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Abstract

Introduction: A vaccine for malaria is urgently required but no vaccine has yet

shown satisfactory protective efficacy especially for Plasmodium falciparum.

P. falciparum infection can progress to cerebral malaria (CM), a neurological

syndrome with exceedingly high mortality. Designing effective P. falciparum vac-

cines require more understanding of the protective immune response while the

host immune response to CM and the mechanisms are still elusive. Here, we aim to

identify host gene responses to CM and host gene networks associated with CM

pathogenesis.

Methods: An innovative genomic analysis strategy, the weighted gene co-

expression network analysis (WGCNA) combined with differential gene

expression analysis, was used in this study. Data for analysis contain 93

whole blood samples, derived from two previous public transcriptome

datasets.

Results: This approach led to the identification of numerous differentially

expressed human transcripts and dozens of coexpression gene modules.

We further identified nine key genes, including MBP, SAMSN1, PSMF1,

SLC39A8, EIF3B, SMPDL3A, FABP5, SPSB3, and SHARPIN, of which the

last four genes were first identified to be related to CM in the present

study.

Conclusion: The results provided a comprehensive characterization of host

gene expression profiles in CM and offered some new insight into malaria

vaccine design. These identified key genes could be potential targets or im-

mune modulators for novel therapeutic interventions of CM.
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1 | INTRODUCTION

Malaria is a devastating parasitic disease, leading to hun-
dreds of thousands of pediatric deaths annually in sub‐
Saharan Africa. The most common complication of malaria
is severe malarial anemia (SMA) whereas the most severe is
cerebral malaria (CM). CM is the major contributor to
morbidity and mortality in the acute phase of severe malaria
and the overall mortality rate for CM in children is
15%–25%.1 CM often has a poor prognosis and can lead to
debilitating neurological impairments, epilepsy, blindness,
deafness, or other irreversible sequelae, which may have an
unclear effect on child development.2 Despite the consider-
able disease burden, the predictive diagnostics or treatments
after onset are limited. Furthermore, the molecular bases
and cellular processes resulting in this severe disease remain
elusive.

The pathogenesis of CM is multifactorial and compli-
cated. The pathologic hallmark of CM is the infected ery-
throcytes by Plasmodium falciparum in brain
microvasculature, as shown in postmortem studies.3 So far,
different studies have shown that the increased production
of proinflammatory cytokines and chemokines plays an
important role in CM development.4 Host immune re-
sponses in CM can lead to either protective or harmful
outcomes.5 Seeking and a better understanding of those host
genes/pathways in CM pathology will be useful in vaccine
design. CM also has an effect on the expression of genes
related to erythropoiesis and erythrocyte functions.6 How-
ever, the identification of host genes associated with CM
pathology is still rudimentary and not fully investigated.
Previous studies mostly tend to determine CM associated key
gene through whether the gene is dramatically differentially
expressed in CM (absolute value of the expression fold
change [FC] higher than 1.5 or 2), but neglect the “fluc-
tuation” of gene expression in disease development (from
simple P. falciparum asymptomatic infection stage to CM
status). For a gene, if its expression between different malaria
phenotypes (from early stage to severe CM) shows an ob-
vious correlation pattern, positive correlated or negative
correlated, we may have reason to assume the potential
importance of this gene in malaria pathogenesis. And if this
gene is also differentially expressed in CM even with a re-
latively lower FC, it is very likely to play a vital role in CM
pathogenesis and pathology.

Here, we applied a new genomic analysis strategy,
weighted gene coexpression network analysis (WGCNA)
combined with differential gene expression analysis. Raw
data used in the present study were derived from two re-
cently published malaria microarray datasets.7,8 By utilizing
this novel analysis strategy, we found numerous human
transcripts related to CM pathogenesis and further identified
nine key differentially expressed genes (DEGs). WGCNA is a

systems biology method for describing the correlation pat-
terns among genes and relating these gene sets (modules) to
sample traits.9 Genes identified by WGCNA were more
likely to be of functional importance. The nine identified
genes showed strong associations with malaria phenotype/
severity and also differentially expressed in CM versus
healthy controls, this could be new biomarkers for the early
diagnosis of CM as well as for the evaluation of effective
therapeutic approaches in vivo in the future.

