95]. In contrast, conjugated
polymers can be formed as nanomaterials of nanoparticles and nanoellipsoids in polar solvents of
water, low molecular weight alcohols, DMF, and dimethyl sulfoxide (DMSO) [96]. In contrast to
conventional thin-film coating processes using solutions of conjugated polymers in good solvents
such as toluene, chlorobenzene, and chloroform, nanoprecipitation [97,98], emulsification [98],
in-situ polymerization [99], and shattering of phase-separated films to nanomaterials [100] in poor
polar solvents could provide CPNs in the polar solvents. Thus, CPNs can be widely examined
as photothermal therapeutic agents, photoacoustic probes, and photocatalysts in aqueous-based
applications. In addition, they could be incorporated into functional fibers via a solution spinning
process utilizing DMF and DMSO [101,102]. Another advantage of CPNs is that they can present
optoelectronic properties similar to those of their bulk or thin-film states. When conjugated polymers
such as polyelectrolytes are dissolved in polar solvents at a molecular level by incorporating ionic charges
into the molecular structures of conjugated polymers, they are directly exposed to the surrounding
dipoles, water, and oxygen molecules. Energy is therefore absorbed by the conjugated polyelectrolytes
from irradiated light, which typically causes oxidation and degradation of the conjugated backbone,
deteriorating their original optoelectronic properties [95]. In comparison, conjugated polymer backbones
inside CPNs are isolated from the surrounding polar media, and thus, their optoelectronic properties can
be significantly preserved. In addition, the stacking of π-conjugated backbones as in films of conjugated
polymers with ordered assembly structures is possible, resulting in a bathochromic shift in their
absorption spectra by intermolecular π-electron delocalization, as shown in the absorption spectra of
poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole]]
(PCPDTBT) (Figure 4b,c) [102]. As a result, the NIR absorption and heat emission properties of CPNs
are significantly enhanced.
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The utilization of conjugated polymers for polymer nanocomposites, fibers, and textiles for
photothermal purposes has been recently reported. Polypyrrole (PPy) is a representative conjugated
polymer that can be synthesized via chemical oxidation of pyrrole monomers, typically using FeCl3 in
a polar medium [103]. Wang et al. showed that the soaking of PU fibers or tubes in an aqueous solution
of pyrrole monomers and FeCl3 oxidant could induce the swelling of soft segments in PU and the
interpenetration of the monomers and oxidant into the PU elastomeric network structure (Figure 5) [104].
Confined polymerization of PPy in the PU network results in polymers with interpenetrating networks
of PU and PPy. Textiles woven from the resulting PPy-PU fibers or tubes showed excellent photothermal
properties because of efficient light absorption by PPy in the fibers or tubes under sunlight irradiation
and the subsequent heat emission even at a low ambient temperature. Furthermore, because of
the interpenetrated network structure at the molecular level, PPy-PU fibers and tubes presented an
excellent tensile strain beyond 400%.
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power density of the bare-PU and the PPy-PU film, and the AM1.5 solar spectrum plotted as a reference.
Tensile strain–stress curves of PU or PPy-PU, (c) fibers, (d) tubes, (e) temperature change of different
textiles under cycles of on-off light illumination, (f) optical image of a photothermal kneecap for
warming a knee joint in natural sunlight, and (g) the corresponding infrared image. Reproduced from
Ref. [104] with permission. Copyright 2018, John Wiley and Sons.
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Applications of a donor-accepter-type conjugated polymer for photothermal nanocomposites
and fibers were presented using PCPDTBT [101]. To prepare CPNs, PCPDTBTs were first dissolved
in chloroform, and the solution was added dropwise to a DMF solution containing octanoic acid
(OA). The resulting emulsification of PCPDTBT with OA in the polar solvent, followed by removal
of chloroform with heating at 80 ◦C, produced nanoellipsoids of PCPDTBT with average sizes of
approximately 300 nm of the long axis and 120 nm of the short axis (Figure 6). PU-CPN nanocomposites
were then prepared by mixing the dispersion of PCPDTBT nanoellipsoids in DMF and a PU DMF
solution, followed by pouring the mixture solution on dishes and drying the solvent. At only 1 wt %
CPN concentration, the PU-CPN nanocomposites showed a remarkable photothermal temperature
increase of above 40 ◦C and a slight deterioration in the storage modulus of approximately 5 MPa
in comparison to that of pristine PU film. Concurrently, the PU-CPN nanocomposite films showed
antibacterial activity and reduced bacterial concentrations compared to silver nanoparticles due to the
antimicrobial property of the OA as a fatty acid, thus presenting multifunctional nanocomposites.
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Figure 6. (a) Scanning electron microscopy (SEM) image of PCPDTBT nanoellipsoids, (b) temperature
variation profiles under white light irradiation for 60 min and after turning off the light for another
60 min for (1) pristine PU, PU composite films with (2) 1 wt % OA, (3) 1 wt % Ag nanoparticles,
(4) 1 wt % PCPDTBT, (5) 0.25 wt %, (6) 0.5 wt % and (7) 1 wt % CPNs, (c) dynamic mechanical analysis
data of pristine PU and PU-CPN composite film at 1 wt %, and (d) optical images of bacterial cell
cultures on films of PU-CPN composite and pristine PU films and infrared images after white light
irradiation. Reproduced from Ref. [101] with permission. Copyright 2018, Elsevier.

