

Article

Pancreatitis Risk Associated with GLP-1 Receptor Agonists, Considered as a Single Class, in a Comorbidity-Free Subgroup of Type 2 Diabetes Patients in the United States: A Propensity Score-Matched Analysis

Mark Ayoub ^{1,*}, Harleen Chela ², Nisar Amin ¹, Roberta Hunter ², Javaria Anwar ¹, Veysel Tahan ² and Ebubekir Daglilar ^{2,*}

- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; nisar.amin@vandaliahealth.org (N.A.)
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
- * Correspondence: mark.ayoub@camc.org (M.A.); ebubekir.daglilar@hsc.wvu.edu (E.D.)

Abstract: Introduction: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are commonly prescribed for the management of type 2 diabetes mellitus (T2DM). However, the potential connection between GLP-1 RAs and the risk of pancreatitis presents a complex and nuanced issue. Although these drugs are effective in improving blood sugar control and cardiovascular health, their association with pancreatitis remains an area of concern. Our study aims to evaluate the association between the use of GLP-1 RAs, considered as a single class, and the risk of pancreatitis in a comorbidity-free subgroup of patients with type 2 diabetes mellitus (T2DM) in the United States. Methods: Data were retrieved from the TriNetX research database using the US Collaborative Network, which included information from 61 healthcare organizations within the U.S. Patients diagnosed with T2DM were categorized into two cohorts: one consisting of the patients prescribed with GLP-1 RAs and the other comprising patients who did not receive GLP-1 RAs. Of this class of medications, the agents analyzed were dulaglutide, lixisenatide, exenatide, liraglutide, and semaglutide. Using a 1:1 propensity score matching (PSM) model, we matched patients of both cohorts based on baseline demographics, comorbidities (hypertensive disorders, ischemic heart disease, gallstones, annular pancreas, alcohol use disorders, hypertriglyceridemia, hypercalcemia, cystic fibrosis, and cannabis use), medications known to cause drug-related pancreatitis, and laboratory values. Results: Of 969,240 patients with T2DM, 9.7% (93,608) were on GLP-1 RA, and 90.3% (875,632) were not. After PSM, the sample included 81,872 patients in each cohort. The risk of pancreatitis between the two groups was not statistically different between the two cohorts at 6 months at (0.1% vs. 0.1%, p = 0.04), and remained without significant increase with time; at 1 year (0.1% vs. 0.2%, p = 0.02), 3 years (0.2% vs. 0.3%, p = 0.001), and 5 years (0.3% vs. 0.4%, p < 0.001). The lifetime risk of developing pancreatitis in patients on GLP-1 RA was lower (0.3% vs. 0.4%, p < 0.001). Conclusions: In our comorbidity-free U.S.-based population with T2DM, the use of GLP-1 RAs did not increase their risk of pancreatitis. Their use was associated with a lower lifetime risk of pancreatitis.

Keywords: pancreatitis; diabetes; GLP-1 RA; weight loss; safety

Academic Editor: Morihisa Hirota

Received: 10 December 2024 Revised: 28 January 2025 Accepted: 30 January 2025 Published: 1 February 2025

Citation: Ayoub, M.; Chela, H.; Amin, N.; Hunter, R.; Anwar, J.; Tahan, V.; Daglilar, E. Pancreatitis Risk
Associated with GLP-1 Receptor
Agonists, Considered as a Single Class, in a Comorbidity-Free Subgroup of
Type 2 Diabetes Patients in the United
States: A Propensity Score-Matched
Analysis. J. Clin. Med. 2025, 14, 944.
https://doi.org/10.3390/jcm14030944

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

J. Clin. Med. 2025, 14, 944 2 of 13

1. Introduction

Glucagon-like peptide-1 (GLP-1) agonists have become a cornerstone in the management of type 2 diabetes mellitus (T2DM), encompassing agents such as exenatide, liraglutide, and dulaglutide. These medications exert their glucose-lowering effects by emulating the action of endogenous GLP-1, stimulating insulin secretion, and inhibiting glucagon release. Due to their efficacy in enhancing glycemic control, promoting weight loss, and demonstrating cardiovascular benefits, GLP-1 RAs have witnessed a steady increase in prescription rates, contributing significantly to the treatment landscape for T2DM [1,2]. The American Diabetes Association (ADA) updated their guidelines, and they recommend the use of GLP-1 RAs as one of the first line therapies for T2DM [3].

Despite the therapeutic advantages offered by GLP-1 RAs, concerns have emerged regarding their potential association with an increased risk of pancreatitis [4–6]. Pancreatitis, marked by inflammation of the pancreas, is a serious condition with potentially severe consequences. The existing literature has seen several studies exploring this potential link, prompting a comprehensive examination of the risk–benefit profile of GLP-1 RAs in the context of pancreatitis [4,5,7,8].

Singh et al., in a study from 2013, showed through an administrative database study of U.S. adults with type 2 diabetes mellitus that treatment with the GLP-1-based therapies sitagliptin and exenatide was associated with the increased odds of hospitalization for acute pancreatitis [5]. However, another study by Storgaard et al. in 2017 found no evidence that treatment with GLP-1 RAs increases the risk of AP in patients with type 2 diabetes [4].

According to the U.S. Centers for Disease Control and Prevention (CDC), in 2021, there were 38.1 million adults above the age of 18 (14.7% of U.S. adults) with diabetes [9]. The percentage of adults with diabetes increases with age reaching 29.2% among those older than 65 years [9]. Some studies found that a majority of adult patients with T2DM have at least an additional comorbidity, and almost 40% of adult patients have at least three additional ones [10]. In one of those studies, 97.5% of 1.3 million patients had at least one comorbidity in addition to T2DM [11]. The strong association of other comorbidities with T2DM was the basis of our study structure with their exclusion.

Due to such conflicting data and the severe nature of acute pancreatitis, further research is warranted to investigate this potential link to allow for safer prescribing methods. The available studies in the literature focus on specific drugs within the GLP-1 RA class, without addressing the remainder of available drugs. Therefore, our study objective was to evaluate the association between the use of GLP-1 receptor agonists (GLP-1 RAs), considered as a single class, and the risk of pancreatitis in a comorbidity-free subgroup of patients with type 2 diabetes mellitus (T2DM) in the United States, using propensity score matching (PSM) to balance baseline characteristics.