2 | METHODS

2.1 | Clinical information of raw data

Raw data for reanalysis comprising two array datasets
(GSE1124 and GSE117613) were obtained from the Gene
Expression Omnibus (GEO) database.7,8 GSE1124 used two
Affymetrix platforms, GPL96 and GPL97, which comple-
ment each other. GSE117613 used one Illumina platform
GPL10558. Raw data were normalized via the robust mul-
tiarray average method. The GPL96 platform of the GSE1124
dataset includes 25 whole blood samples (healthy controls,
n=5; asymptomatic infection, n=5; uncomplicated
malaria, n=5; SMA, n=5; CM, n=5). The GPL97 platform
of the GSE1124 dataset includes 22 whole blood samples
(healthy controls, n=5; asymptomatic infection, n=3; un-
complicated malaria, n=5; SMA, n=5; CM, n=4).
GSE117613 includes 46 whole blood samples (healthy con-
trols, n=12; SMA, n=17; CM, n=17). Overall, these da-
tasets contain 93 whole blood samples. Clinical traits of
samples were detailedly shown in Table S1.

2.1.1 | WGCNA and DEGs screening

For each array platform, we calculated the median absolute
deviation and selected the top 5000 most variant genes to
generate a weighted coexpression network. WGCNA was
performed using “WGCNA” package9 in R (version 3.5.1).
The weighted network analysis began with a matrix of the
Pearson correlations between all gene pairs, then converts
the correlation matrix into an adjacency matrix using a
power function, so that results in an adjacency matrix—that
is, the weighted coexpression network—is approximately
scale‐free. The soft thresholding power (β) of the power
function was determined based on the criterion of approx-
imate scale‐free topology. Technically, the selected β value is
the lowest power for which the scale‐free topology fit index
reaches .90 (Figure S1). The minimal module size was set as
30. To define gene coexpression modules in the dataset, the
adjacency matrix was used to calculate the topological
overlap matrix (TOM), which shows the degree of overlap in
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shared neighbors between pairs of genes in the network.
1‐TOM was used as the dissimilarity measure for hier-
archical clustering and module detection. Modules of clus-
tered genes were then selected using the dynamic tree cut
algorithm within WGCNA. To identify modules that are
significantly associated with the measured clinical traits,
expression profiles of each module were summarized by the
module eigengene and the Pearson correlation between the
module and the trait was calculated. The associations of
individual genes with the malaria severity were quantified by
gene significance (GS) value. The positive GS value re-
presents a positive correlation with the malaria severity and
vice versa. The R/Bioconductor (version 3.5.1) package
“Limma” was used to screen DEGs. Limma was performed
between CM and healthy controls respectively in the two
datasets. Genes with a false discovery rate (FDR) of below
0.05 and an absolute FC higher than 1.5 or were considered

differentially expressed. Limma results of the two datasets
were merged in the end.

2.2 | Key gene identification

Key genes were identified through the integration of
WGCNA and Limma results. Since the GSE1124 da-
taset contains two complementary platforms, the
analysis results of GSE1124 were the union of the two
platforms but not the intersection of them. The results
of GSE1124 and GSE117613 were then merged to
obtain the overlapped genes. We then obtained key
genes by further integrating the merged WGCNA re-
sults and the merged Limma results. An illustrative
flowchart of the data analysis procedure was illu-
strated in Figure S2.

FIGURE 1 Gene coexpression modules related to cerebral malaria. Pearson correlation between modules and sample traits (malaria
severity) in different platforms. Each row corresponds to a module identified on the left side by its color. The column corresponds to
the trait (malaria severity). Numbers in cells report the correlations with the p values printed below the correlations in parentheses. Red is
positively correlated and blue is negatively correlated
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2.3 | Statistics

Statistical analyses were performed using R software
version 3.5.1. Pearson correlations between gene mod-
ules and malaria phenotype/severity were calculated
within the WGCNA package in R. The FDR was de-
termined by Benjamini–Hochberg method in the Limma
package in R.

