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HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts
intracellular trafficking pathways. This exquisitely coordinated process requires precise
manipulation of the host microenvironment, most often within defined subcellular
compartments. The virus capitalizes on the host by modulating cell-surface proteins
and cleverly exploiting nuclear import pathways for post entry events, among other
key processes. Successful virus–cell interactions are indeed crucial in determining
the extent of infection. By evolving defenses against host restriction factors, while
simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a
fascinating montage of an ongoing host–virus arms race. Herein, we provide an overview
of how HIV-1 exploits native functions of the host cell and discuss recent findings that
fundamentally change our understanding of the post-entry replication events.
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INTRODUCTION

Human immunodeficiency virus (HIV)-1 is a complex retrovirus known to infect humans and
diminish the immune system leading to acquired immunodeficiency syndrome (AIDS). The virus
measures about 100 nm with viral envelope glycoproteins (gp120 and gp41) trimers embedded in
the host cell-derived lipid membrane. This envelope encases a conical capsid that contains two
copies of an RNA genome (∼9.2 kb) in addition to the retroviral enzymes. The HIV-1 genome
encodes accessory proteins (Vif, Vpr, Vpu, and Nef) and regulatory proteins, Tat and Rev, apart
from the canonical proteins (Gag, Pol, and Env) that other retroviruses encode. The gag gene
translates into a polyprotein comprised of matrix (MA), capsid (CA), and nucleocapsid (NC). The
pol gene encodes for the enzymes protease (PR), reverse transcriptase (RT), and integrase (IN).
The env gene encodes for the viral surface glycoprotein comprising of surface (SU), gp120 and
transmembrane (TM), gp41. In addition to the structural and accessory proteins encoding regions,
the genome is flanked by long terminal repeats (LTRs). Since HIV-1 encodes a few functional genes,
host cell machinery plays a rather significant role in completing the virus life cycle. Thus, this review
provides a conceptual advance on how HIV-1 exploits intracellular processes most required during
its journey in and out of the host cell. Providing with an updated model of the viral life-cycle, we
also highlight the latest findings that fundamentally change our understanding of post-entry steps.

PLASMA MEMBRANE: THE SITE OF VIRION FUSION AND
ENTRY

During HIV-1 transmission, the virus utilizes the envelope glycoprotein and the chemokine co-
receptors CXCR4 or CCR5, depending on the viral tropism, to gain an entry into the CD4+ T
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cells. The envelope glycoprotein gp120 establishes contact with
the surface-expressed CD4, leading to conformational changes
(Berger et al., 1999) that subsequently facilitate binding to
co-receptors, a critical event for initiating a fusion apparatus
(Figure 1, step 1). Binding of the co-receptor later results
in conformational changes that enable the gp41 subunit to
insert its hydrophobic fusion peptide into the host lipid
membrane to drive the fusion process (Figure 1, step 2)
(Doms and Moore, 2000; Waheed and Freed, 2009). The
molecular mechanism of HIV-1 entry and viral membrane
fusion are reviewed extensively elsewhere (Harrison, 2008,
2015; Kielian, 2014; Chen, 2019). The virus interplays with
a myriad of host plasma membrane proteins. The host
factors P-selectin glycoprotein ligand-1 (PSGL-1) and CD43
modulate HIV attachment to the plasma membrane by being
incorporated into virions (Fu et al., 2020). HIV-1 encoded Vpu
along with co-clustered Gag at the membrane downregulates
PSGL-1 to exclude it from the virions to ensure efficient
attachment to the target cell membrane. Interferon (IFN)-
induced transmembrane proteins (IFITMs) constitute another
IFN-inducible gene that has also been shown to interfere
with the entry of HIV-1 by modulating fusion with the host
membrane (Compton et al., 2014; Zhao et al., 2019). Retroviral
envelope glycoproteins have the ability to alter the sensitivity
of the virus from restriction by host factors that target early
steps of the infection cycle like IFITMs and SERINC5 (Foster
et al., 2016; Beitari et al., 2017; Firrito et al., 2018). The
binding of HIV-1 to its receptor and co-receptors alone has
shown to induce and alter a plethora of signaling pathways
(Figure 2). For instance, pattern recognition receptor like NLRP3
inhibits F-actin remodeling and regulates the susceptibility
to HIV-1 infection. Once the virus binds to its receptors,
P2Y2 signaling is activated to mediate the degradation of
NLRP3. In the absence of NLRP3, protein tyrosine kinase,
PYK2, undergoes phosphorylation and activation, leading to a
cytoskeletal rearrangement favorable for viral entry (Figure 2A;
Paoletti et al., 2019). Moreover, the interaction of viral protein
Nef and host-derived p21-activated kinase2 (PAK2) was found
to play a role in activating NFAT and NF-κB transcription
factors required for T-cell activation (Figure 2B) (Fenard
et al., 2005). On the other hand, the binding of HIV-1 to
its receptor and co-receptors myristoylates Lck at p56 and
activates the PLC-γ (Figure 2C). This facilitates the breakdown
of PIP3 into DAG and IP3. The DAG activates the MAP
kinase pathway, whereas IP3 triggers the opening of Ca2+

channels in the ER. In addition, the virally encoded Vpr
induces Ca2+ influx and promotes the nuclear import of
NFAT. The NFAT and ERK activated by MAPK signaling then
promote the transcription of genes for cytokine production
and T-cell proliferation and activation (Höhne et al., 2016).
Besides relaying cell signaling and host immune evasion, multiple
reports emphasize the nature of HIV-1 that induces apoptosis
by increasing the expression of membrane-bound Fas in T-cells
and FasL in monocytes, macrophages, and NK cells during
infection (Figure 2D) (Kottilil et al., 2007; Li et al., 2009).
It was shown in vitro that these enhanced expression levels
led to faster apoptosis via caspase 8 than the uninfected cells

(Badley et al., 1996). Further, the virally derived Tat and Nef
in the host cytosol increase the FasL level in the plasma
membrane and directly activate caspase 3 and caspase 8 to
promote apoptosis (Figure 2E) (Bartz and Emerman, 1999; Jacob
et al., 2017). Altogether, just the binding and fusion of the
virus with the host cell triggers a wider variety of pathways
to trick the cell into creating a facile environment for HIV-
1 replication.

CYTOPLASM: THE SITE OF
COMMENCEMENT OF UNCOATING AND
REVERSE TRANSCRIPTION

Successful binding and fusion with the plasma membrane result
in the release of viral content into the cytoplasm of the host cell.
In the cytoplasm, critical events of HIV-1 replication occurs, such
as core delivery, reverse transcription, and translation (Figure 1,
steps 3–4 and step 8). In this section, we attempt to give an
insight into how HIV-1 adopts mechanisms to use or deceive
the function of host cellular factors in core delivery and reverse
transcription initiation.

