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A distributed nanocluster based multi-agent
evolutionary network

Liying Xu1, Jiadi Zhu1, Bing Chen2, Zhen Yang1, Keqin Liu1, Bingjie Dang1,
Teng Zhang1, Yuchao Yang 1,3,4,5 & Ru Huang 1,3,4

As an important approach of distributed artificial intelligence, multi-agent
system provides an efficient way to solve large-scale computational problems
through high-parallelism processing with nonlinear interactions between the
agents. However, the huge capacity and complex distribution of the individual
agents make it difficult for efficient hardware construction. Here, we propose
and demonstrate a multi-agent hardware system that deploys distributed Ag
nanoclusters as physical agents and their electrochemical dissolution, growth
and evolution dynamics under electric field for high-parallelism exploration of
the solution space. The collaboration and competition between the Ag
nanoclusters allow information to be effectively expressed and processed,
which therefore replaces cumbrous exhaustive operations with self-
organization of Ag physical network based on the positive feedback of infor-
mation interaction, leading to significantly reduced computational complex-
ity. The proposedmulti-agent network can be scaled upwith parallel and serial
integration structures, and demonstrates efficient solution of graph and
optimization problems. An artificial potential field with superimposed attrac-
tive/repulsive components and varied ion velocity is realized, showing gra-
dient descent route planningwith self-adaptive obstacle avoidance. Thismulti-
agent network is expected to serve as a physics-empowered parallel com-
puting hardware.

A complex system, including the world, can be constructed by a large
network of relatively simple components with evolution capabilities.
The self-organization of the individuals following simple rules can
lead to complex behaviors of the network system1. For instance, the
swarm that simple biological individuals constitute shows collective
intelligence capable of solving complex computational problems2–8.
Swarm intelligence-inspired algorithms such as genetic algorithm9,
ant colony algorithm10, and particle swarm optimization algorithm11

have played an important role in optimization and distributed artifi-
cial intelligence (AI).

In fact, all the complexity comes from simplicity3. The swarm
intelligence essentially arises from the emergence and self-
organization characteristics2,12,13. The evolution of simple individuals
through nonlinear interactions under de-centralized collaborative
control14 makes the whole show new structures or functions that the
individuals donot possess, that is, “thewhole is greater than the sumof
its parts”. As a considerable branch of distributed AI, multi-agent sys-
tem inspiredby swarm intelligencecandealwith complex tasks that far
exceed the capability of single agents, which is based upon the inter-
actions between the agents as well as that between the agents and the
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environment, showing stupendous potential in diverse applications,
such as swarm robots15,16, multivehicle coordination17, and machine
learning18,19. Despite the significance of multi-agent systems, the huge
capacity and initially randombut subsequently complexdistributionof
individuals make it difficult for hardware implementation, and hence
previous studies are mainly focused on related algorithms. The
development ofmulti-agent evolutionary hardware systemswill be key
to future construction of large-scale, energy-efficient, self-adaptive,
and robust AI systems.

In recent years, physical networks with nanoarchitecture com-
posed of nanowires20–24, nanoparticles25–27 or random dopants28 have
been exploited to efficiently implement complex computational
tasks in material based on the nonlinear interactions of the indivi-
duals. Gimzewski et al. designed atomic switch networks (ASN)
composed of multiple overlapping Ag nanowire junctions. The dis-
tributed spatiotemporal dynamics of ASN shows great potential for
the efficient implementation of reservoir computing20,21. Brown et al.
studied the avalanches, and self-organized criticality originated from
spatiotemporal correlations in percolating nanoparticle network.
The statistical distributions of an avalanche in the percolating
nanoparticle network exhibit qualitative and quantitative similarity
to thosemeasured in the cortex, which provides a novel architecture
for efficient brain-like computing26,27. van der Wiel et al. exploited
the nonlinearity and tunability of hopping conduction in a
silicon-based network of boron dopant atoms, enabling efficient
implementation of machine learning tasks such as classification28.
The rich and complex dynamics of these physical networks have
showngreat potential in unconventional computingwith high energy
efficiency.