3 | RESULTS

3.1 | WGCNA identified gene
coexpression modules associated with
malaria severity

To identify coexpression modules related to malaria se-
verity, we conducted WGCNA. Raw data used for
WGCNA were obtained from the GEO database and
consist of three platforms with 93 whole blood samples in
total. For the GPL96 platform, WGCNA constructed 16
coexpression modules ranging in size from 47 to 1825
transcripts. Nine modules were found to be significantly
correlated with malaria severity (Figure 1A). For the
GPL97 platform, WGCNA clustered 32 modules, each
comprising between 50 and 735 probes. Ten modules
were highly related to malaria severity (Figure 1A). After
integrating WGCNA results from the two platforms in
the GSE1124 dataset, we obtained 6673 genes in all. Of
the total, 3858 of the 6673 genes were positively corre-
lated with malaria severity, the rest 2815 genes showed
negative correlations. For the GPL10558 platform in the
GSE117613 dataset, WGCNA yielded 15 modules, each
containing 5–1173 transcripts. Three modules containing
1915 genes were significantly positively (963 genes) or
negatively (952 genes) correlated with malaria severity

(Figure 1). To visualize the weighted network more di-
rectly, we plotted heatmaps of the TOM among all genes
in the analysis in each platform (Figure S3). The pro-
gressively darker red color represents higher overlap and
higher correlation intensity. The WGCNA results of
GSE1124 and GSE117613 were then merged together and
147 genes in total were found (Figure 3A and Table S2).

3.2 | Limma analysis identified DEGs
in CM

To identify DEGs between CM and control, we applied
the Limma approach. The cutoff criteria were set as
FDR< 0.05 and FC≥ 1.5. The Limma method identified
1583, 210, and 735 DEGs in the GPL96, GPL97, and
GPL10558 platforms for CM versus control, respectively
(Figure 2A–C). After combining the GPL96 and GPL97
platforms, 1579 DEGs with 844 upregulated and 915
downregulated were found in the GSE1124 dataset.
Among all these identified DEGs, 227 were found shared
between GSE1124 and GSE117613, including 95 upre-
gulated and 132 downregulated DEGs (Figure 3B and
Table S3).

3.3 | Key gene identification

To identify key genes associated with CM, we integrated
WGCNA and Limma results. Nine common genes were
found shared between WGCNA and Limma (Figure 3C
and Table 1). Within the nine genes, five genes (MBP,
SAMSN1, PSMF1, SLC39A8, and EIF3B) were previously
found to be involved in malaria,10–14 and the remaining
four genes (SMPDL3A, FABP5, SPSB3, and SHARPIN)
were identified for the first time in the current study.

FIGURE 2 Venn diagram of the analysis results. (A) The Venn diagram depicts the number of genes identified by weighted gene
coexpression network analysis (WGCNA) in the two datasets. (B) Venn diagrams show the upregulated and downregulated genes identified
by Limma in the two datasets. (C) The Venn diagram depicts the integrated results, which is the overlap between WGCNA and Limma
results. CM, cerebral malaria
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SAMSN1, SLC39A8, SMPDL3A, and FABP5 were posi-
tively correlated with malaria phenotype/severity and
showed an upregulation in the CM group compared with
healthy controls, while MBP, SPSB3, PSMF1, SHARPIN,
EIF3B were negatively correlated with malaria severity
and downregulated in the DEG (Figure 3C and Table 1).
The nine key genes have different GS and FC values in
the two datasets. In the GSE1124 dataset, the most
downregulated was MBP at 0.2‐fold and the most upre-
gulated gene was SMPDL3A at 3.9‐fold, while the most
relevant genes with CM were SAMSN1 (positive corre-
lation, GS = 0.79019052) and EIF3B (negative correla-
tion, GS =−0.74050498). In the GSE117613 dataset, the
most DEGs were SHARPIN (log2FC =−0.968490676)
and SAMSN1 (log2FC= 1.492716272), and the most
relevant genes were SLC39A8 (positive correlation,
GS = 0.330973954) and SPSB3 (negative correlation,
GS =−0.395300297). Figure 4 shows the relative ex-
pression levels of the nine key genes between CM and
healthy control samples in the two datasets.

4 | DISCUSSION

CM is the most lethal complication among all malaria
syndromes. In the present study, we used WGCNA
combined DEG analysis to identify key genes in CM.
WGCNA is a useful approach to link clustered genes to
phenotypic traits. However, not all of those genes iden-
tified by WGCNA were differentially expressed between
CM and controls. Therefore, we further applied DEG

analysis (Limma method) to improve WGCNA results. In
total, we detected 227 genes that were both differentially
regulated in CM and associated with disease severity.
Nine key genes (MBP, SAMSN1, PSMF1, SLC39A8,
EIF3B, SMPDL3A, FABP5, SPSB3, and SHARPIN) were
further identified from the analysis results.

