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Objectives: Measuring obesity prevalence across geographic areas should account for environmental 

and socioeconomic factors that contribute to spatial autocorrelation, the dependency of values 

in estimates across neighboring areas, to mitigate the bias in measures and risk of type I errors in 

hypothesis testing. Dependency among observations across geographic areas violates statistical 

independence assumptions and may result in biased estimates. Empirical Bayes (EB) estimators reduce 

the variability of estimates with spatial autocorrelation, which limits the overall mean square-error and 

controls for sample bias.

Methods: Using the Colorado Body Mass Index (BMI) Monitoring System, we modeled the spatial 

autocorrelation of adult (≥ 18 years old) obesity (BMI ≥ 30 kg m2) measurements using patient-level 

electronic health record data from encounters between January 1, 2009, and December 31, 2011. Obesity 

prevalence was estimated among census tracts with >=10 observations in Denver County census tracts 

during the study period. We calculated the Moran’s I statistic to test for spatial autocorrelation across 

census tracts, and mapped crude and EB obesity prevalence across geographic areas.

Results: In Denver County, there were 143 census tracts with 10 or more observations, representing a 

total of 97,710 adults with a valid BMI. The crude obesity prevalence for adults in Denver County was 

29.8 percent (95% CI 28.4-31.1%) and ranged from 12.8 to 45.2 percent across individual census tracts. 

EB obesity prevalence was 30.2 percent (95% CI 28.9-31.5%) and ranged from 15.3 to 44.3 percent 

across census tracts. Statistical tests using the Moran’s I statistic suggest adult obesity prevalence 

in Denver County was distributed in a non-random pattern. Clusters of EB obesity estimates were 

highly significant (alpha=0.05) in neighboring census tracts. Concentrations of obesity estimates were 

primarily in the west and north in Denver County.
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Background

Adult obesity prevalence, defined as the total 

number of individuals 18 years of age or older with 

a body mass index (BMI) of greater than or equal 

to 30 kg/m2 among the overall adult population 

at risk, remains an important public health metric. 

The Centers for Disease Control and Prevention 

(CDC) estimate obesity prevalence in the United 

States to be 35.1 percent for adults 20 years old 

and older from 2010-2012.1 Data to capture obesity 

prevalence estimates at state and local levels are 

typically derived from survey data in the form 

of self-reported height and weights, such as the 

CDC-sponsored, state-administered Behavioral 

Risk Factor Surveillance System (BRFSS)2 Survey-

derived measures can underestimate BMI and thus 

obesity prevalence among children and adults due 

to individuals underreporting weights and over-

reporting heights.3,4 Obesity prevalence estimates for 

small geographies (e.g. census tracts) can be feasibly 

measured using BMIs calculated from objectively-

measured heights and weights from electronic health 

record (EHR) data collected through routine care 

from health care providers and provider networks.5-7

When examined at the census tract level, particularly 

census tracts of varying population levels, obesity 

prevalence can be distributed in a non-random 

pattern. Such clustering of observations within 

census tracts can induce correlation and impede 

the reliability of statistical tests, increasing the 

risk of type 1 error.8 Measuring obesity prevalence 

across census tracts areas should then account 

for spatial autocorrelation, or similar values of 

obesity prevalence across neighboring census 

tracts, as dependency among observations across a 

geographic area can violate statistical independence 

assumptions and bias estimates through incorrect 

probabilities of residuals of estimates and the 

coefficient estimates themselves.8-11 Statistical 

methods to quantify and correct for bias due to 

spatial autocorrelation are applied in a wide array of 

health outcomes used to understand the ecology 

of a sample population across geographic areas, 

including obesity,5,6,12,13 diabetes,10,14 mortality risk15,16 

and other comorbidities.17-20

The primary objective of this paper is to use 

Empirical Bayes (EB) estimates to reduce the 

amount of spatial autocorrelation in obesity 

prevalence estimates with varying sample sizes 

across geographic areas. We will show that EB 

estimates can limit the overall mean square-error 

across geographies where occurrence of obesity 

prevalence are measured. We will compare crude 

obesity prevalence estimates to EB estimates 

across geographic areas. Finally, we will discuss 

the strengths and limitations of EB estimates for 

measuring obesity prevalence across census tracts.