Here, we report a nanoscale, solid-statemulti-agent evolutionary
network (MAEN) based on the self-organization of distributed Ag
nanoclusters. Different from the existing physical networks with
immobile elements, here, the Ag nanoclusters in the MAEN system as
de-centralized agents exhibit spontaneous dynamic evolutions via
field-driven ion migrations and electrochemical reactions. The posi-
tive feedback by the alignment of Ag nanoclusters leads to coopera-
tion and competition between the agents, and the resultant
connectivity pattern conforms to the principle of optimization. The
self-organized evolution of Ag nanoclusters with positive feedback
has commonalities in principle with swarm intelligence, such as the
foraging process of ant colony. The kinetic factors in this process,
including electric field and ion mobility, provide effective means to
themodulationof evolutiondynamics. Two types of basicmodulation
units, including distance modulation and voltage modulation, are
built accordingly and can effectively represent theweights of edges in
a graph.We further propose and experimentally demonstrate parallel
and serial integration schemes of basic modulation units, which
indicate the scaling potential of the MAEN and are successfully
applied to the solution of varied graph problems. An artificial
potential field with superimposed attractive and repulsive compo-
nents and thus varied ion velocity is experimentally realized, showing
gradient descent route planning with obstacle avoidance. The dis-
tributedAgnanocluster-basedMAENwith evolutionary capability and
high parallelism, therefore, provides an efficient route toward rea-
lizing distributed AI hardware.

Results
Operation principle
In complexity science, the phenomenon of swarm intelligence can be
described by “emergence”, originating from a positive feedback
amplification mechanism based on local interactions between the
individuals29,30. The ant colony foraging process is a typical example
embodying the emergence behavior of complex systems, as sche-
matically depicted in Fig. 1a. In the initial food searching stage, the
ants do not know the location of food and tend to randomly search

the entire space. A chemical substance called “pheromones”10 will be
released to the surrounding environment once the ants find food.
The pheromones can guide other ants to find the food, and mean-
while the concentration of pheromones will dissipate over time.
If there exists a path that is shorter than the others, the time it
takes for passing it will be shorter, and thus the concentration
of pheromones thereof will be higher. It naturally attracts more
ants to this path, which in turn generates more pheromones. This
forms positive feedback and ensures that the ants eventually con-
verge to the shortest path to transport food, as schematically shown
in Fig. 1b. Inspired by the foraging law, ant colony algorithms are
widely used to solve optimization problems, such as the shortest
path problem.

Although it is difficult to artificially predict and manipulate the
emergence itself, it can be induced by designing the conditions that
prompt emergence to occur. Here, we propose a MAEN system based
on the self-organized evolution of Ag nanoclusters under an electric
field. The preparation of the devices is described in Experimental
Section and Supplementary Fig. 1. Self-assembled polyethylene oxide
(PEO) with high Ag+ ion mobility was selected as the solid polymer
electrolyte31,32. Figure 1c shows scanning electron microscopy (SEM)
image of the initial morphology of a two-terminal MAEN device with
~200nm gap. It can be seen that a large number of Ag nanoclusters
with a diameter of ~10 nm are randomly distributed and incorporated
in the device (Supplementary Fig. 2), which can be regarded as bipolar
electrodes uponapplicationof an electricfield33,34. As a result, the self-
organized evolution of such clusters as distributed agents can be
achieved by a sequence of ionization, ion migration, and reduction
processes of individual Ag atoms, leading to effective cluster dis-
placements along electric field and thus alignment of them (Fig. 1d).
The aggregation process of nanoclusters in turn reduces their dis-
tances and enhances the local electric field, forming a positive feed-
back mechanism. As a result, the randomly distributed Ag clusters
eventually self-organize into a conductive filament connecting the
two terminals, as shown in Fig. 1d and also verified by atomic force
microscopy (AFM) analysis (see Supplementary Fig. 3). A significant
increase of current is observed simultaneously (Supplementary Fig. 4,
Supporting Information), suggesting that an electrical connection is
established between the two terminals.

The physically evolving process is further studied using kinetic
Monte Carlo (MC) simulations (see Experimental Section and Sup-
plementary Fig. 5), as shown in Fig. 1e (upper panels), along with
corresponding electric field distribution (bottom panels). Initiating
from the original state with randomly distributed Ag clusters
(Fig. 1e1), the most visible evolution of Ag clusters occurs at places
with the highest electric field intensity due to the field-assisted ion
transport35. The conductive filament growth mainly proceeds along
the shortest path between the terminals, in agreement with experi-
mental results (Fig. 1d). The morphology of conductive filament can
be tuned by the compliance current31 (Supplementary Fig. 6), and
pinched hysteresis loops were observed during I–V measurements
and verified the memristive effect36–41 of the two-terminal MAEN
devices (Supplementary Figs. 7–9). The threshold switching char-
acteristics indicate the device spontaneously relaxed back to the off
state after removing the voltage bias, which is exactly due to the
filament dissolution facilitated by interfacial energy minimization
between Ag nanoclusters and dielectrics42,43. The MAEN system with
nonlinear dynamics and fading memory property holds potential in
efficient implementation of neuromorphic computational tasks,
such as reservoir computing20,21,24. Systematic studies on a large
number of two-terminal MAEN devices reveal that the evolution
kinetics can be regulated by device configurations and stimulus
parameters, i.e., the hopping of Ag+ ions is a thermally activated
process44 and the activation energy U’ during ion transport will be
lowered by a term linearly dependent on the electric field to the first
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order35, i.e., U’ =U −αE. The forming time of filament t is thus deter-
mined by:

t =
1
f
� eU 0=kBT =

1
f
� eU=kBT � e�αV=kBTd ð1Þ

where f is the attempt frequency, kB is the Boltzmann’s constant, and T
is the absolute temperature. Figure 1f shows that the experimental data
obtained from multiple devices with different gap distances and
applied voltage biases can be fitted into a curved surface corre-
sponding to Eq. (1). The forming time t decreases exponentially with

applied voltage bias V and increases with gap distance d, which indi-
cates that the electric field (E =V/d) driven Ag cation transport is the
rate-limiting process.

Notably, the self-organized evolution of Ag nanoclusters with
positive feedback is inherently analogous to the foraging process of
the ant colony. The initial random distribution of Ag nanoclusters
(Fig. 1c) corresponds to the unorganized states of ants in the early
foraging stage (Fig. 1a). Movable Ag+ ions under electric field and the
conductive filament(s) are analogous to the ants and the pheromones
released, respectively. The positive feedback of filament growth can
well map the feedback mechanism of pheromone release. While the
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Fig. 1 | Physical operation principle and construction of modulation units.
Schematic diagram of the ant distribution in a, the early foraging period and b, the
later foraging period. The originally randomly distributed ants finally converge to
the shortest path to transport food. SEM image of the two-terminal device with
~200nm gap (c), and after switching (d). V = 25V. Scale bar: 100nm. eMonte Carlo
simulation of the Agatom/cluster evolving (upper) and corresponding electric field
distributions (bottom). f Forming time as a function of gap distance and applied
voltage. g Graph structure composed of two nodes connected by two edges.
h Schematic diagram of device structure and mapping schemes corresponding to
(g). i SEM image (left) and initial electric field distribution (right) of distance
modulation unit. j Corresponding state after switching. Scale bar: 100nm. k Time-
dependent current measurement from T1 (blue) and T2 (orange). V = 10V. l SEM
image (left) and initial electric field distribution (right) of voltage modulation unit.

m Corresponding state after switching. Scale bar: 100nm. n Time-dependent
current measurement from T1 (blue) and T2 (orange). V = 30V. o–q SEM images of
connectivity pattern in a five-terminal device (V = 20V, V1 = 10 V, V2 = 25 V,
V3 = 15 V). Thedesigned gapdistanceof eachdevicewas 100, 200, 300, and 200 nm
from left to right, respectively. Scale bar: 500 nm. The insets show the magnified
filaments, scale bar: 100 nm. r–t Time-dependent current measurements corre-
sponding to o–q. CC: 50nA. The blue, orange, and yellow curves in s and t were
from V1, V2, and V3 electrodes, respectively. u SEM image of connectivity pattern in
a nine-terminal device (V1 = 10 V, V2 = 25V, V3 = 15 V). The designed gap distance
from left to right is 100, 200, 200, 300, 400, 500, 600, and 700nm, respectively.
Scale bar: 500 nm. The insets show the magnified filaments, scale bar: 100nm.
v Time-dependent current measurement from the V1 electrode (blue), V2 electrode
(orange), and V3 electrode (yellow) corresponding to u. CC: 10 nA.
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ants find the shortest path with the aid of pheromones (Fig. 1b), the Ag
nanoclusters spontaneously align into a filament along the path with
the shortest equivalent distance (Fig. 1d, e). The time complexity
needed for self-organization of Ag nanoclusters is only O(1).

Basic and hybrid modulation units
The Ag nanocluster-based MAEN device with two terminals can be
easily extended to multiterminal MAEN. Upon multiple input signals,
the positive feedback accelerates filament growth along the optimal
path through the cooperative interactions between Ag clusters on the
same connection path, while there exist competitive interactions
betweenAg clusters on different connectionpaths. Complex functions
that individual Ag nanoclusters do not possess can be realized by the
whole composed of individuals based on the collective self-organized
evolution of Ag clusters.