Initiation of Uncoating
Prevailing models suggested that for completing the reverse
transcription of viral RNA, partial disassembly of CA protein is
indispensable and that the uncoating event precedes the reverse
transcription, though, until recently, the precise mechanism,
timing, and location of uncoating remained contentious
(Arhel, 2010; Ambrose and Aiken, 2014). Post-entry, in the
cytoplasm, the HIV-1 core engages the host cytoskeleton for the
commencement of uncoating and cytoplasm-nuclear trafficking
(McDonald et al., 2002; Lukic et al., 2014; Delaney et al.,
2017). In a yeast two-hybrid screening, the Arhel lab found
two microtubule-associated proteins MAP1A and MAP1S, to
bind to the CA of HIV-1 and to tether the virus to the
microtubule network en route to the nucleus (Fernandez
et al., 2015). Later, the same group identified that cellular
β-karyopherin Transportin-1 (TRN-1) binding to the CA is
necessary and sufficient for uncoating and efficient nuclear
import (Fernandez et al., 2019). In addition, the host kinesin-
1 adaptor protein, FEZ1, and dynein adapter protein, BICD2,
interact with the CA and promote the uncoating of the core
by pulling in opposite directions, as in “tug-of-war” (Lukic
et al., 2014; Campbell and Hope, 2015; Malikov et al., 2015;
Dharan et al., 2017; Carnes et al., 2018). Besides, two other
cellular factors, Dia1 and Dia2, known to stabilize microtubules,
interact with the CA and promote uncoating and DNA synthesis
(Delaney et al., 2017). The completion of uncoating as a nuclear
phenomenon will be discussed in detail with newer insights
in later sections.

Numerous cellular factors are known to restrict retroviral
infection (Malim and Bieniasz, 2012; Colomer-Lluch et al., 2018),
one of which is a tripartite motif protein, TRIM5α, known
to interfere with the uncoating and reverse transcription by
interacting with the viral CA (Stremlau et al., 2004, 2006). The
TRIM5α, in non-human primates, was shown not to hamper
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FIGURE 1 | The HIV lifecycle. The infection begins when the envelope glycoprotein attaches to the receptor CD4 and the membrane-spanning co-receptors
(CXCR4/CCR5) (step 1), facilitating the entry and fusion of the viral particle into the target cell (step 2). Following core delivery (step 3), reverse transcription begins in
the cytoplasm (step 4), and the core is imported into the nucleus (step 5). Following the nuclear import, uncoating and reverse transcription completes (step 6) and
viral integrase facilitate viral genome integration into the host chromosome (step 7). Proviral transcription (step 8) yields viral RNAs that are exported to the cytoplasm
for viral protein production (step 9). Genome-length viral RNA and viral proteins are assembled to package into virions for budding (steps 10 and 11). Ensuing
budding, the virus progeny releases and matures to become an infectious virion (step 12).

HIV-1 infection; however, the replacement of the PRYSPRY
domain of TRIM5α by cyclophilin A (CypA) binding domain in
New World owl monkeys restrict the HIV-1 infection strongly
(Sayah et al., 2004; Stremlau et al., 2005; Balakrishna and
Kondapi, 2016; Colomer-Lluch et al., 2018). Contrastingly, a
recent discovery using primary human blood cells suggested that
the interaction between CypA and CA is necessary to evade
the restriction by TRIM5α. The absence of this interaction,
however, decreases the viral infectivity in human cells (Kim
et al., 2019; Selyutina et al., 2020b). The CypA is a peptidylprolyl
isomerase that catalyzes the cis/trans-isomerization of the
peptide bond between Gly89 and Pro90 of the CA domain
of Gag and is known to prevent premature uncoating (Luban
et al., 1993; Bosco et al., 2002). Such tricks played by HIV-
1 against host cellular factors in different models suggest HIV

as one of the clever viruses to alter the host cellular factors
for its benefit.

Commencement of Reverse
Transcription
Following partial uncoating, reverse transcription begins
(Figure 1, step 4) in an intricately organized manner forming
an RT complex (RTC) in the host cytoplasm and completes in
the nucleus just before successful uncoating (Figure 1, step 6)
(Fassati and Goff, 2001; Burdick et al., 2020; Selyutina et al.,
2020a). The RTC consists of viral RNA, host-derived tRNALys3

primer, eukaryotic translational elongation factor 1A (eEF1A),
synthesized DNA, several viral factors, and host factors (Isel et al.,
1996; Fassati and Goff, 2001; Balakrishna and Kondapi, 2016).
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FIGURE 2 | Alteration of host signaling pathways by HIV-1. (A) The binding of HIV-1 to its receptor and co-receptor triggers the activation of P2Y2 by releasing ATP
from host cytosol through pannexin-1 (PNX-1). The activated P2Y2 promotes the ubiquitin-mediated degradation of NLRP3, facilitating the phosphorylation and
activation of PYK-2, which subsequently enables the F-actin polymerization required for the fusion and entry of HIV-1 into the host cell (not shown). (B) Nef activates
NFAT and NF-κB via PAK2, which triggers the expression of cytoskeletal remodeling genes. (C) Binding of the virus also activates the lipid-associated Lck protein by
myristoylation at p56. Lck activates the PLC-γ that breaks PIP3 into IP3 and DAG. IP3 triggers the opening of calcium channels in the ER and increases the
concentration of Ca2+ in the cytosol. Increased Ca2+ activates the NFAT signaling. The virally encoded Vpr can also trigger the NFAT signaling through Ca2+ efflux
and interferes with cGSK3β kinase for NFAT export (not shown). On the other hand, DAG via PKC activates the MAPK pathway. The NFAT and MAPK then promote
the transcription of genes required for cytokine production and T-cell proliferation and activation. (D) The gp120-CD4 and CXCR4/CCR5 interaction upregulates the
apoptotic receptor and ligand, Fas/FasL expression, which in turn activates the caspase 8 and caspase 3 for apoptosis of the infected cell via FADD/TRADD.
(E) Additionally, the released viral Tat and Nef in the cytoplasm can also upregulate the Fas expression in the plasma membrane and can directly act on the caspase
8, promoting apoptosis.

The tRNALys3 works as a primer by binding to the 5′ primer
binding site (PBS) in the vRNA and initiates the reverse
transcription process with the help of several cellular factors
such as integrase interactor 1 (INI1 and hSNF5), survival
motor neuron (SMN)-interacting protein 2 (Gemin2), histone
deacetylase 1 (HDAC1), and sin3A-associated protein (SAP18)
(Isel et al., 1996; Balakrishna and Kondapi, 2016). Recently,
David Harrich’s group reported the interaction between
positively charged host eEF1A and the surface-exposed acidic
E300 residue in the thumb domain of RT to play an essential
role in viral uncoating, reverse transcription, replication, and
infectivity (Rawle et al., 2018; Li D. et al., 2019). They also
showed that E300R mutation or oxazole-benzenesulfonamide
treatment reduces the RT interaction with eEF1A and thus
delays the uncoating and reduces the viral reverse transcription
and replication (Rawle et al., 2018, 2019). Once the minus-
strand DNA is synthesized at the 5′ end, it is transferred to
the 3′ end of the genome based on LTR’s repeated (R) region
complementarity, where the minus-strand DNA synthesis

is completed. During this synthesis process, the RNaseH
activity of RT cleaves the RNA molecules except at central
PPT (cPPT). The cPPT serve as the template for the synthesis
of a dsDNA fragment. Following second-strand transfer,
the plus-strand DNA synthesis continues till the central
termination sequence (CTS), displacing almost 100 nucleotides
of previously made DNA, generating a central DNA flap.
Thus, the final product of the reverse transcription process in
HIV-1 generates a dsDNA molecule with a flap in the center
(Arhel, 2010).