Conclusions: Statistical tests reveal adult obesity prevalence exhibit spatial autocorrelation in Denver 

County at the census tract level. EB estimates for obesity prevalence can be used to control for spatial 

autocorrelation between neighboring census tracts and may produce less biased estimates of obesity 

prevalence.

CONTINUED
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Methods

We estimated adult crude and EB obesity prevalence 

estimates using the Colorado BMI Monitoring 

System, an electronic health record (EHR) based 

network comprised of multiple healthcare providers 

with patients residing in Denver County, Colorado.21 

The Colorado BMI Monitoring System includes 

EHR data from January 1, 2009, to December 31, 

2011, from Kaiser Permanente Colorado, Denver 

Health, Children’s Hospital Colorado, and High 

Plains Community Health Center. These data-

contributing sites represent a diverse mix of 

commercially-insured, low-income and homeless 

patient populations across managed care, safety-net 

hospital and community clinic providers.

Objectively measured heights and weights obtained 

during routine care were extracted from the EHRs 

of each individual site, along with other clinical and 

demographic characteristics including age, race, 

ethnicity and gender, geocoded location based 

on residence address, and insurance coverage at 

the time of the encounter. Encounters were de-

duplicated within each site, and those without 

measures of height and weight were removed. 

Data was securely transferred to the Colorado 

Department of Public Health and Environment 

(CDPHE), then combined across sites. CDPHE 

geocoded home addresses to the census tract level 

and removed addresses from the data. CDPHE 

applied the CDC BMI SAS
®
 macro22 to calculate 

patient-level BMIs across the system. Biologically-

implausible values, defined as extreme values of 

height or weight for adults at least 18 years of age 

(heights less than 48 inches, heights greater than 

84 inches, weight less than 50 lbs., and weights 

greater than 700 lbs.),22 were omitted from the 

system. Additionally, pregnant women, defined as 

women with an International Statistical Classification 

of Diseases, Ninth Edition (ICD-9) diagnosis or 

procedure code for pregnancy or delivery during 

the study period, were excluded from the system. 

Data were then organized by measure date and the 

most recent BMI record for each individual within 

the study period was assigned.23 The Colorado BMI 

Monitoring System was reviewed and approved 

by the Kaiser Permanente Colorado and Colorado 

Multiple Institutional Review Boards. Written consent 

for inclusion into the BMI Monitoring System was not 

required.

Empirical Bayes Estimates

Unlike traditional Bayesian estimates, for EB 

estimates (also known as Stein estimation, penalized 

estimation and random-coefficient or ridged 

regression),24,25 prior data for estimates comes 

from the underlying available data itself, not a 

priori from prior information.25-27 EB estimates are 

assumed to vary randomly across data from their 

respective prior frequency distributions such that 

the EB posterior estimates represent the frequency 

confidence intervals themselves. EB estimates 

provide researchers with the convenience of utilizing 

existing data to estimate variability in parameter 

estimates themselves, particularly among data 

inputs with varying sample sizes of prior estimates.28

The prevalence of obesity for a given geographic 

area, defined as the number of obese individuals in 

a geographic area divided by the total population at 

risk of obesity in the same geographic area, can lead 

to instability in the variance of obesity prevalence 

across geographic areas. The variance of the 

obesity prevalence estimate depends inversely on 

population at risk; i.e., as the population decreases, 

the variance of the expected value of the obesity 

prevalence estimate increases. Smaller sample 

sizes within geographic areas have larger variance 

compared to larger sample sizes. EB estimates use 

“prior” information to reduce the variability (from 

the overall mean (global mean) prevalence estimate) 

of the prevalence estimate across geographies, 
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leveraging “priors” from the global mean prevalence 

estimate across all census tracts.

EB estimates reduce variability using the inverse 

function of variance.26,29 For areas with lower 

variance, higher weight is assigned to the observed 

prevalence estimate. Geographic areas with high 

variance are weighted less in the calculation of 

the observed prevalence estimate. Taken together, 

the application of the global mean mitigates the 

challenges that arise from large variation of variance 

estimates due to differences in population sample 

sizes across geographic areas.