The MAEN devices with two and multiple terminals can be
abstracted into graphs in general. Figure 1g illustrates a simple graph,
where two edges with different weights (w1 and w2) are connected
between the nodes N1 and N2. The problem to be solved is to find the
edge with the smallest weight between N1 and N2. Here, the electrodes
of MAEN are used to represent the nodes of the graph. Since the
growth kinetics of conductive filament is regulated by electric field
intensity, both the gap distance and voltage bias can be used to
represent the weights of edges. Therefore, the distance modulation
unit and voltage modulation unit can be constructed as two basic
building blocks, as shown in Fig. 1h. For distance modulation unit (①,
Fig. 1h), the distances of gaps (e.g., d1 and d2) can be used to represent
edgeswith differentweights (e.g.,w1 andw2),while the applied voltage
to the gaps is kept identical (V1 =V2). For voltage modulation unit (②,
Fig. 1h), the applied voltage biases (e.g., V1 and V2) are used to repre-
sent edges with different weights, while the distance of gaps keeps
unchanged (d1 = d2).

We assume that the upper edge has a smaller weight than the
lower edge (w1 <w2) in Fig. 1g. The correspondingdistancemodulation
unit is thus shown in Fig. 1i, along with electric field distribution in the
initial state using kinetic Monte Carlo simulation. The electric field
intensity between terminals T1 and T3 is higher under the same voltage
bias (V1 =V2), due to the shorter gap distance compared with that
between T2 and T3 (d1 < d2). The originally small differencebetween the
gap distances is amplified by the field-driven alignment and nonlinear
interaction of the Ag clusters, and hence the initial growth of filament
further amplifies thedifference in gapdistance. Suchpositive feedback
ensures Ag clusters self-organize into a complete filament connecting
terminals T1 and T3, as verified in Fig. 1j, where a significant increase of
current from T1 is detected (t ≈ 8 s) and confirms the connection
(Fig. 1k). The same graph can be represented by a voltage modulation
unit as well (Fig. 1l). From the kinetic MC simulation, one can see that
higher applied voltage bias between T1 and T3 (V1 > V2) leads to
enhanced electric field therein. As expected, the filament alignment
initiates between T1 and T3 and proceeds due to the positive feedback
mechanism, once again leading to filament formation between T1 and
T3 (Fig. 1m, n). Both the two basic modulation units find the edge with
smaller weight, i.e., N1 $

w1 N2(Fig. 1g), showing their equivalence.
Detailed Ag cluster evolution processes of the two basic modulation
units shown by kinetic MC simulations were given in Supplementary
Figs. 10 and 11, where interchanging the terminals T1 and T2 in the unit
does not affect the results (Supplementary Fig. 12).

The distance and voltage modulation units as two fundamental
building blocks of MAEN system have their own advantages and dis-
advantages in terms of mapping and solution of the problems. For the
distance modulation unit, the graph information is directly mapped
with the device structure, which facilitates efficient solution of pro-
blems and saves overhead in electrode area, but leads to poor recon-
figurability since the weights are represented in hardware. On the
contrary, for the voltage modulation unit, the weights are represented

by the voltage biases applied to the electrode terminals, so that the
same device structure can be used to represent different graph pro-
blems, hence leading to higher reconfigurability. To meet the
requirements in different application scenarios, an optimal modula-
tion scheme can be designed to improve the efficiency and flexibility
for problem solution by tuning gap distance d and voltage bias V
separately or collectively based on the respective characteristics of the
two modulation units. Under the hybrid distance–voltage modulation
scheme, different input information can be directly integrated in the
MAEN, thus enhancing the computing efficiency. As an example,
multiterminal devices with the designed size of 100, 200, 300, and
200nm gaps (left to right) were fabricated to demonstrate hybrid
distance–voltage modulations (Fig. 1o–q and Supplementary Fig. 13a).
Thegapdistanceand applied voltagewill collapse into the electricfield
and jointly modulate the connectivity pattern. Figure 1o–q shows the
connectivity patterns of conductive filament under three different
voltage bias schemes, with corresponding I–t curves displayed in
Fig. 1r–t. Vth1, Vth2 and Vth3 were defined as the threshold voltages
corresponding to 100, 200, and 300 nm gaps for obvious current
increase within 1min, respectively. In response to external electrical
stimulations, Ag nanoclusters adaptively evolved to form different
connectivity patterns depending on the combined input schemes
(Fig. 1o–t), and the final connection path represents the optimal
decision after comprehensively considering the cost (distance) and
reward (voltage). The consistency of results is verified in multiple
devices (Supplementary Fig. 13b, c). The number of terminals in the
basic modulation unit can be flexibly extended. Figure 1u shows the
MAEN device with 9 terminals and hybrid distance–voltage modula-
tions, where the final connectivity pattern once again corresponds to
the optimal solution (Fig. 1u, v).