2. Materials and Methods

2.1. Statistical Analysis

This study was approved by the Institutional Board Review Committee at Charleston Area Medical Center. Written informed consent from patients was waived due to the de-identified nature of the TriNetX clinical database. The TriNetX (Cambridge, MA, USA) database is a global federal research network that combines real-time data with electronic medical records. Data used in our study were retrieved from the TriNetX research database using the US Collaborative Network, which included information from 61 healthcare organizations within the U.S. Using the International Classification of Diseases 10th revision codes (ICD-10), adult patients aged \geq 18 years with type 2 diabetes mellitus (T2DM) were identified. Included patients were divided into two cohorts that underwent propensity score matching (PSM) and were subsequently compared. We matched patients of both

J. Clin. Med. 2025, 14, 944 3 of 13

cohorts based on baseline demographics, comorbidities, medications known to cause drug-related pancreatitis, and laboratory values.

After performing PSM, outcome analysis was performed. Our outcome for this study was the risk of pancreatitis between the two cohorts, which was analyzed using Kaplan–Meier curves and log-rank tests. Risk ratios (RR) with 95% confidence intervals (CI) were calculated for our outcome. A *p*-value of <0.05 was considered statistically significant. All statistical analyses were conducted on the TriNetX platform on https://live.trinetx.com/(accessed date 31 March 2024, 23:35:21 UTC).

2.2. Inclusion and Exclusion Criteria

Patients with T2DM were divided into two cohorts: the first cohort comprised patients who received GLP-1 RAs, and the second cohort comprised patients who did not receive GLP-1 RAs. The selected agents of the GLP-1 RA class that were used in our study were dulaglutide, lixisenatide, exenatide, liraglutide, and semaglutide. We excluded patients with type 1 diabetes mellitus, heart failure, ischemic heart diseases, hypertension, and chronic kidney disease. We compared the risk of pancreatitis between the two cohorts over time using a 1:1 PSM model using patients' baseline characteristics as well as risk factors commonly associated with the development of pancreatitis. PSM components included demographics, comorbidities, medications used that are known to cause drugrelated pancreatitis, and lab values. Demographics included age at index, race, gender, and ethnicity. Comorbidities included, but were not limited to, hypertensive disorders, ischemic heart disease, gallstones, annular pancreas, alcohol use disorders, hypertriglyceridemia, hypercalcemia, cystic fibrosis, and cannabis use. Medications included most medications and drug classes that were reported in the literature to be associated with pancreatitis. Lab values included hemoglobin A1C level, body mass index (BMI), triglyceride level, and calcium level. The full list of items used for PSM is shown in the Supplementary Materials.

3. Results

3.1. Baseline Characterestics

A total of 969,240 patients with type 2 diabetes mellitus were identified. Of those, 93,608 (9.7%) patients were on a GLP-1 RA, and 875,632 (90.3%) patients were not on a GLP-1 RA. The mean age in the GLP-1 group was 47.3 with a standard deviation (SD) of 11.9. More than half the cohort comprised females at 62.6%. The mean body mass index (BMI) in the GLP-1 group was 35.6 kg/m² with a SD of 6.9. In the GLP-1 group, alcohol use disorder was found in 1.4% and cholelithiasis was found in 2.1%. The mean triglyceride level in the GLP-1 group was 187 mg/dL with a SD of 175, and a calcium level of 9.4 mg/dL with a SD of 0.5. Of the GLP-1 group, 53.4% received metformin, 38.9% received glucocorticoids or mineralocorticoid, 32.5% received penicillins or a beta-lactam antibiotic, and 22.9% received non-steroidal anti-inflammatory analgesics (NSAIDs). A full comparison of the cohorts' baseline demographics, comorbidities, medications, and lab values between the two cohorts before and after PSM is highlighted in the Supplementary Materials.

3.2. Outcomes

Analysis of the cohorts' baseline demographics, comorbidities, medications used, and lab values did not show any significant differences after PSM. We compared the rate of pancreatitis between the two cohorts after PSM over time. The rate of pancreatitis was similar in patients receiving GLP-1 RAs and those who did not receive GLP-1 RAs (0.1% vs. 0.1%, p = 0.035). Patients receiving GLP-1 RAs had a significantly lower rate of pancreatitis at one year (0.1% vs. 0.2%, p = 0.022), three years (0.2% vs. 0.3%, p < 0.001), and five years (0.3% vs. 0.4%, p < 0.001). The lifetime risk of pancreatitis was significantly lower

J. Clin. Med. 2025, 14, 944 4 of 13

in patients receiving GLP-1 RAs compared to those who did not receive GLP-1 RAs (0.3% vs. 0.4%, p < 0.001). The hazard ratio of the risk of pancreatitis over the study duration is shown in Table 1 and a summary of the results is highlighted in Table 2 and Figure 1.

Table 1.	Chronological	hazard	ratio	of the	risk of	pancreatitis.

	Hazard Ratio	95% CI	p
6 Months	0.690	(0.503, 0.947)	0.461
1 Year	0.748	(0.584, 0.958)	0.175
3 Years	0.812	(0.671, 0.983)	0.506
5 Years	0.814	(0.681, 0.972)	0.565
Lifetime	0.849	(0.716, 1.005)	0.575

Table 2. Table with a summary of the outcomes.

		6 Months			1 Year			3 Years			5 Years			Lifetime	
	GLP-1 RA n = 82,333	No GLP-1 RA n = 82,333	<i>p-</i> Value												
Risk of Pan- creati- tis	0.1%	0.1%	0.035	0.1%	0.2%	0.022	0.2%	0.3%	<0.001	0.3%	0.4%	<0.001	0.3%	0.4%	<0.001
Risk Differ- ence (CI)		.000 -0.0001)	0.035		.000 -0.0001)	0.022		.001 -0.0001)	0.001		.001	0.0001		.001 , -0.001)	0.0001
Odds Ratio (CI)	(0.713 0.519, 0.978	3)	(1	0.749 0.585, 0.959))	(0.724 0.599, 0.877	")	(0.676 0.567, 0.807	7)	(0.650 0.549, 0.768)

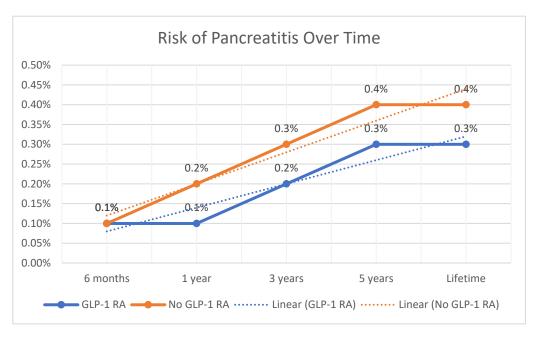


Figure 1. Linear graph of the risk of pancreatitis over time.