Textiles based on CPNs have been presented using CPNs prepared from a solution spinning
process. CPNs of PCPDTBT and OA have been prepared as a dispersion in DMSO via the emulsification
process, and the resulting solution was mixed with a DMSO solution of polyacrylonitrile (PAN) at
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18 wt % (Figure 7) [102]. When CPNs were formed via the emulsion process in DMSO, their shapes were
spherical, with a diameter of 190 nm, which differed from the ellipsoidal shape after processing in DMF.
This is because hydrogen bonds between DMF and carboxylic acids on the outermost surface of CPNs
enhance the growth of the assembly structure in one direction. Spherical CPNs were distributed inside
and on the outermost surfaces of PAN fibers due to favorable interactions between the PAN matrix and
CPN fillers such as dipole-dipole interactions between cyano groups in the PAN and carboxylic groups
in OA. Knitted textiles using yarns based on PAN-CPN nanocomposite fibers reached the highest
temperature of 50.4 ◦C in 10 min of white light irradiation from a solar simulator. In the examination of
antibacterial property, representative gram-positive and gram-negative bacteria, Staphylococcus aureus
(S. aureus) and Escherichia coli (E. coli), were cultured on nanocomposite films containing only 0.7 wt %
of CPNs. After 24 h, 99.9% of cells were eliminated, presenting the effect of OA, a fatty acid that enables
the physical disruption of the cellular membrane structure, increases the fluidity and disorganization
of the membrane, and thereby, disintegrates the bacterial cells. Importantly for practical use as a
textile, breaking forces of PAN-CPN nanocomposite fibers were measured before and after washing in
a laundry machine by single filament tensile experiments. The PAN-CPN fibers after machine washing
presented a breaking force of 5.13 cN (165.94 MPa). This breaking force was higher than that of pristine
PAN fibers (4.68 cN (151.28 MPa)) and within the range of the standard deviation for that of PAN-CPN
fibers before washing (5.74 cN (185.78 MPa)), thereby showing the mechanical durability of the textiles
during machine washing.
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Figure 7. SEM images of (a) a nanocomposite fiber of PAN with 0.75 wt % CPNs, (b) fabric based
nanocomposite fibers, (c) fluorescent (excited at 650 nm) images of yarn based on nanocomposite
fibers, (d) an optical image of fabrics prepared from yarns based on PAN/CPN nanocomposite fibers,
(e) photothermal response of the textiles fabricated using PAN/CPN nanocomposite fibers at 0.75 wt %
of CPNs under white light irradiation for the first 600 s, followed by 600 s after turning off the light, with
an infrared thermal image under white light irradiation at t = 600 s, and (f) breaking forces measured
by single filament tensile experiments of pristine PAN fibers (filament 0), nanocomposite fibers before
knitting the textiles (filament 1, left inset image), after knitting followed by deknitting without washing
(filament 2), and after washing in a laundry machine followed by deknitting (filament 3, right inset
image). Reproduced from Ref. [102].
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3. Functional Fibers and Textiles Based on Joule Heating