Integration and scaling schemes
To solve larger-scale problems, the fundamental units of the MAEN
have to be scalable. We further propose and demonstrate two inte-
gration schemes of the above basicmodulation units, namely a parallel
structure (Fig. 2a–c) and a serial structure (Fig. 2d–f). Figure 2a illus-
trates a graphwhere the edges betweenN1 andN2 exist in twodifferent
space dimensions, represented by two mutually perpendicular planes
(i.e., x =0, y =0), and each plane contains edges with different weights.
The shortest path between N1 and N2 can therefore be found by
searching the shortest path in the respective planes in parallel. Fig-
ure 2b shows two basic modulation units embodying a parallel inte-
gration structure, where the edge with the smallest weight (i.e.,
N1 $

1
N2, Fig. 2a) could be found after searching the two different

space dimensions, and Fig. 2c shows the corresponding time-
dependent measurement. In contrast, Fig. 2d illustrates a graph
structure where an intermediate node N3 exists between nodes N1 and
N2, with the edges and corresponding weightsmarked accordingly. To
find the pathwith the smallest weight betweennodesN1 andN2, a serial
structure is required. Figure 2e shows two basic modulation units
embodying a serial integration structure. In this case, overall two fila-
ments can be connected in series when a voltage biasV is applied toN1

and N2, with one filament between terminals T1 and T3 and the other
filament between terminals T4 and T6 (Fig. 2e, f). This thereby implies
the selection of two combined edges with overall weight of 2 in total
using the MAEN system, i.e., N1 $

1
N3$

1
N2 (Fig. 2d) and the reprodu-

cibility of the integration structures is verified experimentally (Sup-
plementary Fig. 14). The above results unambiguously demonstrated
the scaling-up potential of the MAEN system based on the parallelly
and serially integrated modulation units. Notably, the existences of a
limited set of standard modules (Fig. 1) and proper integration
schemes (Fig. 2) are highly desirable for applications.

It is worthwhile noting that the physiochemical processes
involved and the inhomogeneity of cluster distribution have intro-
duced intrinsic stochasticity into the Ag nanoclusters-based multi-
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agent evolutionary network45. Although it may result in certain spatial
and temporal variations between the connectivity patterns under the
same input conditions, the optimization principle is retained and the
results obtained constitute a set of optimal solutions (Supplementary
Figs. 15 and 16, Supporting Information). Such stochasticity plays an
important role in biological evolution, such as the increase of species
abundance caused by gene mutation46, and hence the coexisting
controllability and stochasticity of the MAEN system are desirable.

Theparallel and serial structures naturally increase the scale of the
MAEN, which can be applied to solution of graph problems. Since the
electrodes representing intermediate nodes are floating during
operations, they can be replaced byminiaturizedmetal islands so as to
further reduce the device size (see Experimental Section and Supple-
mentary Fig. 17 for fabrication process), where the sizes, locations, and
arrangements of the metal islands can affect graph representation. To
map the graph structure shown in Fig. 3a, an inert intermediate metal

island i1 (N3) wasplaced between terminalsT1 (N1) andT2 (N2), as shown
in Fig. 3b. Since i1 (N3) reduces the equivalent gap distance between T1
(N1) and T2 (N2), that is d1 + d2 < d3, the conductive filament prefers to
form byway of i1 rather thandirectly connecting T1 and T2. Indeed, this
is verified by the formation of a connectivity pattern in Fig. 3c, d,
corresponding to the selection of edges with the smallest weight in
total, i.e., N1 $

2
N3$

2
N2 (Fig. 3a). This can be extended to a more

complex graph structure in Fig. 3e containing three intermediate
nodes (N3, N4, and N5). Figure 3f shows the initial morphology of the
corresponding MAEN before electrical stimulation. When the voltage
bias V was applied between T1 (N1) and T2 (N2), Ag clusters aligning
along i2 (N4) and i3 (N5) won the competition, resulting in filament
formation between the T1 (N1) and T2 (N2) by way of i2 (N4) and i3 (N5)
(Fig. 3g, h), which is once again consistent with its total smallest weight
in the graph, i.e.,N1 $