Data Aggregation and Analysis

For this analysis, we used the adult patient 

population from the Colorado BMI Monitoring 

System with a most recent valid BMI measure 

between January 1, 2009, and December 31, 2011, 

and a geocode based on residence address in 

Denver County, Colorado.23 We aggregated the 

individual, patient-level data to estimate the number 

of adults >= 18 years of age with a valid BMI record 

in each census tract, the mean BMI for adults by 

census tract, and number of adults with a BMI >= 30 

kg/m2 in each census tract. We defined coverage as 

the number of adults in a given census tract with a 

valid BMI from the Colorado BMI Monitoring System 

divided by the estimated total number of adults 

in the census tract from the United States Census 

2010 population estimates. We calculated the crude 

obesity prevalence for each census tract by dividing 

the total number of obese adults by the total 

number of adults with a valid BMI in each census 

tract. Obesity prevalence was estimated among 

census tracts with >=10 observations in Denver 

County census tracts during the study period.23,30

We calculated the EB estimate of the obesity 

prevalence across census tracts in Denver County. 

We utilized a spatially-naïve EB estimate to reduce 

the variability of extreme values across census tracts 

with the global mean estimate. We employed the 

Queen’s contiguity matrix31 in the spatial analysis and 

mapping of the EB obesity estimate, which defines 

neighboring census tracts for all tracts sharing a 

border in every direction.

We compared the crude obesity prevalence to the 

EB obesity prevalence graphically, and statistically 

using a one-sample t-test. We generated maps 

of crude and EB obesity prevalence estimates 

for Denver County. We calculated the Moran’s I 

statistic32 for the crude obesity prevalence and 

the EB obesity prevalence to estimate the degree 

of spatial autocorrelation across census tracts in 

Denver County in each estimate. A statistically-

significant Moran’s I of 1.0 indicates perfect spatial 

autocorrelation across census tracts (i.e., obesity 

prevalence estimates in a given census tract are 

completely dependent on the prevalence estimates 

of neighboring census tracts and are distributed in 

a non-random pattern). A statistically-significant 

Moran’s I of -1.0 implies no spatial autocorrelation 

across census tracts and perfectly random 

distribution of obesity prevalence.

Data aggregation of Colorado BMI Monitoring 

System data was performed using SAS® 9.2. 

Geocoded addresses were created using Tele Atlas, 

U.S. Census, Environmental Systems Research 

Institute (ESRI) (Pop2010 fields) and Bowes Centrus® 

Desktop v6.01, utilizing the TomTom© address point 

database. Coverage and obesity estimates, statistical 

tests and maps were calculated and generated using 

GeoDaTM 1.4.6.

Results

Table 1 summarizes the data collected from the 

Colorado BMI Monitoring System for this analysis. 

There were 143 census tracts in Denver County, 

Colorado, based on 2010 United States Census 

Bureau geographic definitions. There were n=97,710 

adults ≥ 18 years of age with at least one valid 
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BMI measure and geocoded home addresses in 

Denver County census tracts within the January 1, 

2009-December 31, 2011, study period in the four-

site Colorado BMI Monitoring System. Based on 

United States Census 2010 population estimates, 

the Colorado BMI Monitoring System sample 

represented approximately 20.7 percent of the total 

adult population for Denver County. There were 

31,275 adults classified as obese (BMI ≥ 30 kg m-2) 

in the 2009-2011 study period. Coverage of the BMI 

Monitoring System population in Denver County 

census tracts ranged from 3.7percent to 60.2 percent.

Table 2 summarizes results for the Denver County 

obesity prevalence estimates. Crude obesity 

prevalence for adults was 29.8 percent (95% CI 28.4-

31.1%) and ranged from 12.8 to 45.2 percent across 

individual census tracts. EB obesity prevalence 

was 30.2 percent (95% CI 28.9-31.5%) and ranged 

from 15.3 to 44.3%. The Moran’s I for crude obesity 

prevalence was 0.7142 (p ≤ 0.001) and the Moran’s 

I for the EB obesity prevalence was 0.7307 (p ≤ 

0.001), suggesting spatial autocorrelation in adult 

crude and EB obesity prevalence estimates in 

Denver County and that obesity is geographically 

distributed in a non-random pattern. The mean 

(standard error) difference in crude and EB obesity 

prevalence estimates was -0.0046 (0.0003) (one-

sample t-test, p-value=<0.001).