Like TRIM5α, APOBEC3G and SAMHD1 acts as post entry
restriction factors against HIV-1. APOBEC3G is encapsidated
into the budding virions and is present in the RTC, inducing
G-to-A hypermutation and fragmented cDNA production in
a deaminase-dependent pathway. Besides, a deep sequencing
strategy further revealed the role of APOBEC3G in a sequence-
and site-independent interference with cDNA synthesis by direct
interaction with the RT. Concomitant defective viral protein
synthesis thus inhibits HIV-1 replication and assembly strongly
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(Sheehy et al., 2002; Pollpeter et al., 2018). While APOBEC3G-
induced changes result in dysfunctional proteins, SAMHD1
depletes the cytoplasmic dNTP pool to hinder the reverse
transcription process (Hrecka et al., 2011). To counteract these
restriction factors, HIV1/2 encode accessory proteins like Vif and
Vpx, which degrades APOBEC3G and SAMHD1, respectively,
by employing Cullin E3 ubiquitin ligase complex (Sheehy et al.,
2002; Hrecka et al., 2011). Further details on how HIV acts
against other such restriction factors are described in the
reviews of Malim and Bieniasz (2012) and Colomer-Lluch et al.
(2018). Although the HIV-1 RNA is encapsidated within a
core, several innate immune sensors are known to be activated
upon capsid disruption. For instance, a member of the PYHIN
family, IFI16 detects and binds to the incomplete HIV-1 cDNA
and triggers the STING-TBK1-IRF3 signaling axis to promote
the transcription of antiviral genes in myeloid cells. However,
considering recent understanding of the completion of reverse
transcription within the nucleus, the IFI16 sensing mechanism
may have to be reconsidered. IFI16, in addition, triggers IL-
1β production and promotes CD4+ T cell death via ASC and
caspase-1 in lymphoid cells (Jakobsen et al., 2013). Another
cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is
widely known for its antiviral immunity in the context of HIV-
1 infection. cGAS preferentially detects abruptly formed HIV-1
reverse-transcribed DNAs in monocyte-derived dendritic cells
(DCs) via polyglutamine binding protein-1 (PQBP1) and triggers
the IFN response against HIV-1 through the STING-TBK1-IRF3
signaling pathway. However, HIV-1 suppresses the cGAS-STING
activation by exploiting the NOD-like receptors family, NLRC3,
an ATPase that promotes the sequestration and attenuation of
STING activation and thus inhibits the transcription of IFN
(Barouch et al., 2016). Moreover, recently, it was found that even
though SAMHD1 acts as a restriction factor, it promotes the
degradation of nascent incomplete HIV-1 DNA, and prevents the
activation of cGAS-STING-mediated IFN production. Similarly,
a ubiquitously expressed three prime repair exonuclease 1
(TREX-1) acts on incomplete reverse transcription products and
prevents the cGAS-STING activation (Kumar et al., 2018; Chen
et al., 2019). Further, the integrity and stability of CA along with
the host cleavage and polyadenylation specificity factor 6 (CPSF6)
and cyclophilins physically protect the viral reverse transcripts
in the cytoplasm from cGAS and thus inhibits the production
of type I IFNs (Rasaiyaah et al., 2013; Sumner et al., 2020). To
understand the various stratagem employed by HIV-1 against
cellular immunity, readers are encouraged to follow the recent
review by Yin et al. (2020).

NUCLEAR INTERACTIONS

Cytoplasm to Nuclear Import and the
Process of Uncoating and Reverse
Transcription Completion
To integrate viral genomic DNA into the host chromosome,
prior CA uncoating becomes indispensable. The exact location
of uncoating and the precise timing of reverse transcription

are incompletely understood. Based on earlier findings, different
uncoating models were proposed and are explicated in the
reviews of Arhel (2010), Ambrose and Aiken (2014), and
Campbell and Hope (2015). One of the prevailing models
of uncoating suggests that the viral core is trafficked to the
cytoplasmic side of the nuclear envelope by the host microtubules
and host factors such as FEZ1 and BICD2, where the uncoating
occurs at the nuclear pore complex (NPC). The capsid is
disassembled after uncoating, leaving the viral genetic material
complexed with the host and viral proteins. This nucleoprotein
complex is known as PIC and is protected from nuclease
degradation and innate sensing in the host cell (Khiytani and
Dimmock, 2002; Arhel, 2010; Malikov et al., 2015; Dharan
et al., 2017). The uncoating process and docking at NPC are in
agreement with earlier work from the Melikyan laboratory, where
authors showed the importance of CA in these events. They
also reported the proteasomal degradation of HIV-1 complexes
if uncoating happens in the cytoplasm (Francis and Melikyan,
2018). The uncoating at NPC and trafficking to the nucleus
are mediated by the interaction of viral CA with nucleoporin,
NUP-153, and the coordinated facilitation between NUP-358
and kinesin-1 family, KIF5B (Brass et al., 2008; König et al.,
2008; Dharan et al., 2016; Burdick et al., 2017). Besides, TRN-
1, a β-karyopherin, was identified to bind to the CA, promoting
uncoating and subsequent nuclear import (Fernandez et al.,
2019). Similarly, another TRN, TNPO3 (also known as TRN-
SR2), now known to play a role during integration, also associates
with the CA and promotes uncoating and nuclear trafficking by
regulating the localization of cellular protein CPSF6 (Brass et al.,
2008; König et al., 2008; Price et al., 2012; De Iaco et al., 2013;
Chin et al., 2015). For further details into the older understanding
of uncoated core trafficking into the nucleus, the readers are
encouraged to refer to Ambrose and Aiken (2014), Campbell and
Hope (2015), and Novikova et al. (2019).

However, the latest findings of Burdick et al. and Selyutina
et al. revealed that the intact viral core (or nearly intact) is
trafficked into the nucleus with the assistance from the CPSF6
(Figure 1, step 5) and uncoats < 1.5 h prior to integration at the
proximity of 1.5 µm from the sites of integration (Figure 1, step
6). Their findings also stress the fact that the process of reverse
transcription completes within the nucleus at SC35 nuclear
speckles before the completion of uncoating (Lahaye et al., 2018;
Burdick et al., 2020; Selyutina et al., 2020a). Preceding this study,
using primary human macrophages, Bejarano et al. showed that
CPSF6 is excluded from the cytoplasmic RTC/PIC; however, they
are present in the nuclear replication complexes. Moreover, the
reduction in CPSF6 leads to the accumulation of HIV-1 particles
at the nuclear envelope. They also established that CPSF6 directly
interacts with the CA and induces the nuclear import of the
viral complex (Bejarano et al., 2019). This interaction also
decides the integration site of the proviral DNA in the host
euchromatin. The disruption of CA–CPSF6 interaction led to
integrating viral DNA in the heterochromatin region of the host
chromosome (Burdick et al., 2020). Further, independently, other
researchers have claims supporting the observations that nuclear
import precedes the reverse transcription and uncoating process
(Dharan et al., 2020; Selyutina et al., 2020a). Collectively, all these
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new findings change our understanding of HIV-1 infection and
post-entry events.