Polymer nanocomposites of conductive materials have been highlighted for the fabrication of
stretchable, wearable electronic devices. Metallic nanoparticles and nanowires, carbon nanotubes
(CNTs), graphene, and conducting polymers have been composited with elastomeric polymers
such as styrene-butadiene-styrene (SBS) terpolymers, polydimethylsiloxane (PDMS), and PUs.
Reviews regarding stretchable electronics and conductive nanocomposites are already available
in the literature [105,106]. The Joule heating of fibers, textiles, and woven fabrics based on conductive
materials has attracted increasing attention for warming and therapeutic applications. Wiring the fibers
and textiles with conductive materials to external electrodes can generate Joule heating because of
electrical currents and resistance. A voltage difference between two electrodes and the resulting electric
field can generate a flow of charge carriers which are typically electrons that provide kinetic energy to
the charge carriers. When charge carriers collide with ions in the conducting materials, the directional
motion of the charge carriers is changed to thermal motion, converting the kinetic energy into thermal
energy. As established by James P. Joule in the 1840s, the power of heating (P) is given as the product
of a conductor’s resistance (R) and the square of the current (I, P = I2R) [107]. Metallic nanowires of
silver (AgNW) and copper (CuNW), CNT, and reduced graphene oxides (RGOs) have been used as
Joule heating materials for wearable heaters as films and in combination with fibers and textiles, which
have only been recently pioneered. In this review, recent developments in composite films, fibers,
and textiles based on Joule heating are described, categorizing them on the basis of methodology.

3.1. Joule Heating Based on Films

Electrically driven Joule heaters have commonly been fabricated by forming percolated network
structures of Ag NWs on polymer films or in polymer matrices. The resulting systems have initially
been applied to planar substrates such as defogging/defrosting windows and later, to non-planar
substrates such as wearable electronic devices and thermotherapy. In particular, highly flexible,
stretchable, patternable, and transparent systems with efficient Joule heating properties are required
for the latter applications. One of the most significant issues in the fabrication of composite films
is forming the percolation structure on the polymer films or in the polymer matrix. A solution to
this issue is to prepare percolated network structures of Ag NWs by vacuum filtering their ethanol
solutions on polytetrafluoroethylene (PTFE) filters, followed by transferring the percolated structure
onto a PDMS film upon contact of the Ag NW percolated film on the PTFT filter with a PDMS film
(Figure 8) [108]. The resulting heater successfully operates under an elevated temperature of 60 ◦C
and a strain of 60%. In a similar transfer technology, PAN nanofibers were first electrospun on a glass
substrate followed by electroplating copper on the PAN nanofiber surfaces (Figure 9). An advantage of
this process is that the electroplating process formed self-fused junctions in the percolated network
structure of Cu NWs, significantly reducing contact resistance. The percolated structure of Cu-coated
PAN nanofibers was transferred to a silicone-based Ecoflex rubber. The resulting heaters, based on Cu
NWS, exhibited a temperature increase of up to 328 ◦C with 90% transparency and a sheet resistance of
0.058 Ωsq−1. Furthermore, they had a remarkable stretchability of up to 300% and durability after
1000 bending cycles without any deterioration in the Joule heating property. The Cu-plated nanofibers
could be transferred onto any surface with a complex 3D structure. In contrast, a suspension of Ag
nanoparticles and ethylene glycol was electrospun on plastic films of PI or PET, resulting in percolated
Ag nanofibers upon annealing at a high temperature and under light irradiation [109].
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Figure 8. Highly stretchable and transparent heater. (a) Schematic illustration of the stretchable and
transparent heater composed of an Ag NW percolation network on PDMS film, (b,c) pseudocolor image
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and transparent heater operating at 60 ◦C with (b) no strain and (c) at 60% strain condition. Reproduced
from Ref. [108] with permission. Copyright 2015, John Wiley and Sons.
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Figure 9. (a) Schematic representation of the CFH fabrication process. (b) SEM images of pristine PAN,
platinum-seeded, Cu-electroplated, and transferred nanofibers. The scale bar is 1 µm, and (c) photographs
and corresponding SEM images of the CFHs on glass substrates with first electrospinning times of 5, 90,
and 180 s. The scale bars are 10 µm; those for the insets are 1 µm. Reproduced from Ref. [109].