1
N4 $

1
N5$

1
N2 (Fig. 3e). Themodulation effect of

metal islands was also supported by kinetic Monte Carlo simulations
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(Supplementary Fig. 18) and verified by consistent experimental
results (Supplementary Fig. 19). Supplementary Fig. 20 shows that the
same graph problems canbe resolvedwith opposite voltage bias given
the switching nature independent on bias polarity. In addition tometal
islands, electrode terminals, such as terminal positions (Supplemen-
tary Fig. 21), can also be used to improve the flexibility of problem
mapping. The parallel and serial structures can also be extended to
multiterminal integrated MAEN for the solution of more intricate
problems. Figure 3i shows an exemplary graphwith four terminals and
three intermediate nodes, where the driving voltage V was applied to
T4 and the other electrodes (T1, T2, T3) were grounded. The Ag
nanoclusters align into a filament by way of i2 and once again find the
shortest path between T3 and T4 (Fig. 3j, k). It is worthwhile noting that
reusable and reconfigurable computing units are desirable, and thus
the computational costs can be effectively saved. As a proof of con-
cept, our experiments have demonstrated the reusability (Supple-
mentary Fig. 22) and reconfigurability (Supplementary Figs. 23 and 24)
of the MAEN system for the solution of problems, and the detailed
discussions can be seen in the Supplementary Information. Here, the
tip of electrode terminals is always sharp to concentrate the electric
field, while the metal islands are always circular to achieve uniform
regulationon the surrounding electricfield in all directions. In order to
demonstrate the potential of system generality, the sharp tip of elec-
trode terminals can be replaced by a more rounded shape to share a

similar geometry with the circular metal islands, and the same con-
nectivity patterns can be achieved independent of the electrode geo-
metry, indicating more generalized application (see more detailed
discussions in Supplementary Fig. 25, Supporting Information).

Physical gradient descent in artificial potential field
In fact, the above optimization process based on self-organized evolu-
tion of Ag nanoclusters embodies the idea of gradient descent, which is
equivalent to constructing a potential distribution functionP(x, y) in the
corresponding space when the voltage biases are applied to the term-
inals. In this case, Ag nanoclusters are expected to move toward the
direction where the potential drops the fastest and gradually approach
the destination terminal with the lowest potential, where the optimi-
zation path is indicated by the connectivity pattern formed. Compared
with traditional gradient descent algorithms with a single agent per-
forming iterative optimization in the solution space, the present MAEN
allows distributed nanocluster agents to physically explore the space
with high parallelism, therefore dramatically improving the computing
efficiency. In addition, the evolution of Ag nanoclusters in turn changes
the potential distribution, i.e., P(x, y, 0) → P(x, y, t), forming a feedback
mechanism that affects subsequentAg cluster dynamics. Such feedback
provides inherent driving force for persistent evolution of Ag
nanoclusters before the emergence of stable connectivity patterns and
also accelerates the overall optimization process.
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Fig. 3 | Application of integrated MAENs in the solution of graph problems.
a Schematic illustration of a graph structure with one intermediate node N3

between the nodes N1 and N2. b SEM image of the device mapping with the graph
structure in a. The terminals T1, T2, and metal island i1 are used to represent the
nodes N1, N2, and N3, respectively. The gap distance mapped with the weight of
corresponding edges (d1↔ 2, d2↔ 2, d3↔ 5). Scale bar: 200 nm. c SEM image of the
device in b after memristive switching. Ag clusters self-organize into a conductive
filament connecting the terminals T1 and T2 by way of the metal island i1 under the
applied voltage bias V (25 V). Scale bar: 200 nm. d I–t curve corresponding to the
experiment in c. e Schematic illustration of a graph structure with three inter-
mediate nodes N3, N4, and N5 between the nodes N1 and N2. f SEM image of the
device mapping with the graph structure in e. The terminals T1, T2 are used to