4. Background and Discussion

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) is a class of common type 2 diabetes mellitus treatments with increasing uses. It is also used in obesity as a weight loss

J. Clin. Med. 2025, 14, 944 5 of 13

regimen. The American Diabetes Association recommends GLP-1 RA use in patients with type 2 diabetes mellitus who have a higher risk of atherosclerotic cardiovascular disease, heart failure, or chronic kidney disease [12]. Due to their favorable outcomes in terms of glycemic control and weight loss properties, GLP-1 RAs are becoming more commercially available. However, tolerability and cost remain a barrier to their prescription [13].

GLP-1 is secreted from L-cells in the distal ileum and colon in response to meals [14]. It binds to islet alpha and beta cells, and receptors in the central and peripheral nervous systems, heart, lung, kidney, and gastrointestinal tract [15]. Attachment to beta cells in the pancreas leads to insulin production in response to hyperglycemia [15]. Exogenous GLP-1 RA efficacy relies on the concentration of innate GLP-1 and the GLP-1 RA's affinity to their receptors, as well as the number of bound receptors [15]. The more receptors that are bound, the more they are activated, and the better the glycemic response is. The sustained activation of GLP-1 receptors leads to increased insulin synthesis, beta cell proliferation and their resistance to apoptosis, and improved survival [9]. This further leads to the slowing of gastric emptying, a feeling of satiety, the inhibition of glucagon secretion, and the subsequent improvement of glycemic control [14–17].

The safety profile of GLP-1 RAs is being extensively studied, with evidence suggesting a generally favorable risk-benefit profile, though close monitoring is advised, particularly for patients with specific comorbidities [18]. As GLP-1 receptors are present in tissues throughout the body, including in the nervous system, gastrointestinal tract, cardiac tissue, thyroid, and retina, the potential adverse effects are likewise widespread [19]. The most reported side effects are self-limited gastrointestinal symptoms, including nausea, vomiting, and diarrhea, often associated with the initiation of treatment and increases in dosage [20]. Most reported patients who have developed an AKI had risk factors contributing to volume depletion, or comorbidities that increased their risk, or took other nephrotoxic medications in combination with GLP-1 RAs [18]. The protective effects of GLP-1 RAs likely confer more significant benefits than risks to the kidneys [21,22]; studies have demonstrated the efficacy of GLP-1 RAs in slowing the progression of diabetic kidney disease [22]. Initially, there was also a concern over the possible increased risk of thyroid cancer associated with GLP-1 RAs, leading the FDA to issue a black box warning for specific agents; however, population-based studies have yielded more mixed results and no causal link has yet been established [23,24]. Rare ocular side effects such as a higher risk of diabetic retinopathy, complications from diabetic retinopathy, and non-arteritic ischemic optic neuropathy have been documented in the literature; these complications may be due to rapid reductions in A1c rather than as a direct result of GLP-1 RAs [18,25].

4.1. Mechanism

Proglucagon is a protein in enteroendocrine cells, alpha cells of the pancreas, and in the brainstem. Proglucagon undergoes post-translational processing by a convertase enzyme to produce glucagon, Glicentin-related pancreatic polypeptide (GRPP), and the major proglucagon fragment (MPGF) [26]. This MPGF contains both glucagon-like peptide (GLP)-1 and GLP-2. Peripherally, the main source of GLP-1 is the enteroendocrine GLP-1-producing cells in the small intestine and colon [27]. Centrally, GLP-1 is also produced by the brain in a similar fashion to neuroendocrine cells [28].

GLP-1 secretion from enteroendocrine cells is triggered by carbohydrates, proteins, and fats [27,29–31]. Each of these act differently on the enteroendocrine cells and eventually lead to the extraction of GLP-1. This is crucial for its release as studies proved that IV administration of glucose, for instance, does not lead to a change in GLP-1 levels in the blood [32]. This means that these nutrients have to pass through the gut to trigger GLP-1 secretion.

J. Clin. Med. 2025, 14, 944 6 of 13

GLP-1 is also secreted centrally from the brain by the release of preproglucagon neurons. They become activated after gastric distension or in a response to enzymes or hormones such as cholecystokinin and leptin [33–35]. Furthermore, the peripheral secretion of GLP-1 triggers its own central secretion [26]. Peripherally-released GLP-1 activates GLP-1 receptors on the vagus nerve, which in turn stimulates centrally-located preproglucagon neurons and the subsequent secretion of GLP-1 [36–38].

GLP-1 has a very short half-life with a maximum of 11 min [39–41]. Peripherally, GLP-1 is mainly metabolized by the liver and endothelial cells [42]. In order to be able to clinically contribute to diabetes management, a long-acting version of GLP-1 is needed to be synthesized. Exendin-4 was discovered in a venom of a lizard in southwestern USA and was found to have a 53% resemblance to the innate GLP-1 [43]. The synthetic version of exendin-4 is currently available commercially as Exenetide, which is slower to be metabolized with a half-life of 4 h [44]. Further biochemical adjustments led to the synthesis of Liraglutide, which has 97% similarity to the innate GLP-1 [44]. Further advancements and biochemical improvements led to the synthesis of the remainder of the commercially available GLP-1 RAs.

4.2. Comparison

Exenatide and lixisenatide are exendin-4 derivatives and are typically administered daily 60 min before meals. Liraglutide and oral semaglutide are modified human GLP-1 and are taken any time daily. Dulaglutide and subcutaneous semaglutide are administered once weekly [45].

From a metabolic standpoint, multiple clinical trials were conducted to compare these GLP-1 RAs [46]. One meta-analysis showed that once-weekly GLP-1 RA administration had better hemoglobin A1c (HbA1c) reduction when compared to twice daily exenatide. However, it was not better than once daily liraglutide injection [47]. Another meta-analysis showed that liraglutide had better HbA1c reduction than exenatide but was not significantly different when compared to dulaglutide. The LEAD-6 trial and the DURATION-6 trial further confirmed the previous statement and showed that liraglutide, when compared to exenatide, had better reduction in HbA1c and weight with fewer adverse effects [48,49].