To enhance the stretchability and dynamic stability of a Joule heater, patterns of electrical
conductors were incorporated into a polymer matrix. For example, a liquid metal (LM) alloy, based
on gallium, indium, and tin (galinstan) was incorporated into PDMS films as sinusoidal patterns
(Figure 10) [110]. A mixture of galinstan and PDMS was injected from a syringe onto a PDMS film
to draw sinusoidal patterns. Liquid PDMS was then poured onto the PDMS film with LM patterns,
followed by curing at a high temperature. Because of the highly conductive LM, its sinusoidal patterns,
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and 3D network in the PDMS matrix, the resulting composite film showed a high stretchability of
over 100%, good conductivity of 1.81 × 103 Scm−1, and excellent dynamic stability with only a slight
change in electrical resistance and heating temperature of 4.23% and 7.56% upon 100% stretching.
In a similar methodology, a kirigami pattern of a highly conductive Al paper was embedded in a
highly elastic silicone elastomer (Ecoflex) (Figure 11) [111]. The pristine paper was immersed in an Al
precursor solution, and the subsequent decomposition of the Al precursor led to Al coating on all fiber
surfaces in the paper. After preparing the Al paper with the kirigami pattern simply by cutting the
paper, the patterned paper was composited with Ecoflex. This simple approach enabled the resulting
Joule heater to be extremely stretchable (>400% strain) and durable (1000 cycles at 300% strain) and to
exhibit a high heating performance at low voltage (>40 ◦C at 1.2 V), thus demonstrating a Joule heater
useful for a wearable thermotherapy device by increased blood flow at the wrist during operation.
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Figure 10. (a) Optical photo of a specially designed LM@PDMS stretchable wearable electronically
driven heater (WEDH) and schematic illustration of its working condition. The pattern of this heater is
palisade shape with sinusoidal structure to perform thermotherapy on the knee, and (b) optical photos
of exercise at different states and the corresponding IR thermal images. Kneepad worn by a volunteer is
embedded with the LM@PDMS stretchable WEDH of (a). Reproduced from Ref. [110] with permission.
Copyright 2019, John Wiley and Sons.
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Figure 11. Kirigami-patterned stretchable paper conductor. (a) Digital image of the as-prepared
stretchable Kirigami conductor (scale bar 10 mm), (b) SEM image and EDS spectrum characterized on
the cut surface of the Al paper (scale bar 10 µm), (c) normalized electrical resistance of the pristine,
single-cut, and Kirigami-patterned Al papers as a function of applied strain, and (d) FEM analysis
of the stress distribution on the Kirigami conductor under various tensile strains. Reproduced from
Ref. [111] with permission. Copyright 2017, American Chemical Society.
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The next issue in the development of Joule heaters was to fabricate them via a rapid process.
Blow spinning, laminating, and roll-to-roll processes have been combined with the percolated network
structures of metal nanowires [112]. In a recent approach, Ag NWs were deposited onto a poly
(ethylene terephthalate) (PET) substrate by a supersonic spray process. In contrast, PAN nanofibers
were electrospun onto the other PET substrate, followed by electroplating Cu and nickel (Ni) onto
the surface of the PAN nanofibers seeded with platinum (Pt) using a sputter. Two substrates with
percolated network structures of different metal NWs were then laminated by placing them facing
each other and superimposing, followed by roll-pressing and heating. The resulting conducting films
exhibited a uniform distribution of Cu/Ni-plated PAN nanofibers and Ag NWs, a superior low sheet
resistance of 0.18 Ωsq−1, a transparency of 91.1%, and controllable Joule heating performance. The film
temperature could readily reach a high temperature beyond 300 ◦C by increasing the concentration
of the nanofibers and NWs. In addition, aiming at applications for skin patches, thermotherapy,
and temperature sensors, the film temperature could be controlled at a range below 50 ◦C by adjusting
the applied voltages below 1.2 V and time to less than 10 s. In the blow spinning process, precursor
solutions of Ag ions and poly(vinyl pyrrolidone) (PVP) were jetted from an eight-needle syringe module
toward a rolling continuous polyimide (PI) track, followed by UV curing at room temperature [113].
The resulting Ag nanofibers, with a diameter of 650 nm presented a sheet resistance of 9.5 Ωsq−1 and a
temperature increase of up to 285 ◦C at a direct current (DC) voltage of 10 V.