Similar to every other step, the host thwarts the HIV-1 life
cycle at the nucleus as well. Myxovirus resistance 2 (MX2/MXB),
an IFN-induced post-entry inhibitor of HIV-1, was found to act
as an antiviral host factor by blocking the nuclear import of viral
cDNAs. This MXB sensitivity was found to be dependent on the
conformation of HIV-1 CA, but how exactly HIV-1 overcomes
this hurdle is yet to be elucidated in detail (Goujon et al., 2013;
Kane et al., 2013; Dicks et al., 2018; Miles et al., 2020). In addition,
the TRIM5 interacts with the CA and activates protein kinase
enzyme TAK1, which in turn activates the activator protein 1
(AP-1) and NF-κB innate immune signaling pathway (Sultana
et al., 2019; Yin et al., 2020). Further, Lahaye et al. (2018) found
the binding of host NONO with the HIV-1 and HIV-2 nuclear
monomeric CA, HIV-1 DNA, and cGAS to trigger the production
of IFN inside the nucleus. These findings support the previously
mentioned nuclear model of uncoating and reverse transcription
(Lahaye et al., 2018). Crossing these obstacles to gain an entry
into the nucleus and successful uncoating, the HIV-1 integrates
its genome into the host chromosome to complete the process
of transcription, one of the major events in the HIV-1 life cycle.
Thus, in the following subsections, we attempt to review the
current knowledge about how integration, transcription, latency,
and latency reactivation occurs inside the nucleus.

Integration of Viral DNA Into the Host
Chromosome
Once inside the nucleus, the HIV-1 modulates the nuclear
environment for viral cDNA integration into the host
chromosome as a provirus (Figure 1, step 7), specifically at
the AT-rich euchromatin region and other active transcriptional
units (Craigie and Bushman, 2012; Balakrishna and Kondapi,
2016; Ciuffi, 2016). The viral protein IN mediates the process
of integration, and the IN is destabilized by cellular E3 RING
ligase TRIM33, preventing the formation of provirus (Ali
et al., 2019). In addition, the host polypyrimidine tract binding
protein and associated splicing factor (PSF) binds to the HIV-1
IN-cDNA complex and destabilizes the complex, suppressing the
integration event (Yadav et al., 2019). On the other hand, the host
lens epithelium-derived growth factor (LEDGF/p75) binds to the
IN and directs the integration of viral cDNA at transcriptionally
active sites by interacting simultaneously with the host chromatin
(Llano et al., 2006; Ciuffi, 2016). The component of SWI/SNF
chromatin remodeler, INI1, then interacts with the IN domain
of Gag-Pol protein and promotes the DNA joining activity of IN
(Turelli et al., 2001; Yung et al., 2004). In LEDGF/p75 depleted
cells, HIV-1 utilizes hepatoma-derived growth factor-related
protein 2 (HRP-2) for successful integration; however, this
process’s efficiency is significantly less (Schrijvers et al., 2012a,b).
In addition to LEDGF/p75, HIV-1 also influences other host
factors such as high-mobility group protein A1 (HMGA1), HMG
I(Y), barrier-to-auto-integration factor (BAF), SUV39H1, EED,
and HP1γ for the integration process (Farnet and Bushman,
1997; Lin and Engelman, 2003; Du Chéné et al., 2007). Further, as
described above, fresh observations regarding the role of CPSF6

in integration also determine the fate of integrated proviral
DNA (Bejarano et al., 2019; Burdick et al., 2020). It has been
hypothesized that CA–CPSF6 interaction facilitates the HIV-1
to the gene-rich regions, whereas IN-LEDFG/p75 explains the
preference for integration in the gene bodies. Of note, it is not
always that PIC in the nucleus is favored for the process of
integration. Sometimes, the PIC dissociates, leaving the two ends
of the viral cDNA to get ligated by the host non-homologous
DNA end-joining mechanism (NHEJ), forming a 2-long LTR
circles. These 2-LTR circles represent the dead ends for the virus
and are overcome by host LEDGF/p75 (Farnet and Haseltine,
1991; Li et al., 2001). The molecular mechanisms of integration
are reviewed in detail elsewhere (Kvaratskhelia et al., 2014; Ciuffi,
2016; Poletti and Mavilio, 2018). Taking this into consideration,
like in the other steps of the viral life cycle, the host tries to
prevent provirus formation. However, the virus influences the
host factors, especially chromatin-binding proteins, to integrate
its genome into the host chromosome successfully. Downstream
to integration, another crucial event in the viral life cycle is
described below, where the provirus is transcribed into RNAs for
making several progenies of its own.

Transcription and Latency
Following successful integration, the virus has two possibilities: it
either goes for active transcription and production of virions, or
undergoes latency and remains silent if inefficient transcription
occurs. The viral transcription (Figure 1, step 8) is a crucial
step that recapitulates the host transcription in many aspects,
especially by manipulating most of the host transcriptional
machinery. The process commences by recruiting host RNA
polymerase (pol) II at 5′-LTR and several other transcriptional
regulators such as NF-κB, NFAT, AP-1, and SP-1 at their
respective binding sites upstream to the LTR promoter. These
regulators work synergistically to ensure the viral gene expression
while minimizing the host’s antiviral gene activity (reviewed
in Ruelas and Greene, 2013; Van Lint et al., 2013; Röling
et al., 2016). Blocking any of the ways by which transcription
is favored, such as by adding repressive chromatin marks,
epigenetic silencing, limiting positive transcription factors, or
excessively supplying negative transcriptional regulators, leads to
the inhibition of viral DNA transcription resulting in latency. The
post-integrated latent virus has since then been a bottleneck for
using antiretroviral therapies (ARTs) for achieving a complete
cure. This priority research area, the mechanism of latency, and
approaches to treat the latently infected cells are well rationalized
in Coiras et al. (2009), Liu et al. (2014), Cary et al. (2016), Mbonye
and Karn (2017), Lindqvist et al. (2020), and Shukla et al. (2020).
The latency at any later time point does relive and can reactivate
the integrated HIV-1 for transmission.

In both fresh and reactivated transcription processes, the pol
II at 5′-LTR transcribes the stem loop of transactivating response
(TAR) element and halts due to secondary structures, generating
abortive transcripts. This halting is vanquished by recruiting
positive transcription elongation factor b (P-TEFb) by Tat at the
TAR element. The P-TEFb is a heterodimer of cyclin-dependent
kinase 9 (CDK9) and cyclin T1 (CycT1) that phosphorylates
the c-terminal domain (CTD) of RNA pol II and thus favors
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the elongation process producing full-length HIV-1 transcripts
(Jones and Peterlin, 1994; Jones, 1997; Garber et al., 1998;
Bieniasz et al., 1999; Zhou et al., 2000). Since P-TEFb is required
for both viral and cellular gene expression, its tight control in the
cell is indispensable. In most of the cells, P-TEFb is in an inactive
state and is sequestered in a kinase-inactive complex that contains
hexamethylene bis-acetamide inducible 1 (HEXIM1), and this
P-TEFb–HEXIM1 interaction is mediated by 7SK small nuclear
RNA as a molecular scaffold. Besides, the kinase-inactivated
complex also contains Lupus antigen (La)-related protein 7
(LARP7), a methyl phosphate capping enzyme called MePCE,
AF9, AFF1, AFF4, ENL, ELL1, and ELL2. Together, this entire
complex is known as super elongation complex (SEC) (Nguyen
et al., 2001; Yik et al., 2004; He et al., 2010; Liu et al., 2014). In an
infected cell, the P-TEFb dissociates from the SEC and forms an
association with the bromodomain-containing protein 4 (Brd4).
Brd4 then facilitates the recruitment of P-TEFb at the promoter
site for Tat-independent transcription stimulation (Yang et al.,
2005). However, it is compelling to note that in the presence of
Tat, Brd4 plays a negative role in the transcriptional process by
competing with the Tat (Yang et al., 2005; Bisgrove et al., 2007).
A decade ago, work led by the D’Orso group revolutionized the
understanding of how and when Tat and P-TEFb are recruited
to the HIV promoter. Their studies showed that even before
TAR element formation, Tat, in association with P-TEFb, is
mobilized to the 5′-LTR promoter in a specificity protein 1 (SP1)-
dependent manner facilitating the transcription process (D’Orso
and Frankel, 2010; D’Orso et al., 2012; McNamara et al., 2013).