The AWARD-1 trial showed that dulaglutide was superior to exenatide, while the AWARD-6 trial showed that it was not inferior to liraglutide [50]. The SUSTAIN-7 trial compared semaglutide to dulaglutide which showed the superior effect of semaglutide in glycemic control and weight loss, it also showed they have a similar safety profile [50].

From a cardio–renal standpoint, there were seven clinical trials done on seven GLP-1 RAs that showed that liraglutide, subcutaneous semaglutide, and dulaglutide all showed significant cardiovascular risk reduction [51]. The LEADER trial showed that liraglutide had a cardiovascular benefit in high-risk patients, while the SUSTAIN-6 trial showed a cardiovascular-associated mortality reduction with semaglutide use as well as albuminuria reduction [46]. The SUSTAIN and PIONEER trials showed that semaglutide has a significant risk reduction in major adverse cardiovascular events [52]. A list of the previously mentioned trials with the studied GLP-1 RA used in each and their overall benefit is shown in Tables 3 and 4 [53].

Table 3. Clinical trials and their studied GLP-1 RAs.

Trial	Studied GLP-1 RA
LEAD-6 [48]	Exenatide Liraglutide
DURATION-6 [54]	Exenatide Liraglutide

J. Clin. Med. 2025, 14, 944 7 of 13

Table 3. Cont.

Trial	Studied GLP-1 RA
AWARD-1 [55]	Dulaglutide Exenatide
AWARD-6 [56]	Dulaglutide Liraglutide
SUSTAIN-6 [57]	Semaglutide
SUSTAIN-7 [50]	Semaglutide Dulaglutide
LEADER [58]	Liraglutide
PIONEER [52]	Semaglutide

Table 4. Trials' comparative outcomes within the GLP-1 RA class.

GLP-1 RA	A1C	Weight		
Exenatide	Low-Intermediate	Low		
Lixisenatide	Low	Low		
Liraglutide	High	High		
Dulaglutide	High	Intermediate		
Semaglutide	Highest	Highest		

4.3. Pancreatic Involvement and Available Data

Due to their mechanism of action via attachment to alpha and beta cells in the pancreas and their subsequent stimulation, the concern for the occurrence of pancreatitis was raised [59]. The Food and Drug Administration (FDA) issued a warning due to concerns about GLP-1 RAs and the increased risk of pancreatitis and pancreatic cancer [60]. This was further reinforced in their latest release in 2024 [61,62]. This was recently debunked by very recent studies that did not show any association between GLP-1 RA use and pancreatic cancer [63–65].

Dulaglutide carries a boxed warning that it may increase the risk of pancreatitis [66,67]. Lixisenatide, according to its manufacturing label, was associated with cases of pancreatitis, and an alternative antidiabetic regimen should be pursued [68,69]. There were also post-marketing reports of acute pancreatitis in patients taking exenatide which were submitted to the Food and Drug Administration (FDA) and were published in the literature [70–73]. Some reports showed that liraglutide at different doses is associated with an increase in lipase levels up to 30% [74–76]. This prompted the manufacturer's labeling to recommend the prompt discontinuation of liraglutide if pancreatitis is suspected [77]. Similarly, some other case reports were published associating liraglutide with pancreatitis, which prompted their labeling to recommend against their use if pancreatitis is suspected [78–81].

Other conflicting studies debunked such associations [7,8,73,82,83]. A systematic review in 2014 of randomized and non-randomized trials by Ling Li et al. was unable to find convincing evidence that GLP-1 RAs increase the risk of pancreatitis [84]. The FDA and the European Medicines Agency (EMA) conducted a comprehensive evaluation of GLP-1 RAs due to the rising post-marketing reports of pancreatitis and pancreatic cancer [85]. The FDA evaluated more than 250 toxicology studies microscopically, which did not reveal any findings of pancreatitis [85]. Both the FDA and the EMA were not able to reach a final conclusion about such an association, however, they both agreed that the totality of the available data at that time was reassuring [85]. Another study by Meier and Nauck evaluated the pooled pancreatitis ratio in clinical trials ongoing at that time [86]. They saw a slightly elevated risk of pancreatitis with GLP-1 RA use; however, the number of incident

J. Clin. Med. 2025, 14, 944 8 of 13

cases were very small, and the statistical power was limited [86]. These findings aligned with our study outcome over time. The risk of pancreatitis was very similar between the cohort receiving GLP-1 RAs and those who did not receive GLP-1 RAs. Over the course of five years, the patients who received GLP-1 RAs had a statistically significant lower risk of pancreatitis than those who did not. The risk of pancreatitis in both cohorts was very low, which also confirmed the findings of the current literature [84,85]. This debunked the association of pancreatitis incidence with GLP-1 use. In fact, patients receiving GLP-1 RAs had a significantly lower rate of pancreatitis in their lifetime. Our findings should allow physicians to safely prescribe GLP-1, especially as their cardiovascular and renal benefits outweigh the very minimal risk of a pancreatitis incident. A list of some of the available GLP-1 RA studies with the reported pancreatic outcomes is shown in Table 5.

Study	Effect on Pancreas			
Romley 2012 [73]	No association between exenatide and acute pancreatitis			
Lando 2012 [75]	GLP-1 RA is associated with increased lipase level in patients with T2DM			
Elashoff 2011 [6]	Increased odds ratio of pancreatitis in patients taking exenatide			
Singh 2013 [5]	Increased odds ratio of pancreatitis in patients taking exenatide			
Meier 2014 [86]	Slightly elevated risk of pancreatitis with GLP-1 RA			
Wenten 2012 [7]	No increased risk of pancreatitis with exenatide			
Dore 2009 and 2011 [8,82]	No association between exenatide and acute pancreatitis			
Dankner 2024 [64]	No increased risk of pancreatic cancer with GLP-1 RA in 7 years			
Ayoub 2024 [63]	No increased risk of pancreatic cancer with GLP-1 RA in 7 years			

Table 5. GLP-1 RA studies with a pancreatic outcome.