3.2. Joule Heating Based on the Coating of Textiles

As another approach to fabricate Joule heaters, electrically conducting materials have been simply
coated on textiles that are already manufactured using conventional fibers. In a previous study,
Ag NWs were synthesized as a dispersion in ethanol solutions, and cleaned cotton fabrics were
repeatedly immersed into the solutions until the sheet resistance reached 2.5 Ωsq−1, then dried and
firmly attached with a silver paste and copper tape [114]. The temperature of the resulting textiles
could be controlled between 30 and 125 ◦C, corresponding to the applied voltages between 1 and
6 V. The heating performance of the as-coated fabric remained preserved after 5000 bending cycles.
However, it gradually decreased from 87 to 35 ◦C upon five repeated washing cycles because of the
loss of Ag NWs coated on the fabric. The durability of the conducting fabrics could be improved by
employing a post sintering process (Figure 12) [115]. Woven PET fabrics were cleaned and immersed
into ethanol solutions of Ag NWs. After repeated dip coating of up to five cycles, the prepared
Ag NW-coated fabrics were exposed to intense pulsed light (IPL) for sintering. After sintering, Ag
NW-coated fabrics showed the lowest sheet resistance of 0.46 Ωsq−1, 30% less than that of unsintered
fabrics. In addition, the increase in their electrical resistance (∆R/R0) after five washing cycles was 16%,
while that of unsintered fabrics was 84%. In the most recent study, an approach for quick processing
was reported employing a spray process. A dispersion of Ag NWs and multi-walled CNTs was
spray-coated onto a stretchable fabric substrate (80% nylon and 20% PU), followed by encapsulating
with silicone rubber (Ecoflex) after drying [116]. The resulting fabrics presented a stretchability of 50%,
a sheet resistance of 22 Ωsq−1, and operating temperatures of 35–55 ◦C at a low driving voltage of
3–5 V. As another type of conductive material for coating textiles, conductive nanoparticles were used
to construct multifunctional wearable devices [117]. Cleaned cotton and wool fabrics were immersed
in a dispersion of gold nanoparticles (GNPs) and carbon black (CB) with ultrasonication. The resulting
coated fabrics were then encapsulated with Ecoflex, producing highly stretchable smart textiles with a
strain of more than 100% and a maximum temperature elevation of up to 103 ◦C at 20 V. Carbon-based
conductive inks, including CNTs [118,119] and graphene nanoplatelets [120], were coated directly on
cotton or PET fabrics by a scalpel-printing method or a simple dip-and-dry process. The CNT-cotton
fabric was used as a sensor for human motions such as walking, running, squatting and bending due to
its large strain range (0~100%) and as an electric heater with a significant electric heating performance
(78 ◦C at 20 V within 2 min) [118]. Woven textiles coated with a printable CNT concentrate was also
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examined for dye sensitized solar cells, together with Joule heating. They demonstrated 8% efficiency
and a temperature increase of up to 120 ◦C at 20 V [119].
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reaching 70 °C at 1.5 V. Furthermore, IR from the human body can be reflected back, thereby 
providing increased thermal insulation of 43%. Ni was also deposited onto silk fabrics [122]. Kapton 
tapes with a pre-cut interdigital pattern were attached to pre-cleaned silk fabrics, followed by an 
electroless plating process of Ni electrode patterns. A GO layer was spray-coated onto these Ni-
patterned silk fabrics to act as a humidity sensor. The resulting fabrics could be applied as a flexible 
humidity sensor for monitoring human respiration. Transparent conducting films and heaters could 
be fabricated by coating PAN fibers prepared by electrospinning with Ni via an electroplating process 
[123]. The resulting mats of Ni-coated PAN fibers presented a remarkably low sheet resistance of 0.73 
Ωsq−1 at an optical transmittance of 93%, achieving a heating temperature of 373 °C at an applied 

Figure 12. Schematic of (a) IPL sintering system for Ag nanowire-fabrics, (b) Ag nanowire-fabrics
with copper tape adhered to the fabric using silver paste for applying DC voltage and measuring
resistance of the fabric patch, (c) the normalized change in sheet resistance after a washing test for Dip-3
(black) and Dip-5 (red) Ag nanowire-fabrics before (dotted line) and after (solid line) IPL irradiation.
Inset shows the washing test setup. The evolution of normalized change in sheet resistance for the
Ag nanowire-fabrics before- (black) and after- (red) IPL irradiation under different temperature and
humidity conditions, and (d) Dip-5, 70 ◦C-40% relative humidity, Dip-5 IPL parameters: 10 kW·cm−2,
300 µs. Reproduced from Ref. [115].