Initially, it was reported that TRIM22 has a broad antiviral
activity, inhibits SP1, and thus represses the transcription
(Turrini et al., 2015). More recently, it was revealed that IFI16
sequesters the SP1 transcription factor concurrently, inhibiting
the viral gene expression (Hotter et al., 2019; Bosso et al.,
2020). Besides, a short isoform of Per-1 was identified to
suppress the transcription process in resting CD4+ T cells.
However, this suppression is overcome by the activity of
Tat (Zhao et al., 2018). Taura et al. (2019), in a recent
finding, showed an unexpected role of APOBEC3A in inducing
latency. The APOBEC3A interacts with the proviral 5′-LTR
and adds repressive histone marks by recruiting HP1 and
KAP1. In addition, a member of the heterogeneous nuclear
ribonucleoproteins (hnRNPs) family, X-linked RNA-binding
motif protein (RBMX), was found to bind to the LTR downstream
region and to block the recruitment of RNA pol II at the
promoter by maintaining repressive trimethylation of histone
H3 lysine 9 (H3K9me3) (Ma et al., 2020). Further, a recent
CRISPR-based knockout screen by Rathore et al. (2020) revealed
the role of several host deubiquitinases such as UCH37,
USP14, OTULIN, and USP5 in HIV-1 latency. In the lymph
node, where oxygen availability is less, Zhuang et al. (2020)
showed that hypoxia-inducible factor 2α (HIF2α) binds to
LTR, suppresses the transcription, and promotes latency. These
studies further await independent confirmations on the factors
identified to regulate the latency. On the contrary, several
other findings suggested the novel mechanism of reactivation
of latent HIV-1. For instance, ELL2 being the part of SEC,
however, stimulates the transcriptional elongation, but the

freshly synthesized ELL2 is prone to degradation by Siah1. This
inhibitory activity of Siah1 is antagonized by host cell factor
1 and 2 (HCF1 and HCF2), thus favoring the transcriptional
activation (Wu et al., 2020). Additionally, the same group
also suggested that the levels of ELL2 and ELL2-SEC can be
elevated by downregulating/inhibiting the proteasomes favoring
Tat transactivation (Li Z. et al., 2019). Interestingly, another
finding suggests that YY1 is known to inhibit HIV-1 expression
and to promote latent infection, which, when over-expressed,
leads to transcriptional upregulation with the synergistic effect of
viral Tat protein (Yu et al., 2020). Another viral accessory protein,
Vpr, was found to reactivate HIV-1 by targeting the chromatin-
modifying enzyme CTIP2 (Forouzanfar et al., 2019). Taken
together, the consequent HIV-1 transcription being either active
or silenced depends mostly on host cellular factors, epigenetic
factors, and viral factors in addition to the chromatin status at
the integration site.

Splicing and Export of Viral Transcripts
to Cytoplasm
Upon completion of transcription, a full-length mRNA transcript
(∼9.2 kb) is produced containing eight open reading frames
(ORFs). The transcript then undergoes alternative splicing to
form Rev, Tat, and Nef mRNA (∼1.8 kb) by a mechanism
similar to that of the host (Chen and Manley, 2009; Kutluay
et al., 2014; Sertznig et al., 2018). The Rev mRNA is transported
out of the nucleus through the NPC and is translated into
Rev proteins in the cytoplasm (Köhler and Hurt, 2007).
The Rev protein-containing NLS is imported back to the
nucleus by binding to the nuclear import receptor, importin β

(Henderson and Percipalle, 1997).
In the late phase of infection, when the concentration of

Rev protein in the nucleus is above a certain threshold, it
binds to the Rev response element (RRE) in the second intron
of unspliced and incompletely spliced transcripts (Pollard and
Malim, 1998). The Rev also contains a nucleus export signal
(NES) through which it binds to the karyopherin family member
exportin 1 [also known as chromosome maintenance region 1
(CRM1)] and transport the transcripts from the nucleus to the
cytoplasm (Fischer et al., 1995; Arnold et al., 2006). Of note, Rev
multimerizes and masks the NES, which thus can be retained
in the nucleus (Behrens et al., 2017). It was later discovered
that RRE–Rev interaction also recruits hypermethylation enzyme
PIMT, which modifies the 7-methylguanosine (m7G) cap of
mRNA to a trimethylguanosine (TMG) cap. The acquisition of
TMG caps allows the HIV-1 RNA to get recognized by CRM1
and targets for CRM1-dependent nuclear export (Yedavalli and
Jeang, 2010). In addition to several host factors (such as DDX1,
DDX3, DDX5, DDX21, Matrin-3, CBP80, Sam68, and MOV10)
found to interact with Rev–RRE, Wang et al. (2019) found two
proteins, ANP32A and ANP32B, which directly interact with
RRE–Rev–CRM1 and facilitate the viral RNA nuclear export. The
HIV-1 Nef-associated factor 1 (Naf-1, a cellular protein) was also
found to interact with CRM-1 and promote the export of HIV-
1 gag mRNA (Ren et al., 2016). Exported HIV transcripts then
undergo translation and encode viral structural proteins (Gag
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and Pol from unspliced RNA) and accessory proteins from singly
spliced transcripts (Env, Vif, and Vpr). These viral proteins are
then trafficked via different cellular compartments to the virion
assembly site at the plasma membrane.

CYTOPLASM: THE SITE OF VIRAL
PROTEIN TRANSLATION AND
INTERACTION WITH OTHER
ORGANELLES

Translation
Besides using the cytoplasmic environment for initiating reverse
transcription and traversing the core toward the nucleus, HIV-
1 also utilizes cytoplasm for viral translation and assembly
(Figure 1, steps 9–10), after the successful production of viral
RNA and their export to the cytoplasm. Prior to translation
initiation, HIV-1 encounters several hurdles elicited by the host
cellular environment as a result of the innate sensing of virion
components. To limit viral production, the host induces the
production of IFN-stimulated gene products. Following cellular
stress, protein activator of PKR (PACT) activates an IFN-
activated protein kinase (PKR) and mounts antiviral immunity
(Burugu et al., 2014; Guerrero et al., 2015). However, a few
years back, Chukwurah et al. (2017) showed that HIV employs a
strategy to subdue this antiviral response by interacting viral Tat
protein, host ADAR1, and PACT, inhibiting the PKR activation
and thus enhancing own protein synthesis. Earlier, we have
discussed the role of IFITMs in the inhibition of viral entry,
but Lee et al. recently unveiled the translational inhibition
role for IFITMs. The IFITM excludes the viral mRNA from
incorporation into the polysomes and thus inhibits the protein
synthesis. Furthermore, as a countermeasure, Lee et al. (2018)
found that HIV Nef overcomes this inhibitory effect by IFITM
by a mechanism not known yet.