4.4. Strengths and Limitations of Our Study

Some of our study strengths included the use of a nationwide database and the inclusion of a large cohort of patients. Additionally, using a 1:1 PSM model allowed us to reduce the effects of confounding the baseline covariates by creating matched cohorts, in which the distribution of the measured baseline covariates was similar in treated and control participants. This method created very similar cohorts after PSM and allowed us to clarify a more precise association while minimizing confounders. Furthermore, the exclusion of patients with CKD and using BMI in the PSM excluded and accounted for other indications for the use of GLP-1 RAs and ensured that their use in our patient population was for glycemic control.

Our study did not come without limitations. One of our study limitations was the use of the GLP-1 RA class as a whole without segmentation into different agents. This limited us from studying the variations between each single agent and their safety profile. Further studies and clinical trials are needed to explore such outcomes. Furthermore, despite the inclusion of a large number of patients and using a 1:1 PSM model, the use of a U.S.-based database and the exclusion of patients with multiple comorbidities limited the generalizability of our findings. We also focused on the risk of pancreatitis with GLP-1 RA use and did not explore other possible associations, such as the risk of solid organ malignancies, which warrant more clinical studies to further clarify the GLP-1 RA safety profile.

5. Conclusions

In our U.S.-based population, the use of GLP-1 RAs in patients with T2DM did not seem to increase their risk of pancreatitis. In fact, it was associated with a lower rate of pancreatitis in these patients compared to those not being treated with a GLP-1 RA.

Although this study focused on the risk of pancreatitis, the cardiovascular, renal, and metabolic benefits of GLP-1 RAs, which are well-documented in the literature, reinforce the relevance of this drug class and suggest that their continued use might be favorable. More studies and clinical trials are needed to explore the risk of pancreatitis by each individual available agent of the GLP-1 RA class.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jcm14030944/s1, Table S1: List of all components used in PSM; Table S2: Cohorts, patient count, and PSM components before and after matching.

Author Contributions: Conceptualization, M.A. and E.D.; Data curation, M.A.; Formal analysis, M.A. and E.D.; Investigation, M.A. and E.D.; Methodology, M.A, H.C. and E.D.; Project administration, N.A., R.H., V.T. and E.D.; Resources, M.A., H.C., N.A., R.H., J.A. and E.D.; Software, M.A.; Supervision, H.C., N.A., R.H., J.A., V.T. and E.D.; Validation, M.A., H.C., R.H., V.T. and E.D.; Visualization, M.A. and N.A.; Writing—original draft, M.A. and H.C.; Writing—review & editing, M.A., H.C., N.A., R.H., J.A., V.T. and E.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board at Charleston Area Medical Center in Charleston, West Virginia. IRB NUMBER: 24-1056, with approval date: 12 March 2024.

Informed Consent Statement: Patient consent was waived due to the deidentified nature of the database.

Data Availability Statement: Available data are presented. Additional data are only available as permitted by a third party.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Cornell, S. A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. *J. Clin. Pharm. Ther.* **2020**, 45 (Suppl. S1), 17–27. [CrossRef] [PubMed]
- 2. Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. *Nat. Rev. Endocrinol.* **2012**, *8*, 728–742. [CrossRef] [PubMed]
- 3. King, A.; Miller, E.M. Glucagon-like Peptide 1 Receptor Agonists Have the Potential to Revolutionize the Attainment of Target A1C Levels in Type 2 Diabetes—So Why Is Their Uptake So Low? *Clin. Diabetes* **2023**, *41*, 226–238. [CrossRef] [PubMed]
- 4. Storgaard, H.; Cold, F.; Gluud, L.L.; Vilsbøll, T.; Knop, F.K. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. *Diabetes Obes. Metab.* **2017**, *19*, 906–908. [CrossRef]
- 5. Singh, S.; Chang, H.Y.; Richards, T.M.; Weiner, J.P.; Clark, J.M.; Segal, J.B. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: A population-based matched case-control study. *JAMA Intern. Med.* 2013, 173, 534–539. [CrossRef]
- 6. Elashoff, M.; Matveyenko, A.V.; Gier, B.; Elashoff, R.; Butler, P.C. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. *Gastroenterology* **2011**, *141*, 150–156. [CrossRef]
- 7. Wenten, M.; Gaebler, J.A.; Hussein, M.; Pelletier, E.M.; Smith, D.B.; Girase, P.; Noel, R.A.; Braun, D.K.; Bloomgren, G.L. Research: Treatment: Relative risk of acute pancreatitis in initiators of exenatide twice daily compared with other anti-diabetic medication: A follow-up study. *Diabet. Med.* 2012, 29, 1412. [CrossRef]
- 8. Dore, D.D.; Bloomgren, G.L.; Wenten, M.; Hoffman, C.; Clifford, C.R.; Quinn, S.G.; Braun, D.K.; Noel, R.A.; Seeger, J.D. A cohort study of acute pancreatitis in relation to exenatide use. *Diabetes Obes. Metab.* **2011**, *13*, 559–566. [CrossRef]
- 9. National Diabetes Statistics Report | Diabetes | CDC. Available online: https://www.cdc.gov/diabetes/php/data-research/index. html (accessed on 9 January 2025).
- 10. Shuvo, S.; Das Hossen, M.T.; Riazuddin, M.; Hossain, M.S.; Mazumdar, S.; Parvin, R.; Elahi, M.T. Prevalence of comorbidities and its associated factors among type-2 diabetes patients: A hospital-based study in Jashore District, Bangladesh. *BMJ Open* **2023**, *13*, e076261. [CrossRef]
- 11. Maddigan, S.L.; Feeny, D.H.; Johnson, J.A. Health-related quality of life deficits associated with diabetes and comorbidities in a Canadian National Population Health Survey. *Qual. Life Res.* **2005**, *14*, 1311–1320. [CrossRef]

12. American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. *Diabetes Care* 2024, 47 (Suppl. S1), S158–S178. [CrossRef] [PubMed]