In contrast, conductive materials can be coated on the surface of fabrics by chemical reactions.
Vertical Cu-Ni NWs were directly grown on woven Kevlar fiber (WKF) via a hydrothermal reaction
and combined with RGO dispersed in PDMS via a vacuum-assisted resin transfer molding (VARTM)
process (Figure 13) [121]. The resulting composite exhibited excellent performance as a Joule heater,
reaching 70 ◦C at 1.5 V. Furthermore, IR from the human body can be reflected back, thereby providing
increased thermal insulation of 43%. Ni was also deposited onto silk fabrics [122]. Kapton tapes with a
pre-cut interdigital pattern were attached to pre-cleaned silk fabrics, followed by an electroless plating
process of Ni electrode patterns. A GO layer was spray-coated onto these Ni-patterned silk fabrics to act
as a humidity sensor. The resulting fabrics could be applied as a flexible humidity sensor for monitoring
human respiration. Transparent conducting films and heaters could be fabricated by coating PAN fibers
prepared by electrospinning with Ni via an electroplating process [123]. The resulting mats of Ni-coated
PAN fibers presented a remarkably low sheet resistance of 0.73 Ωsq−1 at an optical transmittance of
93%, achieving a heating temperature of 373 ◦C at an applied voltage of 2 V. As a representative organic
conductive material, conjugated polymers such as polyaniline, poly(3,4-ethylenedioxythiophene) and
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PPy could be coated on fabrics by a vapor phase polymerization, an electrochemical polymerization,
in-situ solution polymerization or inkjet/blade printing, as recently reviewed [124]. For example,
PPy was synthesized on the surfaces of cotton and nylon fabrics via in-situ polymerization with
FeCl3 [125–127]. The operating temperature of the resulting Joule heaters based on PPy-coated cotton
fabrics was in the range of 28–83 ◦C at an operating voltage of 3–9 V with a sheet resistance of
303 Ωsq−1 [127] and demonstrated multifunctionalities with superhydrophobicity and self-cleaning
effects [126].
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3.3. Joule Heating Based on Conductive Fibers and Their Woven Fabrics

In addition to surface coating technologies by conductive materials, various technologies have
been reported to prepare conductive fibers and use them as woven textiles. In a hierarchical structure
of a stretchable heating fiber (SHF), Cu NWs were coated onto a helical yarn of polyester microfibers,
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followed by encapsulation of the fibers with silicone rubber (Figure 14a) [128]. The resulting SHF
could reach a temperature range of 20–57 ◦C at a low applied voltage of 3 V, within 20 s. A Joule heater
could be directly prepared from commercially available fabric (Figure 14b) [129]. Weft-knitted Modal
fabric was carbonized under an argon and hydrogen mixed atmosphere at an elevated temperature of
1050 ◦C for 200 min, thus preserving the stretchability of the carbonized textile by slow heating and
cooling. The carbonized fabrics were then wired with a Cu electrode and encapsulated by Ecoflex
silicon rubber. The resulting stretchable heater showed a heating temperature higher than 100 ◦C at a
driving voltage of as low as 3 V, without deterioration of the Joule heating performance, even under a
large strain of 70%.
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4. Thermal Management Based on Biomimetic Control over Fabric Structures

Smart fibers that mimic the structures in nature have most recently been highlighted for enhancing
thermal storage and absorption in combinations with Joule heaters or natural heat sources such as the
human body. A hierarchical structure that mimics the helical structure of the classic thermal insulation
material, wool, was developed using CNT (Figure 15) [130]. Ribbons of CNT were first synthesized,
dried, twisted, and collected onto a spool to produce CNT fibers. A bundle of the CNT fibers was then
twisted to fabricate compact helixes. The resulting textiles woven from the hierarchically helical fibers
(HHFs) of CNT could be stretched up to 150% with high stability and reversibility and could exhibit
ultrafast thermal response over 1000 ◦C s−1 at a low operating voltage of several volts and heating
durability over 5000 cycles. Furthermore, they had a good thermal insulation property due to a large
number of voids in the hierarchically helical structure.
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Figure 15. Scanning electron microscope (SEM) images of CNT ribbons at (a) high and (b) low
magnifications, respectively, (c) SEM images of primary CNT fiber, (d–f) SEM images of HHF, single-ply
spring-like fiber, and single-ply nonspring-like fiber with the same diameter. Scale bars: 1 µm in (a)
and 200 µm in (b−f). (g) Optical images and infrared images during stretching. Scale bars: 200 µm
(top) and 1 cm (bottom). (h) Infrared image of the heating textile wrapped on the wrist at 9 V. Scale bar:
2.5 cm. Reproduced from Ref. [130] with permission. Copyright 2017, John Wiley and Sons.