For translation initiation and protein production, HIV-
1 misappropriates the eukaryotic translational machinery by
recruiting 40S ribosomes to its 5′ UTR region of RNA, which
is capped (secondary structure) like host RNAs. This region is
known as the TAR element required for translation initiation.
However, similar to eukaryotic translation, the presence of highly
stable RNA structures in the viral TAR RNA region has raised
several questions about the recruitment of the 43S pre-initiation
complex (PIC). In eukaryotes, the 43S PIC containing 40S
ribosome, initiator tRNA, eIF1, eIF1A, eIF2-GTP, and eIF3, is
recruited to the 5′ Cap by eIF4F multi-subunit complex and
facilitates the scanning of mRNA for initiator codon from 5′ to
3′ direction. Interestingly, HIV-1 masters itself by recruiting a
cellular RNA helicase DDX3 (DEAD/H box family) and facilitates
PIC assembly in an ATP-dependent manner (Ricci et al., 2008;
Guerrero et al., 2015). HIV-1 also recruits host TAR RNA-binding
protein (TRBP—known to be involved in RNA silencing) at
TAR elements and resolve the secondary structure for translation
initiation. This year, Komori et al. (2020) showed that TRBP
interacts with the DICER and mediates TAR miRNA degradation,
reliving the hurdle. Apart from canonical translation initiation,

eukaryotes and many viruses, including HIV-1, employ a cap-
independent translation mechanism. In this process, the 43S
initiation complex is recruited at the internal ribosome entry site
(IRES) containing mRNA stem loops to initiate the translation
in a cap-independent manner. The HIV-1 virus, in the first
24–48 h of viral replication, uses cap-dependent translation
process, whereas after 48 h, it opts for the IRES-dependent
translation process to produce viral particles (Amorim et al.,
2014; Ohlmann et al., 2014). For further understanding of the
molecular mechanism of translation initiation, elongation, and
completion, readers are encouraged to follow the articles by
Ohlmann et al. (2014) and Guerrero et al. (2015).

Altogether, these studies show that apart from using host
cellular factors and plasma membrane for viral entry and
budding, the virus tricks the host machinery and makes the host
environment favorable for viral replication. Post translation, the
viral proteins are targeted to several cellular organelles for protein
modifications. These modified proteins are then transported to
the plasma membrane for assembly and virion production. In the
upcoming section, we attempt to describe various tricks played
by HIV-1 within these organelles for its benefit.

The Interactions With the Endoplasmic
Reticulum, Mitochondria, and
Peroxisome
Preparatory to the assembly of virions, HIV-1 proteins are
synthesized on the endoplasmic reticulum (ER) and are targeted
to various cellular compartments for protein modification,
maturation, and alteration of immune pathways. For instance,
the HIV-1 uses the host ribosome machinery bound to the ER
to produce gp160, an Env polyprotein precursor. The gp160
is then glycosylated in the ER, concomitant with translation,
and multimerizes for trafficking to the TGN. In Golgi, the
precursor proteins undergo oligosaccharide modification and
are processed to yield transmembrane glycoprotein, gp41, and
surface glycoprotein, gp120 (Checkley et al., 2011). To prevent
premature interaction of gp120 with newly synthesized CD4 on
ER, HIV-1 employs Vpu to manipulate the β-TrCP/proteasome-
mediated degradation pathway to downregulate CD4 (Margottin
et al., 1998; Magadán et al., 2010). Of note, CD4 receptors
in the cell surface are downregulated by viral Nef protein
by hijacking adaptor protein complex 2 (AP2)- and clathrin-
dependent endocytosis (Kwon et al., 2020).

It is interesting to note that, although HIV-1 seizes ER for
protein synthesis, glycosylation, and CD4 downregulation via
ERAD machinery, the ERAD acts as a double-edged sword
that traps gp160 at its birthplace. Besides, in the ER, the
guanylate-binding protein, GBP2/5, decreases the activity of
furin convertase required for conversion of precursor gp160 into
mature gp41 and gp120 (Braun et al., 2019). An ER protein,
known as ERManI, modulates the glycosylation of Env protein
vis-à-vis regulating TSPO, a mitochondrial translocator protein
that alters the folding process and diminishes Env expression by
ERAD (Zhou et al., 2014, 2015). This suggests that mitochondrial
involvement in regulating the Env protein folding process.
Currently, we do not know how exactly HIV-1 responds to this,
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but recent findings by Zhang et al. (2016) showed that HIV-
1 accessory protein Vpr augments proper Env folding in the
ER that, in turn, shields Env from lysosomal degradation in the
ERAD pathway. Another study showed that HIV-1 hijacks PERK,
ATF6, and IRE1 ER stress sensors and modulates their activity to
increase BiP expression and subsequent increased protein folding
capacity of ER (Borsa et al., 2015).

In addition to this, HIV-1 was also found to manipulate the
ERAD pathway and other innate immune triggering pathways
to antagonize the immune responses as described in Byun et al.
(2014) and Yin et al. (2020). In myeloid cells, the adaptor protein
mitochondrial antiviral-signaling protein (MAVS) transduces
signals from cytosolic RIG-I upon sensing viral RNAs that
induce IRF3 and IκB activation. This leads to the activation of
mitochondrial MAVS-mediated innate immunity (Figure 3A).
The MAVS triggers the type I IFN signaling by another viral
RNA sensor, DDX3, which interacts with the abortive HIV-
1 RNA upon infection. However, HIV-1 utilizes the viral
protease to diminish RIG-I from the cytosol, thus subverting
RIG-I-MAVS initial signaling cascades. Additionally, HIV-1
sensing by host DC-SIGN activates a mitotic kinase PLK1 that
lessens the downstream cascade signaling of MAVS, thereby
escaping innate immune activation during HIV-1 infection.
PLK1-mediated viral subversion strategy prevents DDX3-MAVS
signaling, thereby promoting HIV-1 replication during infection
(Gringhuis et al., 2016).

Intriguingly, MAVS signaling not only is limited to the
mitochondrial membrane but also indulges in peroxisome
membranes. Upon HIV-1 RNA sensing, peroxisomal MAVS
triggers the rapid induction of type III IFNs and ISGs that
acts as antiviral factors (Hopfensperger and Sautera, 2020). To
antagonize the peroxisomal MAVS-mediated immunity, HIV-1
directly modulates the biogenesis of peroxisome factors. The viral
accessory protein Vpu sequesters β-TRcP and stabilizes the β-
catenin, required for activation of TCF4 TF to transcribe miRNAs
(miR-34c-3p, miR-93-3p, miR-500a-5p, and miR-381-3p). These
miRNAs are found to regulate the expression of factors required
for peroxisome biogenesis and, thus, expropriates the peroxisome
function (Figure 3B) (Xu et al., 2017, 2020; Hopfensperger and
Sautera, 2020). However, whether the suppression of peroxisome
biogenesis by Vpu inhibits the peroxisomal MAVS signaling
and activation of IFN-stimulated genes (ISGs) and type III
IFN is yet to be determined. Being an enveloped virus, HIV-1
may rewire peroxisome features to enhance lipid synthesis for
new viral assembly.