- 13. Collins, L.; Costello, R.A. Glucagon-like Peptide-1 Receptor Agonists; StatPearls: Treasure Island, FL, USA, 2023.
- 14. Unger, J.R.; Parkin, C.G. Glucagon-like peptide-1 (GLP-1) receptor agonists: Differentiating the new medications. *Diabetes Therapy* **2011**, 2, 29. [CrossRef] [PubMed]
- 15. Drucker, D.J. The biology of incretin hormones. Cell Metab. 2006, 3, 153–165. [CrossRef]
- 16. Nauck, M.A.; Büsing, M.; Ørskov, C.; Siegel, E.G.; Talartschik, J.; Baartz, A.; Baartz, T.; Hopt, U.T.; Becker, H.D.; Creutzfeldt, W. Preserved incretin effect in type 1 diabetic patients with end-stage nephropathy treated by combined heterotopic pancreas and kidney transplantation. *Acta Diabetol.* **1993**, *30*, 39–45. [CrossRef]
- 17. Knudsen, L.B.; Madsen, L.W.; Andersen, S.; Almholt, K.; De Boer, A.S.; Drucker, D.J.; Gotfredsen, C.; Egerod, F.L.; Hegelund, A.C.; Jacobsen, H.; et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. *Endocrinology* **2010**, *151*, 1473–1486. [CrossRef]
- 18. Long, B.; Pelletier, J.; Koyfman, A.; Bridwell, R.E. GLP-1 RAs: A review for emergency clinicians. *Am. J. Emerg. Med.* **2024**, 78, 89–94. [CrossRef]
- 19. Zhao, X.; Wang, M.; Wen, Z.; Lu, Z.; Cui, L.; Fu, C.; Xue, H.; Liu, Y.; Zhang, Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. *Front. Endocrinol.* **2021**, 12, 721135. [CrossRef]
- 20. Shetty, R.; Basheer, F.T.; Poojari, P.G.; Thunga, G.; Chandran, V.P.; Acharya, L.D. Adverse drug reactions of GLP-1 RAs: A systematic review of case reports. *Diabetes Metab. Syndr.* **2022**, *16*, 102427. [CrossRef]
- 21. Pan, H.C.; Chen, J.Y.; Chen, H.Y.; Yeh, F.Y.; Sun, C.Y.; Huang, T.T.M.; Wu, V.C. GLP-1 receptor agonists' impact on cardio-renal outcomes and mortality in T2D with acute kidney disease. *Nat. Commun.* **2024**, *15*, 5912. [CrossRef]
- 22. Yu, J.H.; Park, S.Y.; Lee, D.Y.; Kim, N.H.; Seo, J.A. GLP-1 receptor agonists in diabetic kidney disease: Current evidence and future directions. *Kidney Res. Clin. Pract.* **2022**, *41*, 136–149. [CrossRef]
- 23. Drucker, D.J. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. *Diabetes Care* **2024**, *47*, 1873–1888. [CrossRef] [PubMed]
- 24. Bezin, J.; Gouverneur, A.; Penichon, M.; Mathieu, C.; Garrel, R.; Hillaire-Buys, D.; Pariente, A.; Faillie, J.L. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. *Diabetes Care* **2023**, *46*, 384–390. [CrossRef] [PubMed]
- 25. Hathaway, J.T.; Shah, M.P.; Hathaway, D.B.; Zekavat, S.M.; Krasniqi, D.; Gittinger, J.W.; Cestari, D.; Mallery, R.; Abbasi, B.; Bouffard, M.; et al. Risk of Nonarteritic Anterior Ischemic Optic Neuropathy in Patients Prescribed Semaglutide. *JAMA Ophthalmol.* 2024, 142, 732–739. [CrossRef] [PubMed]
- 26. Smith, N.K.; Hackett, T.A.; Galli, A.; Flynn, C.R. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. *Neurochem. Int.* **2019**, *128*, 94. [CrossRef]
- 27. Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [CrossRef]
- 28. Seidah, N.G.; Marcinkiewicz, M.; Benjannet, S.; Gaspar, L.; Beaubien, G.; Mattel, M.G.; Lazure, C.; Mbikay, M.; Chrétien, M. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: Distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. *Mol. Endocrinol.* **1991**, *5*, 111–122. [CrossRef]
- 29. Gribble, F.M.; Reimann, F. Signalling in the gut endocrine axis. Physiol. Behav. 2017, 176, 183–188. [CrossRef]
- 30. Hirasawa, A.; Tsumaya, K.; Awaji, T.; Katsuma, S.; Adachi, T.; Yamada, M.; Sugimoto, Y.; Miyazaki, S.; Tsujimoto, G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. *Nat. Med.* **2005**, *11*, 90–94. [CrossRef]
- 31. Belza, A.; Ritz, C.; Sørensen, M.Q.; Holst, J.J.; Rehfeld, J.F.; Astrup, A. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. *Am. J. Clin. Nutr.* **2013**, *97*, 980–989. [CrossRef]
- 32. Herrmann, C.; Göke, R.; Richter, G.; Fehmann, H.C.; Arnold, R.; Göke, B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. *Digestion* 1995, 56, 117–126. [CrossRef]
- 33. Rinaman, L. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. *Am. J. Physiol.* **1999**, 277, R582–R590. [CrossRef] [PubMed]
- 34. Vrang, N.; Phifer, C.B.; Corkern, M.M.; Berthoud, H.R. Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R470–R478. [CrossRef] [PubMed]
- 35. Hisadome, K.; Reimann, F.; Gribble, F.M.; Trapp, S. CCK stimulation of GLP-1 neurons involves α1-adrenoceptor-mediated increase in glutamatergic synaptic inputs. *Diabetes* **2011**, *60*, 2701–2709. [CrossRef] [PubMed]
- 36. Williams, D.L. Minireview: Finding the Sweet Spot: Peripheral Versus Central Glucagon-Like Peptide 1 Action in Feeding and Glucose Homeostasis. *Endocrinology* **2009**, *150*, 2997. [CrossRef]
- 37. Kakei, M.; Yada, T.; Nakagawa, A.; Nakabayashi, H. Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. *Auton. Neurosci.* **2002**, *102*, 39–44. [CrossRef]

38. Bucinskaite, V.; Tolessa, T.; Pedersen, J.; Rydqvist, B.; Zerihun, L.; Holst, J.J.; Hellström, P.M. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. *Neurogastroenterol. Motil.* **2009**, 21, 978. [CrossRef]