A similar approach for improving the thermal insulating properties by introducing voids in fibers
was inspired by animals such as polar bears living in extremely cold environments (Figure 16) [131].
A porous fiber structure mimicking polar bear hair with a hollow core and aligned shell was constructed
by combining directional freezing with solution spinning. An aqueous-based mixture solution of
silk fibroin and chitosan extruded from a syringe was gradually frozen, followed by freeze-drying.
As a result, ice crystals that were formed along the axial direction of spinning upon freezing were
selectively removed to preserve the porous structure. The textiles subsequently woven and doped
with CNTs presented a fast thermal response and uniform Joule heating, together with an excellent
thermal insulation property for comfortable wear. When the textiles are brought into contact with
the human body, four different heat transfer mechanisms are possible, including conduction and
convection through the air in the hollow micropore structures, conduction across the solid fibers,
and radiation (reflection) at the surfaces of the fibers coated with CNTs. Due to the air in the micropores,
with 87% porosity being blocked by the fiber walls, the convective heat transfer in the pore becomes
negligible. However, the thermal conductivity of air is generally much less than that of solids, thereby
significantly decreasing the overall heat transfer. Furthermore, the CNT coating on the textiles enhances
the reflection of radiation from the human body, and 20% more radiation is reflected than that by
pristine textiles based on silk, cotton, and PET. As an overall result, the thermal insulation property
of the biomimetic textiles was greatly enhanced, presenting a temperature difference between textile
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surface and the heating stage of as high as 14 and 20 ◦C when the stage temperature was based from
room temperature to –20 to 80 ◦C, respectively.

Polymers 2020, 12, x FOR PEER REVIEW 18 of 25 

difference between textile surface and the heating stage of as high as 14 and 20 °C when the stage 
temperature was based from room temperature to –20 to 80 °C, respectively. 

 
 

   

Figure 16. (a) Schematic illustration of the “freeze spinning” technique, combining “directional 
freezing” with “solution spinning” to realize continuous and large-scale fabrication of biomimetic 
fibers with aligned porous structure, mimicking polar bear hair. The silk fibroin solution extruded 
from a pump-controlled syringe is gradually frozen when it passes through a cold copper ring. 
Collected by a motor, the frozen fiber is further freeze-dried to reserve its porous structure and 
subsequently woven into a textile, (b) X-ray computed microtomography image showing the aligned 
lamellar pores within the biomimetic fiber along its axial direction, (c) schematic illustration of 
thermal conductivity of the biomimetic porous fiber with aligned pores, and (d) infrared light 
reflectance measurement of different textiles with similar thicknesses (≈ 0.4 mm) performed using a 
Fourier transform infrared (FTIR) spectroscopy microscope: biomimetic, silk, cotton, and polyester 
textiles are compared. Reproduced from Ref. [131] with permission. Copyright 2018, John Wiley and 
Sons. 