Among nine key genes, four genes (SAMSN1,
SLC39A8, SMPDL3A, and FABP5) were positively cor-
related with malaria severity and upregulated in CM.
SAMSN1 and SLC39A8 were previously found upregu-
lated in malaria.10,12 SAMSN1, also known as HACS1, is
mainly expressed in hematopoietic and endothelial cells,
usually acts as an immunoinhibitory factor and mod-
ulates B‐cell activation and differentiation.15 B‐cell has
been traditionally considered an antibody‐producing cell
and plays an important role in the regulation of immune
response. In malaria, plenty of parasitic antigens are
expressed in each stage of the parasite life cycle.16 The
parasite exposure results in B‐cell activation and differ-
entiation into Plasmodium‐specific memory B‐cell.17 To
escape the host humoral responses, Plasmodium para-
sites can disturb the function of B‐cell.18 Thus, the in-
creased SAMSN1 is possibly due to the activation of
B‐cell in malaria infection. Another key gene, SLC39A8,
has been reported associated with malaria suscept-
ibility.10 SLC39A8 encodes a zinc transporter protein
ZIP8. Previous studies showed that ZIP8 was markedly
upregulated upon T‐cell activation, especially in the
presence of low concentrations of zinc.19 In fact, the
activation of T‐cell, particularly CD4 + T cell subset, is
the common immune process during malaria infection

FIGURE 3 Volcano plot of differentially expressed genes (DEGs) in three platforms. The X‐axis represents log2FC and the Y‐axis
indicates the negative log10FDR. Each dot (circle) represents one probe that had a detectable expression in both groups. Red dots represent
probes that are significantly expressed in cerebral malaria compared with healthy control. FC, fold change; FDR, false discovery rate
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and may affect the effectiveness of humoral responses.
The elevated expression of SLC39A8 probably reflected
T‐cell activation in CM. The identified key gene
SMPDL3A was the most significant DEG in the GSE1124
dataset among the nine key genes. SMPDL3A is a re-
cently identified phosphodiesterase and ubiquitously
expressed in the human body.20 SMPDL3A is one of
three enzymes of the sphingomyelinase (SMase) family,
the remaining two of which are SMPDL3B and SMPD1.
Enhanced eryptosis has been observed in malaria.21 In-
terestingly, it has been reported recently that some
compounds, such as amitriptyline and flufenamic acid,
could suppress eryptosis by inhibiting sphingomyeli-
nase.22 Therefore, the increased SMPDL3A was possibly
an indicator of eryptosis in malaria.

Conversely, the other five key genes (MBP, SPSB3,
PSMF1, SHARPIN, and EIF3B) were negatively corre-
lated with malaria severity and decreased in CM. The
downregulation of MBP in CM has also been found in
recent research.11 MBP is a multifunctional protein
mainly expressed in the brain and thyroid. Actually,
MBP is a major constituent of the myelin sheath of
oligodendrocytes and Schwann cells. Axonal and
myelin damage were commonly present in CM pa-
tients.23 Studies in the CM mouse model have also
shown that the level of MBP declines by approximately
80% in contrast to the control.11 SPSB3 was a newly
identified gene involved in CM pathology in the pre-
sent study. SPSB3 is a SOCS box protein belonging to
the sp1A/ryanodine receptor (SPRY) family, which has
been found to be involved in stress response and cy-
tokine signaling.24 More recently, studies have shown
SPSB3 could be served as a novel E3 ubiquitin ligase.25

Interestingly, the inhibition of ubiquitin E3 ligase has
been found to have antimalarial effects.26 Hence, we
speculated that the reduction of SPSB3 could be a
compensatory process during the development of CM.
Besides, the other identified key gene, PSMF1 and
EIF3B, have also been reported associated with malaria
in previous studies.13,14

The present study was based on a public dataset de-
rived from a previous study.7,8 The raw data were avail-
able at the GEO database. There were also important
limitations to this study. First, despite the strong asso-
ciations between the identified genes and disease sever-
ity, we could not confirm the causality. Second, although
the raw data used in this study were comprised of large
numbers of samples, we lacked enough resources to va-
lidate our findings. Notwithstanding the limitations, the
present results demonstrated that CM has different blood
transcriptional signatures in contrast to uncomplicated
malaria and SMA. The results offer valuable insights into
the potential molecular bases in CM.T
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