represent the nodes N1, N2, and the metal islands i1, i2, i3 are used to represent the
intermediate nodes N3, N4 and N5, respectively. The gap distance mapped with the
weight of corresponding edges (d1↔ 2, d2↔ 2, d3↔ 5, d4-8↔ 1). Scale bar: 200 nm.
g SEM image of the device in f aftermemristive switching. The conductive filament
is formedbetween the terminalsT1 andT2 bywayof themetal islands i2 and i3 under
the applied voltage bias V (20 V). Scale bar: 200 nm. h I–t curve corresponding to
the experiment ing. i SEM imageof the devicewith four terminals (T1,T2,T3, andT4)
and threemetal islands (i1, i2, and i3). Scale bar: 200 nm. j SEM image of the device in
i after electrical stimulation. The conductive filament establishes the connection
between T3 and T4 by way of i2. The applied voltage V was 15 V. Scale bar: 200 nm.
k I–t curves of terminals T1 (blue color), T2 (orange color), and T3 (yellow color)
correspond to the experiment in j.
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To testify this idea, we have employed MAEN to construct the
artificial field based on gradient descent which is frequently used in
classic robot path planning47. The complexity of the problem arises
from the fact that the artificial potential field usually contains both
attractive and repulsive components. The targets and obstacles can be
regarded as objects that have attractive and repulsive forces to the
agents, and the goal is to guide the agents to avoid obstacles in the
potential field with superimposed attractive and repulsive fields and
move to the target corresponding to the lowest potential. To imple-
ment this in theMAEN, the voltage bias was firstly applied to construct
the attractive field, and metal islands are incorporated to effectively
modulate the attractive field besides serving as the intermediate
nodes. Since the electric field intensity inside the metal islands is
approximately zero, it is equivalent to enhancing the electric field
intensity around the intermediate nodes, and hence the metal islands
can be regarded as immobile attractors for the Ag+ ions, therefore
imposing additional attractive field components inside the MAEN. To
incorporate repulsive components, ionmobility provides anadditional
dimension as another considerable kinetic factor regulating the
dynamics of Ag nanoclusters in addition to the electric field. As a proof
of concept, repulsive centers can be implemented by etching and
removing the PEO electrolyte and hence exposing the SiO2 underneath
(see Experimental Section and Supplementary Fig. 26). The Ag+ ion
mobility of SiO2 is lower than that of self-assembled PEO, but with
similar relative permittivity (εr)

48, hence the etched region can be
regarded as repulsive centers to represent the obstacles. Given the

joint regulations of electric field (E) and ion mobility (μ), an artificial
potential field with varied ion velocity (v =μE) can be formed in the
MAEN space, as schematically illustrated in Fig. 4a, where the Ag
nanoclusters are expected to move towards the direction with max-
imum ion velocity following the gradient descent principle (Fig. 4b).

Figure 4c shows an artificial potential field with an obstacle o1
existing in the path by way of attractor i1 (T 1 $

d1 i1$
d2 T2), forming a

superimposed space of ion velocity. Experimental results in Fig. 4d, e
clearly demonstrate that the Ag nanoclusters spontaneously align into
a conductive filament connecting the T1 and i1, followed by extension
along the shortest path toward T2. Notably, the Ag nanoclusters
adaptively adjust the route and avoid the obstacle o1 in the con-
nectivity pattern. The experimental results are consistent with kinetic
Monte Carlo simulations and once again demonstrates the successful
solution of the optimization problem using the constructed artificial
potential field (Supplementary Fig. 27). Based on the device structure
in Fig. 4c, an additional attractor i2 was incorporated (Fig. 4f), so that
there exist two shortest paths (T 1 $

d1 i1$
d2 T2, T 1 $

d5 i2$
d6 T2) while an

obstacle o1 only existed on the upper path (T 1 $
d1 i1$

d2 T2). When the
voltage bias was applied to the MAEN, the Ag nanoclusters were
inclined to align through the path without obstacles by way of i2 (i.e.,
T 1 $

d5 i2$
d6 T2), as shown in Fig. 4g, h. Since the electric field and ion

mobility jointly determine the distribution of artificial potential field,
the positions of attractors and obstacles will affect the final con-
nectivity pattern of conductive filaments in general by regulating the
artificial potential field with varied ion velocity (v = μE). However, the
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inglymarked with the solid line. Scale bar: 200 nm. g SEM image of the connection
path in (f) under the voltage bias V. The filament establishes the connection
between terminals along the shortest path marked with the solid line in (f). The
applied voltage bias V was 35 V. Scale bar: 200 nm. h Time-dependent current
measurement corresponding to the experiment in (g).
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solution result will not be affected in the case of symmetric potential
field distribution, as shown in Supplementary Fig. 28. Experimental
results shown in Supplementary Fig. 29 have verified the highly reliable
property of the MAEN in the physical gradient descent, where the Ag
nanoclusters as the agents cooperate and compete with each other
based on the positive feedback. This once again demonstrates the
adaptability of the MAEN and the successful solution of the optimi-
zation problem in the proposed artificial potential field.

It is worthwhile noting that the solution result represented by the
connectivity pattern of the filament was mainly obtained by SEM
observations, and the time-dependent current measurement was used
as an auxiliary readoutmethod, since the detailed connectivity pattern
maynot be completely reflected through the limitednumberofprobes
in the testing probe stations. The reusability and reconfigurability of
the MAEN system, as discussed above, can effectively save the over-
head caused by the device fabrication for solving different problems,
and a dedicated circuit platform including reading and writing per-
iphery (Supplementary Fig. 30) can be developed to probe the MAEN
result. In this case, both the gap distance and compliance current can
be further reduced, which will also contribute to the reduction of the
solution time and therefore further enhancing the computational
efficiency. The optimizations in gap distance, compliance current and
ion transport properties etc. are expected to be capable of dramati-
cally reducing the power consumption of the MAEN devices. Together
with the physics-empowered parallel computing nature of the MAEN
system, it implies high potential for enhanced energy efficiency (see
more detailed discussion in Supplementary Note 1).