5. Conclusions and Outlook 

Films, fibers, and textiles, combined with photothermal and electrically conductive materials, 
have attracted significant attention because of their unique functionalities of heat generation for 
human clothing. This review described the recent innovations in this issue, with a focus on reports in 
the last three years and was categorized into three subjects; heat generation technologies of a passive 
type using light irradiation of the outside environment (photothermal heating), and those of an active 
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semiconducting polymers, and metal oxide nanomaterials that can efficiently absorb a vast amount 
of solar energy arriving at the earth’s surface from the Sun. These materials also efficiently emit their 
absorbed energy as heat rather than light, exhibiting an efficient photothermal conversion. One of the 
advantages of these technologies is that the materials can be readily incorporated into conventional 
polymeric fibers as fillers, while preserving the mechanical performance of pristine fibers. Thus, it is 
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Figure 16. (a) Schematic illustration of the “freeze spinning” technique, combining “directional
freezing” with “solution spinning” to realize continuous and large-scale fabrication of biomimetic
fibers with aligned porous structure, mimicking polar bear hair. The silk fibroin solution extruded from
a pump-controlled syringe is gradually frozen when it passes through a cold copper ring. Collected by
a motor, the frozen fiber is further freeze-dried to reserve its porous structure and subsequently woven
into a textile, (b) X-ray computed microtomography image showing the aligned lamellar pores within
the biomimetic fiber along its axial direction, (c) schematic illustration of thermal conductivity of the
biomimetic porous fiber with aligned pores, and (d) infrared light reflectance measurement of different
textiles with similar thicknesses (≈ 0.4 mm) performed using a Fourier transform infrared (FTIR)
spectroscopy microscope: biomimetic, silk, cotton, and polyester textiles are compared. Reproduced
from Ref. [131] with permission. Copyright 2018, John Wiley and Sons.

5. Conclusions and Outlook

Films, fibers, and textiles, combined with photothermal and electrically conductive materials,
have attracted significant attention because of their unique functionalities of heat generation for human
clothing. This review described the recent innovations in this issue, with a focus on reports in the
last three years and was categorized into three subjects; heat generation technologies of a passive
type using light irradiation of the outside environment (photothermal heating), and those of an active
type employing external electrical circuits (Joule heating). Photothermal approaches use ceramics,
semiconducting polymers, and metal oxide nanomaterials that can efficiently absorb a vast amount of
solar energy arriving at the earth’s surface from the Sun. These materials also efficiently emit their
absorbed energy as heat rather than light, exhibiting an efficient photothermal conversion. One of the
advantages of these technologies is that the materials can be readily incorporated into conventional
polymeric fibers as fillers, while preserving the mechanical performance of pristine fibers. Thus, it is
possible to apply these materials for commercialization. In contrast, the resulting fabrics generate heat
only when they are exposed to sunlight. They can therefore be applied to outdoor clothes, goods, or
military uses in harshly cold environments with abundant sunlight, and thermotherapy using a medical
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IR lamp. Fabrics utilizing Joule heating materials can actively produce heat by applying only a small
voltage, and the temperature increase can be sensitively controlled up to a few hundred degrees Celsius.
Hence, they are useful for defreezing or defogging applications as composite films, heating patches for
thermotherapy, and wearable heating devices. Joule heating materials have typically been coated on
fiber or textile surfaces because of the difficulty in preserving the electrical conductance when they are
composited within conventional fibers as fillers. Therefore, novel technologies that can combine Joule
heating materials with conventional fiber production processes are required for commercialization.

In future studies, heat generation technologies should be combined with other kinds of thermal
management methodologies and consider the three mechanisms of conduction, convection and
radiation. As recently reviewed for the enhanced thermoregulating performance of fibrous materials,
heat transfer processes occur in a route from human skin surface, air gap, cloth and environment.
In the air gap between the human skin and inside surface of the cloth, conductive heat transfer is a
major mechanism [15,131]. Furthermore, heat radiation from the human skin with a wavelength at
approximately 9.5 µm and reflection of the radiation on the inside surface of the cloth can be controlled
in the air gap [132]. Through the cloth to the environment, radiation from the human body, air and
moisture transport, conductive and convective heat transfer, and active heat generation based on the
photothermal or Joule heating, clothing should be controlled for overall personal thermal management.
The biomimetic structures incorporated into textiles to increase voids suggest a good example for
future study. Fabrication processes for fibers and textiles with porous inner structures and reflective
surface structures should be combined with photothermal and Joule heating materials to maximize heat
generation and to minimize heat loss across fabrics. This requires an understanding of the conduction,
convection, and radiation of heat when designing the structures. Conversely, composite films or
hydrogels bearing photothermal or Joule heating materials should be developed for transdermal drug
delivery and cosmetic applications. Heating on wound spots also increases bacterial growth, although
wound healing effects become significant due to the enhanced blood flow, and therefore, functions to
inhibit the bacterial growth or to clean the bacterial cells but boost the growth of epidermal cells for
healing of the wound need to be incorporated.
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