Apart from antagonizing MAVS-dependent signaling, the
HIV-1 employs accessory protein Vpr, Tat, and envelope
glycoprotein gp120 to induce host cell death by altering
the mitochondrial dynamics, membrane potential, and oxygen
consumption. The Vpr reduces the expression of mitofusin 2
(Mfn2) post-transcriptionally, thus weakening and increasing the
permeability of mitochondrial outer membrane (MOM). This
leads to increased mitochondrial deformation and a reduction in
mitochondrial membrane potential (MMP). Vpr also decreases
the cytoplasmic level of fission protein, dynamin-related
protein 1 (DRP1), and increases the bulging in membranes
of mitochondria associated with mitochondria, MAMs. This

suggests that Vpr-mediated cellular damage is modulated by
DRP1 and MFN2 on an alternative protein transport pathway
from the ER to mitochondria via mitochondria-associated
membranes (MAMs) (Huang et al., 2012). Like Vpr, Tat and
gp120 were found to alter the mtDNA content, mitochondrial
dynamics, function, distribution, and trafficking. Tat and gp120
were also shown to induce the expression of mitophagy signaling
proteins (DNM1L, PRKN, and PINK1) and autophagosome-
related proteins (MAP1LC3B-II and BECN1). However, the
increase in Parkin/SQSTM suggests the blockade in mitophagy
flux and thus the accumulation of mitophagosomes in neurons
(Avdoshina et al., 2016; Rozzi et al., 2018; Teodorof-Diedrich
and Spector, 2018; Thangaraj et al., 2018). Additionally, HIV-
1 promotes mitochondrial dysfunction for infection-mediated
apoptosis by downregulation of mitochondrial complex I subunit
NDUFA6 and the complex I enzyme activity (Ladha et al., 2005).
HIV-1 protease has also been shown to play a role in apoptosis
by localizing to the mitochondria and decreasing the MMP,
following which it activates caspase 9, PARP cleavage, and DNA
fragmentation (Rumlová et al., 2014). Furthermore, the HIV-
1 gp120 induces the caspase-9/caspase-3-mediated programmed
cell death by JNK, IRE1α, and AP-1 pathway by upregulating
CHOP and BiP production (Shah et al., 2016). Altogether,
emerging evidence suggests that HIV-1 exploits cytoplasm and
nucleus, targets other subcellular compartments, and alters
canonical cellular pathways for the completion of its life cycle.

PLASMA MEMBRANE: THE SITE OF
VIRION ASSEMBLY AND BUDDING

Assembly
In the later stages of the HIV-1 life cycle, post-translation and
protein modification, the virus utilizes the inner leaflets of the
host plasma membrane for assembly of HIV-1 (Figure 1, step
10). The gag protein of a virus consisting of MA, CA, and NC
protein is essential for virion assembly. The Gag is translated from
the viral RNA by programmed ribosome-1 frameshifting via two
regimes established by Korniy et al. (2019). This frameshifting
event is required for maintaining a constant Gag to Gag-Pol
ratio for proper structural organization and infectivity of the
virions. Besides, the cellular polyanion, inositol hexakisphosphate
(IP6), interacts and enhances the assembly of Gag proteins into
the immature viral particles (Dick et al., 2018; Mallery et al.,
2019). During assembly, the viral RNA is recognized by the NC
domain of uncleaved Gag protein via two zinc finger motifs
and several basic amino acids and is selectively incorporated
in the virions. Although HIV-1 RNA serves as a viral genome
and template for translation, at a given time, a single RNA
molecule carries out only one function (Bell et al., 2012; Kutluay
et al., 2014; Chen et al., 2020). Recent studies indicate that
viral RNA also interacts with the MA, leading to a reduction
in the non-specific binding of Gag to the plasma membrane
(Meng and Lever, 2013). Immediately after translation, Gag
protein forms complexes with the two RNA granule proteins
ABCE1 (ATP-binding cassette family of protein subfamily E1)
and DDX6 (DEAD-box RNA helicase) present in the cytoplasm
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FIGURE 3 | Insights into the counteraction of host defense by viral protease and Vpu. (A) Inhibition of antiviral signaling by viral protease: The host RIG-I senses viral
ssRNA to promote the antiviral signaling through MAVS and activates the IκB kinases (IKKs). The IKKε phosphorylates IRF3, which then translocates into the nucleus
to trigger the IFN-I production. On the other hand, IKK-α/β phosphorylates and degrades IκB, reliving NF-κB to go into the nucleus for transcription of
proinflammatory cytokine genes. The viral protease (PR) promotes the degradtaion of RIG-I in the cytosol. (B) Suppression of peroxisome biogenesis by Vpu: in the
absence of HIV-1 infection, the adapter protein βTrCP binds to β-catenin and promotes its degradation via ubiquitin-mediated proteasomal pathway. Upon HIV-1
infection, the Vpu stabilizes the β-catenin by sequestering βTrCP. Subsequently, β-catenin enters into the nucleus and activates the transcription factor TCF-4, which
is required to drive the expression of indicated microRNAs. These microRNAs were found to regulate the expression of peroxisome biogenesis factors for
peroxisome synthesis. However, the peroxisomal MAVS triggers the rapid induction of type III IFNs downstream ISGs that acts as antiviral factors. The direct/indirect
counteraction of peroxisomal MAVS signaling by HIV-1 remains to be elucidated.

of infected cells. ABCE1 is a cellular ATPase and binds Gag
independent of viral RNA, and its association with Gag protein
during assembly indicated the energy-dependent polymerization
of Gag monomers (Abrahamyan et al., 2008; Meng and Lever,

2013). The role of DDX6 during HIV-1 assembly still needs to
be further studied. Another protein, Staufen1, is an RNA binding
protein that indirectly binds to viral gag RNA and helps in gag
oligomerization (Cochrane et al., 2006; Abrahamyan et al., 2008).
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Inhibition, as well as overexpression of Staufen1 protein, inhibits
virus infectivity. Further, Staufen1, along with ABCE1 and DDX6,
helps in Gag multimerization. Interestingly, these proteins only
help during the assembly of HIV-1 but are not packaged in the
budded virions (Abrahamyan et al., 2008; Meng and Lever, 2013;
Lingappa et al., 2014).

Swindling Cellular Factors During Virion
Egress
Apart from entry into the target cell and harnessing the
plasma membrane for assembly, HIV-1 also exploits the plasma
membrane during budding from the producer cells (Figure 1,
step 11). The budding process ensues the release of viral
progeny from the infected cell, which will further help the
virus disseminate the infection to new target cells. During
egress, the PTAP motif in L-domain of HIV-1 gag p6 interacts
with host tumor susceptibility gene 101 (TSG101), apoptosis-
linked gene 2-interacting protein X (AIP1/ALIX), and endosomal
sorting complexes required for transport (ESCRT) machinery,
promoting the budding event (Garrus et al., 2001; Strack et al.,
2003; Martin-Serrano and Neil, 2011). The budding requires
all ESCRT-1 complex components, which consist of TSG101
VPS28, VPS37, and MVB12; and the latest member to this
is the ubiquitin associated protein-1 (UBAP-1) (Ahmed et al.,
2019). Recent studies revealed that mutation in NC leads to the
delocalization of TSG101 but not ALIX1, suggesting that the
distribution and interaction of TSG101 are Gag dependent (El
Meshri et al., 2018). HIV-1 recruits the charged multivesicular
body protein 4 (CHMP4) fission factor, an ESCRT III protein via
ESCRT-1 at PTAP late domain. Besides, HIV-1 recruits two small
subunits of ESCRT-III, CHMP2a, and CHMP2b. The recruitment
of ESCRT-III is facilitated by the interaction of the C-terminal
domain of CHMP4 with ALIX1 at the membrane, which further
enables the formation of ESCRT-III filaments (Martin-Serrano
and Neil, 2011). The ESCRT-III of ESCRT machinery acts as the
key scissor to cut the filament, which then separates the nascent
virion from the host plasma membrane. The vacuolar protein
sorting associated protein 4 (VPS4) then continuously removes
the ESCRT-III molecules from the excision site until membrane
fission and virion release (Figure 1, step 12) is completed for
another round of the budding event. For further insight into
the event of budding, the readers are encouraged to have a look
into the articles by Pincetic and Leis (2009), Martin-Serrano and
Neil (2011), Weiss and Göttlinger (2011), and Lee et al. (2015).
Recently, Popov et al. (2018) demonstrated that independent of
the ESCRT-mediated budding process, the p6 region also recruits
host PACSIN2, an actin cytoskeleton, and cellular membrane
remodeler, via ubiquitin to promote cell-to-cell virion spreading,
and this p6 domain ubiquitination was found to be facilitated
by NEDD4 family ubiquitin ligase ITCH. Although being the
predominant mode of transmission, the mechanism is yet to
be understood in detail and thus opens up several questions in
the biology of HIV-1 budding. At this stage, while the virions
are ready to excise and leave the infected cells, this egress is
challenged by the cellular protein tetherin (Neil et al., 2008;
Van Damme et al., 2008). Tetherin is an IFN (IFN)-induced