Table 1. Summary of BMI Monitoring System for Denver County, CO, Adult Population 2009-2011

DENVER COUNTY

Colorado BMI Monitoring System Population with valid BMI >= 18 years old 97,710

U.S. Census 2010 Population Estimates 471,392

Estimated Coverage* 0.2073

Range of Coverage Across Individual Census Tracts (0.0373, 0.6021)

Total Obese (BMI >= 30 kg/m2 31,275

*Coverage defined as Colorado BMI Monitoring System adult population with valid BMI divided by U.S. Census 2010 Population >=18 years old

Table 2. Adult Obesity Prevalence Estimates for Denver County, CO, 2009-2011

CRUDE OBESITY 
PREVALENCE 

(%)

EB OBESITY  
PREVALENCE  

(%)

DIFFERENCE BETWEEN MEANS 
(TWO MEANS, ONE-SAMPLE T-TEST)

Mean (se) 29.8** (0.09) 30.2** (0.08) -.00046*** (0.0003)

95% CI (28.4, 31.2) (29.0, 31.5) (-0.0051, -0.0041)

Range (12.8, 45.2) (15.3, 44.3)

Moran’s I Statistic 0.7142*** 0.7307***

*, **, *** denotes significance at the 90th, 95th, and 99th percentile, respectively
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Figure 1 summarizes the absolute difference of the 

EB and crude obesity prevalence estimates by BMI 

Monitoring population across Denver County census 

tracts. One census tract was omitted from the figure 

due to insufficient coverage. As the BMI Monitoring 

population increases, the difference between 

the crude and EB obesity prevalence estimate 

decreases.

Maps of obesity prevalence by census tract in 

Denver County are shown in Figure 2. Crude obesity 

prevalence estimates showing higher prevalence of 

obesity were concentrated in the west and north in 

the county. EB obesity prevalence estimates reveal 

a similar pattern, but after accounting for variance 

across census tracts, some census tracts had lower 

obesity prevalence.

Data points of the Moran’s I statistic for individual 

census tracts for crude and EB obesity prevalence 

estimates and spatial lag (average across 

neighboring census tracts) of crude and EB obesity 

prevalence estimates for Denver County are plotted 

linearly in the Moran scatterplots in Figure 3. The 

graphical representation highlights the wider 

dispersion (distribution of point estimates from the 

mean) of spatial autocorrelation contained in the 

crude obesity estimates across individual census 

tracts compared to the tighter dispersion of spatial 

autocorrelation in the EB estimates across the 

same census tracts. High values on the vertical axis 

are generally associated with high values on the 

horizontal axis. Similarly, low values on the vertical 

axis are associated with low values on the horizontal 

axis. Overall spatial autocorrelation increases slightly 

Figure 1. Difference (Empirical Bayes – Crude) Obesity Prevalence Estimates by Census-Tract level 

BMI Monitoring Population in Denver County, CO, 2009-2011
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Figure 2. Denver County Obesity Prevalence Estimates by Census Tract, 2009-2011
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Figure 3. Moran Scatterplot of I-Statistic Comparisons of Obesity Prevalence Estimates
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from the crude obesity prevalence estimates 

in Denver County to the EB obesity prevalence 

estimates, but the autocorrelation among individual 

census tracts was reduced in the EB estimates.

Discussion

This paper presented the use of EB estimation to 

reduce spatial autocorrelation in obesity prevalence 

estimates across small geographies with different 

sample sizes. We estimated adult crude and EB 

obesity prevalence estimates in Denver County, 

Colorado using EHR-derived BMI data from the 

Colorado BMI Monitoring System. We compared and 

quantified the differences in crude and EB estimates, 

and showed that EB estimates can limit the errors 

in the residual estimates across geographies where 

occurrence of obesity prevalence are measured.

The crude adult obesity prevalence estimate 

derived from the Colorado BMI Monitoring System 

for Denver County was 29.8 percent; the EB 

obesity prevalence estimate was 30.2 percent. The 

difference between the two obesity prevalence 

estimates was statistically significant, revealing EB 

obesity prevalence for adults were non-random in 

Denver County at the census tract level. Clusters of 

EB obesity were highly significant (alpha<=0.05) 

in neighboring census tracts of high obesity 

prevalence. The Moran’s I statistic for the EB obesity 

prevalence estimate showed that a high degree of 

spatial autocorrelation exists within Denver County, 

quantifying the degree to which obesity prevalence 

in neighboring census tracts were correlated across 

Denver County. The results suggest autocorrelation 

of obesity prevalence at the census tract level 

exists and should be accounted for to limit bias in 

calculated obesity estimates.