- 39. Wettergren, A.; Pridal, L.; Wøjdemann, M.; Holst, J.J. Amidated and non-amidated glucagon-like peptide-1 (GLP-1): Non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. *Regul. Pept.* **1998**, 77, 83–87. [CrossRef]
- 40. Ørskov, C.; Wettergren, A.; Holst, J.J. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. *Diabetes* **1993**, 42, 658–661. [CrossRef]
- 41. Ørskov, C.; Rabenhøj, L.; Wettergren, A.; Kofod, H.; Holst, J.J. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. *Diabetes* **1994**, 43, 535–539. [CrossRef]
- 42. Mulvihill, E.E.; Varin, E.M.; Gladanac, B.; Campbell, J.E.; Ussher, J.R.; Baggio, L.L.; Yusta, B.; Ayala, J.; Burmeister, M.A.; Matthews, D.; et al. Cellular Sites and Mechanisms Linking Reduction of Dipeptidyl Peptidase-4 Activity to Control of Incretin Hormone Action and Glucose Homeostasis. *Cell Metab.* 2017, 25, 152–165. [CrossRef]
- 43. Engsbli, J.; Kleinmans, W.A.; Singhl, L.; Singhi, G.; Raufmanll, J.P. Isolation and Characterization of Exendin-4, an Exendin-3 Analogue, from Heloderma suspecturn Venom Further Evidence for an Exendin Receptor on Dispersed Acini from Guinea Pig Pancreas*. J. Biol. Chem. 1992, 267, 7402–7405.
- 44. Pinkney, J.; Fox, T.; Ranganath, L. Selecting GLP-1 RAs in the management of type 2 diabetes: Differential pharmacology and therapeutic benefits of liraglutide and exenatide. *Ther. Clin. Risk Manag.* **2010**, *6*, 401. [CrossRef] [PubMed]
- 45. GLP1 Receptor Agonists in Type 2 Diabetes Anunderused Asset Updated January 2021-PCDS. Available online: https://www.pcdsociety.org/resources/details/glp-1-receptor-agonists-type-2-diabetes-underused-asset-updated-january-2021 (accessed on 5 May 2024).
- 46. Latif, W.; Lambrinos, K.J.; Rodriguez, R. Compare and Contrast the Glucagon-like Peptide-1 Receptor Agonists (GLP1RAs); StatPearls: Treasure Island, FL, USA, 2023.
- 47. Xue, X.; Ren, Z.; Zhang, A.; Yang, Q.; Zhang, W.; Liu, F. Efficacy and safety of once-weekly glucagon-like peptide-1 receptor agonists compared with exenatide and liraglutide in type 2 diabetes: A systemic review of randomised controlled trials. *Int. J. Clin. Pract.* 2016, 70, 649–656. [CrossRef] [PubMed]
- 48. Buse, J.B.; Rosenstock, J.; Sesti, G.; Schmidt, W.E.; Montanya, E.; Brett, J.H.; Zychma, M.; Blonde, L. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). *Lancet* **2009**, *374*, 39–47. [CrossRef]
- 49. Drucker, D.J.; Buse, J.B.; Taylor, K.; Kendall, D.M.; Trautmann, M.; Zhuang, D.; Porter, L. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: A randomised, open-label, non-inferiority study. *Lancet* 2008, 372, 1240–1250. [CrossRef]
- 50. Pratley, R.E.; Aroda, V.R.; Lingvay, I.; Lüdemann, J.; Andreassen, C.; Navarria, A.; Viljoen, A. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): A randomised, open-label, phase 3b trial. *Lancet Diabetes Endocrinol.* **2018**, *6*, 275–286. [CrossRef]
- 51. Sheahan, K.H.; Wahlberg, E.A.; Gilbert, M.P. An overview of GLP-1 RAs and recent cardiovascular outcomes trials. *Postgrad. Med. J.* **2020**, *96*, 156–161. [CrossRef]
- 52. Husain, M.; Bain, S.C.; Holst, A.G.; Mark, T.; Rasmussen, S.; Lingvay, I. Effects of semaglutide on risk of cardiovascular events across a continuum of cardiovascular risk: Combined post hoc analysis of the SUSTAIN and PIONEER trials. *Cardiovasc. Diabetol.* **2020**, *19*, 1–11. [CrossRef]
- 53. Trujillo, J.M.; Nuffer, W.; Smith, B.A. GLP-1 receptor agonists: An updated review of head-to-head clinical studies. *Ther. Adv. Endocrinol. Metab.* **2021**, 12, 2042018821997320. [CrossRef]
- 54. Buse, J.B.; Nauck, M.; Forst, T.; Sheu, W.H.H.; Shenouda, S.K.; Heilmann, C.R.; Hoogwerf, B.J.; Gao, A.; Boardman, M.K.; Fineman, M.; et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): A randomised, open-label study. *Lancet* 2013, 381, 117–124. [CrossRef]
- 55. Wysham, C.; Blevins, T.; Arakaki, R.; Colon, G.; Garcia, P.; Atisso, C.; Kuhstoss, D.; Lakshmanan, M. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1). *Diabetes Care* 2014, 37, 2159–2167. [CrossRef] [PubMed]
- 56. Dungan, K.M.; Povedano, S.T.; Forst, T.; González, J.G.G.; Atisso, C.; Sealls, W.; Fahrbach, J.L. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): A randomised, open-label, phase 3, non-inferiority trial. *Lancet* 2014, 384, 1349–1357. [CrossRef] [PubMed]
- 57. Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [CrossRef]
- 58. Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. *N. Engl. J. Med.* **2016**, *375*, 101. [CrossRef]
- 59. Drab, S.R. Glucagon-Like Peptide-1 Receptor Agonists for Type 2 Diabetes: A Clinical Update of Safety and Efficacy. *Curr. Diabetes Rev.* **2016**, 12, 403–413. [CrossRef]

60. FDA Drug Safety Communication: FDA Investigating Reports of Possible Increased Risk of Pancreatitis and Pre-Cancerous Findings of the Pancreas from Incretin Mimetic Drugs for Type 2 Diabetes | FDA. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-investigating-reports-possible-increased-risk-pancreatitis-and-pre (accessed on 5 May 2024).