host protein, encoded by the BST-2 gene, known to sense the
viral particles by transducing signals to activate proinflammatory
signaling (Skasko et al., 2011; Galão et al., 2012). Tetherin
cross-links the enveloped viruses during budding from the
infected cell and thus inhibits the process. HIV-1 accessory
protein Vpu counteracts this block at the plasma membrane by
downregulating tetherin from the cell surface and promoting its
degradation by recruitment of β-TrCP2 (Douglas et al., 2009).

Similar to Vpu, HIV-1 accessory protein, Nef has been
extensively studied for its ability to alter cell surface protein
composition. The primary function of Nef is known for
trafficking a myriad of proteins from the cell surface to the trans-
Golgi network or lysosome by hijacking the vesicular endocytic
machinery. One such crucial function is the downregulation
of the CD4 receptor by expropriating the endocytosis process,
upon which the susceptibility of gp120 epitopes to host
antibodies diminishes, thereby preventing antibody-dependent
cellular cytotoxicity (ADCC) (Wyatt et al., 1995; Ferrari et al.,
2011; Pham et al., 2014; Veillette et al., 2014; Kwon et al.,
2020). Furthermore, by an uncharacterized mechanism, Nef was
also shown to enhance virion’s infectivity by showing its effect
in the HIV-1 producer cells rather than in the viral progeny
itself (Chowers et al., 1994; Basmaciogullari and Pizzato, 2014).
In 2015, host restriction factors SERINC3 and SERINC5 were
identified. These multipass proteins dramatically inhibited Nef
defective HIV-1 infectivity in target cells by being incorporated
into the virus particle. In the presence of Nef, these cell-surface
proteins are downregulated to late Rab-7 positive endosomal
compartments and prevent the incorporation of these proteins
into the budding virions. While infectivity defect is inherited
during the egress from the producer-cell plasma membrane,
the effect on virus inhibition is seen in the target cells (Rosa
et al., 2015; Usami et al., 2015; Firrito et al., 2018). Nef and
Vpu are also known to downregulate several tetraspanins such
as CD81, CD63, and CD53, which are involved in the formation
of tetraspanin-enriched microdomains (TEMs) (Haller et al.,
2014). Nef further downregulates a plethora of cell surface
receptors such as NKG2D-L required for NK cell activation.
In vitro, it was shown that the decrease in levels of NKG2D-
L that binds to NKG2D on NK cells reduced the cytolytic
activity of co-cultured NK cells (Cerboni et al., 2007; Alsahafi
et al., 2017). Apart from this, an essential aspect of Nef is that
it also reduces the levels of MHC-I from the cell surface by
using AP-1 to direct the MHCs to endosomes and lysosomes
as a tactic of evading the immune response (Schwartz et al.,
1996; Collins et al., 1998; Lubben et al., 2007). Thus HIV-
1 accessory proteins, during binding, fusion, and budding,
extensively remodel the plasma membrane and manipulate
the host intracellular environment for productive infection
and immune evasion.

SUMMARY

From entry to egress, at each step, HIV-1 depends on the
host. This dependency also portrays the interaction with diverse
cellular organelles that are otherwise essential for normal
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homeostasis. The plasma membrane is cleverly taken advantage
of throughout the virus life cycle. Upon binding to HIV-1 gp120,
various chemokine-dependent signal transduction pathways
are rewired, many of which are crucial for immune effector
functions. Further, the plasma membrane is the sight of HIV-
1 budding, which is considerably reorganized to release newly
formed virions. In addition to this, the cell surface protein
composition is altered by accessory proteins like Nef and Vpu to
counteract major host restriction factors, SERINC5 and Tetherin,
respectively. The success of HIV-1 as a pathogen is perhaps
imputed to these accessory proteins’ ability to hijack the host
endocytic machinery and the trans-Golgi network efficiently
to downregulate a vast number of cell surface proteins. Not
only the interaction with endocytic machinery but Nef also
utilizes the ER-associated protein degradation (ERAD) pathway
for this purpose. After the efficient exploitation of the cell
membrane, the viral core enters the cytoplasm where HIV-1
can interact with the cytoplasmic proteins and rearrange the
cytoskeleton to sanction its retrograde transport toward the
nucleus. Besides this, the viral CA can coherently interact with
multiple host proteins to protect from premature uncoating
and risking the viral genome being sensed by cytoplasmic
immune sensors, and now we know that an intact capsid
enters the nucleus. Apart from this, another viral accessory
protein, Vif, can recruit the proteasomal machinery to degrade
the host restriction factor APOBEC3G that induces mutations
in the proviral DNA during reverse transcription resulting
in truncated viral proteins or premature stop codons. After
reaching the nuclear envelope, the viral core recruits host
proteins like CPSF6 to employ nuclear importins, thus seizing
the nuclear import machinery to transport into the nucleus.
Within the nucleus, the virus becomes crucially dependent
on nuclear proteins for uncoating and effective integration
into actively transcribed regions of the host chromosome.
Furthermore, the transcription of the integrated proviral DNA
depends on the host RNA polymerase (RNA pol II). Although
HIV-1 Tat considerably augments the transcription rate, it
does so by interacting with host transcription factors like
P-TEFB to utilize RNA pol II efficiently. After the generation
of alternatively spliced and unspliced transcripts of HIV-1,
they are transported to the cytoplasm for translation. The
export of these viral transcripts is enabled by the viral protein
Rev, which again depends on the host CRM1-dependent
nuclear traffic. Once again, in the cytoplasm, HIV-1 employs
the cellular protein translation machinery to produce viral
proteins. Following this, the virus further takes advantage
of host intracellular trafficking machinery for assembly of
progeny near the plasma membrane, after which the virus

buds off by altering the plasma membrane and recruiting the
ESCRT machinery. Thus, the virus effortlessly exploits the
machinery that is utilized by the host for its own survival
and persistence.

CONCLUDING REMARKS

The involvement of various subcellular entities in HIV-1
infection and their contribution to pathogenesis is becoming
increasingly apparent. Thus, this review attempts to comprehend
previously known and recently discovered compartmentalized
cellular and molecular interactions during HIV-1 infection.
With an increased understanding of host–virus cross talk,
a future goal may be to utilize cutting-edge technologies,
preferentially in relevant models, to identify candidates that
could target organelle-specific host mechanisms. For instance,
identifying how HIV-1 can evade innate sensors by preventing
early uncoating, essentially to pathogenic effect, will have a
profound impact on future drug developments. Consequently,
a combination of therapeutic strategies in a fashion to abrogate
compartmentalized interactions could prove to accentuate better
adjunct treatment options.
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