While comparisons of estimates derived from the 

BRFSS and Colorado BMI Monitoring System cannot 

be made directly due to sample size and data 

collection methods, assessing the reasonableness 

of obesity prevalence estimates derived from 

the Colorado BMI Monitoring System with an 

established alternative is important to validate this 

novel approach. Estimates of obesity prevalence 

from the 2009-2010 BRFSS adult obesity estimates 

for Denver County (19.6%; 95% CI [16.8- 22.4]),2 

but may underestimate obesity due to phone 

survey respondents’ underreporting weights and 

over-reporting heights.3 Similarly, the Colorado 

BMI Monitoring System may overestimate BMI 

and obesity prevalence due to selection bias of 

patient populations of the data-contributing sites 

and the use of EHR data as the source. Data may 

misrepresent the obese population in Denver 

County, as the data can only reflect patients who 

utilize healthcare services at data-contributing sites. 

Patients of federal hospitals (e.g., Veteran’s Affairs) 

or other commercial insurance providers in Denver 

County may not be represented in these estimates.

Additional analyses can be conducted to further 

identify spatial autocorrelation within the BMI 

Monitoring System. EB estimates help identify if 

prevalence estimates across geographic areas 

contain spatial autocorrelation and whether 

estimates are distributed at random or in a non-

random pattern. Demographic-specific obesity 

prevalence estimates and associated Moran’s I 

statistics can be compared to determine which 

particular demographic strata (e.g., age groups, 

gender, race and ethnicity) may be contributing 

more or less to spatial autocorrelation across census 

tracts for a given geographic area. Socioeconomic 

status (SES) and environmental data can be 

modeled at the census tract level to further 

determine the extent of autocorrelation due to these 

additional variables. Several studies have found 

SES and environmental exposures to explain large 

portions of variation in obesity prevalence across 

census tracts.5,33-35
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The Moran’s I statistic can be employed in studies 

as a useful tool for estimating correlations across 

census tracts. If neighboring census tracts are highly 

correlated but not accounted for, obesity prevalence 

estimates may be incorrect. Policy decisions and 

community-level inventions may be made from 

inaccurate estimates, which can in turn hinder the 

impact of such public health efforts. Public health 

entities and community policy makers can use 

EB estimation and the Moran’s I statistic to infer 

variability of obesity prevalence, as well as SES and 

environmental exposures within clusters of high or 

low obesity prevalence, that may be correlated with 

obesity.

Limitations

There are several limitations to the use of EB 

estimates to calculate obesity prevalence, and to 

the Colorado BMI Monitoring System for measuring 

obesity prevalence over a large population and 

geographic area. The BMI Monitoring System does 

not employ a patient-master index for de-duplicating 

patients across data-contributing providers. Rather, 

patients having insurance coverage for another data-

contributing site at the time of most-recent height 

and weight measure were reallocated to that site.

Weighting obesity prevalence estimates at the 

census tract level by the global mean obesity 

prevalence makes understanding the EB estimate 

difficult and not necessarily accessible for the public, 

a key aim for the Colorado BMI Monitoring System. 

Conversely, public consumers of obesity prevalence 

estimates may be more interested in the accuracy 

of the estimates themselves (i.e., the accuracy of 

obesity prevalence estimates relative to the “true” 

obesity prevalence) and less on the derivation of 

the estimates themselves. EB estimates do provide 

an estimate of obesity prevalence with reduced 

spatial autocorrelation for modeling the association 

between obesity, SES and environmental risk factors 

across neighboring geographic areas, reducing bias 

in estimates and interpretation of correlations.5

Other measures of spatial autocorrelation were not 

considered in this study, including autoreggresive 

parameter specification or simultaneous 

autoregressive (SAR) modeling,36 as well as 

spatial filtering.37 These techniques are often used 

in assessing correlation between exposure and 

outcome measures across geographies, but can be 

employed as an alternative to EB estimation.

Conclusion

EB estimates of obesity prevalence can reduce bias 

of estimates across geographic areas with different 

sample sizes using the data within the sample to 

generate prior estimates, providing estimates of 

obesity prevalence that are less prone to bias due 

to spatial autocorrelation. EB estimates can help 

researchers discern whether prevalence estimates 

are distributed across geographies in non-random 

patterns. EHR data can provide a rich source of 

information to measure disease prevalence across 

populations and geographies. Additional analyses 

of demographic, SES and environmental data can 

further define spatial variance and autocorrelation 

across census tracts.
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