Discussion
In conclusion, we have experimentally constructed and demonstrated
a multi-agent evolutionary network in the form of nanoscale, solid-
state, multiterminal device based on the self-organized evolution of
distributed Ag nanoclusters under an electric field. The emergence
behavior and connectivity of the nanoclusters as distributed agents
can be adaptively modulated and effectively controlled for solving
graph and optimization problems with high parallelism. Basic mod-
ulation units, including distance modulation and voltage modulation,
were demonstrated, along with a hybrid mode for joint modulation. In
addition, both parallel and serial integrations of the basic units are
experimentally demonstrated, implying scaling potential of the MAEN
toward large-scale systems. The integrated MAEN has been success-
fully applied to the solutionof two- andmultiterminal graph problems.
An artificial potential field superimposed by both attractive and
repulsive components with varied ion velocity is constructed, showing
self-adaptive route planning ability with obstacle avoidance based on
gradient descent of theMAEN structure. The devices in this work were
constructed to demonstrate the principles of MAEN system based on
the self-organized evolution of Ag nanoclusters. In order to meet the
demands of practical applications, the reusability, reconfigurability
and energy efficiency of theMAEN system should be further improved.
Taking full advantageof the coexisting controllability and stochasticity
in swarm intelligence, the massively parallel, self-adaptive and high-
throughput information processing in our MAEN system provides an
encouraging pathway toward energy-efficient computing hardware.

Methods
Device fabrication
The devices were fabricated on the silicon substrate with 300 nm thick
thermally grown silicon dioxide. The substrates were initially cleaned
using acetone and isopropanol successively for 15min ultrasonication.
Then, Ti (1 nm) and Au (40 nm) as the electrodes or metal islands were
patterned on the substrate by electron beam lithography using PMMA
as the resist, followed by electron beamevaporation and lift-off. Toget
the polymer thin film, Polyethylene oxide (PEO) with a molecular
weight of 100,000 gmol−1, was initiallydissolved in acetonitrile solvent

by 5wt‰ for 1 h ultrasound at room temperature to acquire homo-
geneous solution. Then, the solution was dropped and spin-coated on
the surface of devices. The solvent evaporated during the high-speed
spin-coating process, and finally the solid polymer thin film (~25 nm)
was formed. Finally, discrete Ag nanoclusterswere partly incorporated
into the PEO by electron beam evaporation with a thickness of 3 nm
below the filming condition. The polymer electrolytematerial PEOwas
etched to expose the SiO2 layer area as the obstacle generating
repulsive field by using dual-beam focused ion beam system (FIB
Helios G4 UX).

Device characterization
All the electrical measurements were carried out at atmospheric
pressure and ambient temperature using an Agilent B1500A semi-
conductor parameter analyzer in a probe station. The constant voltage
biases were applied to the terminals to monitor time-dependent cur-
rent curves, while the DC I–V sweep was carried out by applying the
uniformly varying voltage bias. The SEM imaging of the devices was
performed before and after network evolutions by Helios NanoLab
600i at 5 KV, while the topography of the Ag nanoclusters and fila-
ments was characterized by the PeakForce tapping mode of AFM
(Bruker Dimension Icon). The AFM data were analyzed by the Nano-
Scope Analysis 1.4 software (Bruker).

Simulation
The simulationwasperformedusing theMatlab softwarewith a kinetic
Monte Carlo (MC) method. During the simulation, three physical
processes were considered: (1) Ag ionization from the clusters, (2)
ionic transport in the electrolyte, and (3) the reduction of Ag+ ions. The
current and electric field distribution were obtained based on a resis-
tance network model by solving Kirchhoff’s equations. The evolution
of metal atoms distribution, current and electric field with time were
iteratively simulated and updated. More details and parameters about
the simulation can be found in Supplementary Fig. 5 (Supporting
Information).

Data availability
All data supporting this study and its findings are available within the
article, its Supplementary Information and associated files. The source
data underlying Figs. 1f, k, n, r–t, v, 2c, f, 3d, h, k, 4e, h have been
deposited at https://zenodo.org/record/6641560#.YqhPdNpBzb0 or
are available from the corresponding author upon reasonable request.

Code availability
The codes used for the simulations are described in https://github.
com/liyingxu001/MC-simulation-codes or are available from the cor-
responding author upon reasonable request.
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