- 61. FDA Approves First Oral GLP-1 Treatment for Type 2 Diabetes | FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-oral-glp-1-treatment-type-2-diabetes (accessed on 19 April 2024).
- 62. FDA Approves First Treatment to Reduce Risk of Serious Heart Problems Specifically in Adults with Obesity or Overweight | FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-reduce-risk-serious-heart-problems-specifically-adults-obesity-or (accessed on 19 April 2024).
- 63. Ayoub, M.; Faris, C.; Juranovic, T.; Chela, H.; Daglilar, E. The Use of Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus Does Not Increase the Risk of Pancreatic Cancer: A U.S.-Based Cohort Study. *Cancers* **2024**, *16*, 1625. [CrossRef]
- 64. Dankner, R.; Murad, H.; Agay, N.; Olmer, L.; Freedman, L.S. Glucagon-Like Peptide-1 Receptor Agonists and Pancreatic Cancer Risk in Patients With Type 2 Diabetes. *JAMA Netw. Open.* **2024**, 7, e2350408. [CrossRef]
- 65. Nreu, B.; Dicembrini, I.; Tinti, F.; Mannucci, E.; Monami, M. Pancreatitis and pancreatic cancer in patients with type 2 diabetes treated with glucagon-like peptide-1 receptor agonists: An updated meta-analysis of randomized controlled trials. *Minerva Endocrinol.* 2023, 48, 206–213. [CrossRef]
- 66. Trulicity (Dulaglutide) Prescribing Information Indianapolis, Indiana: Eli Lilly and Company. 2014. Available online: https://pi.lilly.com/us/trulicity-uspi.pdf (accessed on 20 February 2024).
- 67. Smith, L.L.; Mosley, J.F.; Parke, C.; Brown, J.; Barris, L.S.; Phan, L.D. Dulaglutide (Trulicity): The Third Once-Weekly GLP-1 RA. *Pharm. Ther.* **2016**, 41, 357–360.
- 68. *Adlyxin* (*Lixisenatide*) [*Package Insert*]; Sanofi-Aventis U.S. LLC.: Bridgewater, NJ, USA, 2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208471orig1s000lbl.pdf (accessed on 20 February 2024).
- 69. Newsome, J.S. Lixisenatide: A New Option for Managing Type 2 Diabetes. J. Pharm. Technol. 2017, 33, 195. [CrossRef]
- 70. *Package Insert. Bydureon (Exenatide)*; AstraZeneca: Wilmington, DE, USA, 2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021773s9s11s18s22s25lbl.pdf (accessed on 20 February 2024).
- 71. Ayoub, W.A.; Kumar, A.A.; Naguib, H.S.; Taylor, H.C. Exenatide-induced acute pancreatitis. *Endocr. Pract.* **2010**, *16*, 80–83. [CrossRef] [PubMed]
- 72. Denker, P.S.; Dimarco, P.E. Exenatide (exendin-4)-induced pancreatitis: A case report. *Diabetes Care* **2006**, 29, 471. [CrossRef] [PubMed]
- 73. Romley, J.A.; Goldman, D.P.; Solomon, M.; McFadden, D.; Peters, A.L. Exenatide Therapy and the Risk of Pancreatitis and Pancreatic Cancer in a Privately Insured Population. *Diabetes Technol. Ther.* **2012**, *14*, 904. [CrossRef] [PubMed]
- 74. Seo, Y.G. Side Effects Associated with Liraglutide Treatment for Obesity as Well as Diabetes. *J. Obes. Metab. Syndr.* **2021**, *30*, 12–19. [CrossRef] [PubMed]
- 75. Lando, H.M.; Alattar, M.; Dua, A.P. Elevated amylase and lipase levels in patients using glucagonlike peptide-1 receptor agonists or dipeptidyl-peptidase-4 inhibitors in the outpatient setting. *Endocr. Pract.* **2012**, *18*, 472–477. [CrossRef]
- 76. Tilinca, M.C.; Tiuca, R.A.; Burlacu, A.; Varga, A. A 2021 update on the use of liraglutide in the modern treatment of 'diabesity': A narrative review. *Medicina* **2021**, *57*, 669. [CrossRef]
- 77. Victoza (Liraglutide) Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022341s0 27lbl.pdf (accessed on 20 February 2024).
- 78. Ozempic (Semaglutide) Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/20963 7lbl.pdf (accessed on 20 February 2024).
- 79. Patel, F.; Patel, Z.; Naji, M.; Kaur, N. S1849ch out for Semaglutide: Potential Cause of Pancreatitis? *Am. J. Gastroenterol.* **2022**, 117, e1289. [CrossRef]
- 80. Patel, F.; Gan, A.; Chang, K.; Vega, K.J. Acute Pancreatitis in a Patient Taking Semaglutide. Cureus 2023, 15, e43773. [CrossRef]
- 81. Smits, M.M.; Van Raalte, D.H. Safety of Semaglutide. Front. Endocrinol. 2021, 12, 645563. [CrossRef]
- 82. Dore, D.D.; Seeger, J.D.; Chan, K.A. Use of a claims-based active drug safety surveillance system to assess the risk of acute pancreatitis with exenatide or sitagliptin compared to metformin or glyburide. *Curr. Med. Res. Opin.* **2009**, 25, 1019–1027. [CrossRef]
- 83. Ayoub, M.; Aibani, R.; Dodd, T.; Ceesay, M.; Bhinder, M.; Faris, C.; Amin, N.; Daglilar, E. Risk of Esophageal and Gastric Cancer in Patients with Type 2 Diabetes Receiving Glucagon-like Peptide-1 Receptor Agonists (GLP-1 RAs): A National Analysis. *Cancers* 2024, 16, 3224. [CrossRef] [PubMed]
- 84. Li, L.; Shen, J.; Bala, M.M.; Busse, J.W.; Ebrahim, S.; Vandvik, P.O.; Rios, L.P.; Malaga, G.; Wong, E.; Sohani, Z.; et al. Incretin treatment and risk of pancreatitis in patients with type 2 diabetes mellitus: Systematic review and meta-analysis of randomised and non-randomised studies. *BMJ* **2014**, *348*, g2366. [CrossRef] [PubMed]

85. Egan, A.G.; Blind, E.; Dunder, K.; de Graeff, P.A.; Hummer, B.T.; Bourcier, T.; Rosebraugh, C. Pancreatic Safety of Incretin-Based Drugs—FDA and EMA Assessment. *N. Engl. J. Med.* **2014**, *370*, 794–797. [CrossRef] [PubMed]

86. Meier, J.J.; Nauck, M.A. Risk of pancreatitis in patients treated with incretin-based therapies. *Diabetologia* **2014**, *57*, 1320–1324. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.