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Abstract

Background: Aberrant DNA methylation plays important roles in carcinogenesis. However, the functional significance of
genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis currently remain unclear.

Principal Findings: Based on genome-wide methylation data for five cancer types, we showed that genes with promoter
hypermethylation were highly consistent in function across different cancer types, and so were genes with promoter
hypomethylation. Functions related to ‘‘developmental processes’’ and ‘‘regulation of biology processes’’ were significantly
enriched with hypermethylated genes but were depleted of hypomethylated genes. In contrast, functions related to ‘‘cell
killing’’ and ‘‘response to stimulus’’, including immune and inflammatory response, were associated with an enrichment of
hypomethylated genes and depletion of hypermethylated genes. We also observed that some families of cytokines secreted
by immune cells, such as IL10 family cytokines and chemokines, tended to be hypomethylated in various cancer types.
These results provide new hints for understanding the distinct functional roles of genome-wide hypermethylation and
hypomethylation of gene promoters in carcinogenesis.

Conclusions: Genes with promoter hypermethylation and hypomethylation are highly consistent in function across
different cancer types, respectively, but these two groups of genes tend to be enriched in different functions associated
with cancer. Especially, we speculate that hypomethylation of gene promoters may play roles in inducing immunity and
inflammation disorders in precancerous conditions, which may provide hints for improving epigenetic therapy and
immunotherapy of cancer.
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Introduction

DNA hypermethylation and hypomethylation play important

roles in the initiation, progression and metastasis of cancer [1,2]. It

is commonly believed that DNA hypermethylation and hypo-

methylation are independent processes governed by different

mechanisms, and they appear to play separate roles in tumor

progression [3,4]. Specifically, DNA hypermethylation in cancer

genomes usually occurs in the promoter regions of tumor

suppressor genes, which can result in silencing of tumor suppressor

genes [5]. In contrast, DNA hypomethylation often targets DNA

repeats, which may induce genomic instability and mutation

events in cancer genomes [6,7,8,9]. There is evidence that

promoter hypomethylation of some genes may be associated with

the development of cancer by regulating the activity of genes [10]

and that promoter hypomethylation of specific immunity-related

genes may promote carcinogenesis [11,12]. For example, the

promoter hypomethylation of cytokine IL-10 can activate its

expression to inhibit the generation of immune response in breast

cancer [11], and the promoter hypomethylation of SPAN-Xb, an

immunogenic antigen, can induce de novo B-cell response in

myeloma cells [12]. However, the biological significance of

promoter hypomethylation in cancer is still poorly understood

[13].

In this work, we explored the distinct roles of genes with

promoter hypermethylation and hypomethylation in cancer

(hereafter referred to as hypermethylated and hypomethylated

genes for simplicity) using the promoter methylation profiles of five

cancer types. First, we evaluated the consistency of functions

enriched with hypermethylated (or hypomethylated) genes across

different cancer types. Then, we identified hypermethylation-

specific (or hypomethylation-specific) functions significantly en-

riched with hypermethylated genes (or hypomethylated genes) and

significantly depleted of hypomethylated genes (or hypermethy-

lated genes). Finally, we discuss potential links between hypo-
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methylated genes in cancer and immune and inflammatory

response disorders in precancerous conditions.

Materials and Methods

Methylation Data
The promoter methylation datasets for five cancer types were

extracted from the Gene Expression Omnibus (GEO) and The

Cancer Genome Atlas (TCGA) database (http://tcga-data.nci.nih.

gov/tcga), as described in Table 1. For each dataset, the data were

derived from paired samples of tumor and adjacent normal tissues

from the same organ site, and the percentage of tumor cells in

each tumor sample of TCGA was higher than 70% [14]. Details

about the preparation of tissues can be found in the TCGA

document (http://rcb.cancer.gov/rcb-internet/appl/rfp/07013/

SOWAttachmentNo3-BCR-3-10.pdf). To avoid a potential batch

effect [15], we selected the batch with the largest sample size for

each cancer type for analysis. All data were collected with the

Illumina HumanMethylation27 platform, which detected the

methylation value of 27578 CpG loci located within the proximal

promoter regions of transcription start sites of 14495 genes.

We used level_1 data with methylated signal intensity (M) and

unmethylated signal intensity (U). The methylation level (beta-

value) for each CpG locus was calculated by max (M, 0)/

(|U|+|M|+100), and a constant of 100 was added to regularize

the beta value when both U and M values were small [16]. Then,

a beta value between 0 (unmethylated) and 1 (fully methylated)

was assigned to each CpG locus in each sample. For each dataset,

the detection P value reported by BeadStudio (Illumina) was used

as a quality control measure of probe performance. We excluded

samples that consisted of .5% probes with detection P values

.0.05 and probes that consisted of .10% samples with detection

P values .0.05. A total of 1092 CpG loci within promoters of 605

sex chromosome genes were also excluded from the analysis to

eliminate gender-specific bias.

Cytokine Data
The cytokine data were derived from the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway database (ko04052:

Cytokines) [17] downloaded on March 8, 2011. The data included

230 cytokines from 8 classes: Class I cytokines (hematopoietin

family), Class II cytokines (interferon/IL-10 family), PDGF family,

TNF family, IL-1 family, IL-17 family, TGF-beta family and

chemokines.

Selection of Differentially Methylated Genes
The non-parametric Mann-Whitney U test was applied to select

differentially methylated (DM) CpG loci around the promoter

regions of genes [18] by comparing the beta values of each CpG

locus between normal and cancer samples. The false discovery rate

(FDR) was controlled by the Benjamin and Hochberg procedure

[19]. If the promoter of a gene had both hypermethylated and

hypomethylated CpG loci, this gene was excluded from sub-

sequent analyses [20]. The genes with at least one DM CpG locus

were termed DM genes. By comparing the mean beta values of

DM CpG loci between normal and cancer samples, we classified

the DM genes into hypermethylated and hypomethylated genes.

Functional Enrichment and Consistency Analysis
Using the GO function algorithm [21] with an FDR ,0.05, we

selected GO terms (biological processes) [22] that were signifi-

cantly enriched with hypermethylated (or hypomethylated) genes

for each cancer type, and then treated the local redundancy. For

treatment of local redundancy, when both an ancestor and its

offspring term(s) were detected to be statistically significant, the

GO function extracted only the ancestor term as being relevant if

there was evidence that the remaining genes in the ancestor term

were still likely to be relevant to the disease after the removal of

genes in its significant offspring term(s), [21]; otherwise, only the

offspring term was kept.

If there were N significantly hypermethylated terms in dataset 1,

among which K1 terms were also identified as significantly

hypermethylated in dataset 2, the PO (percentage of overlaps)

score of the two term lists (from dataset 1 to dataset 2) was

calculated as K1/N. Then, we proposed a score, denoted as the

POE (percentage of overlaps extended) score, to evaluate the

consistency of these two lists of significant GO terms. For

a hypermethylated GO term extracted from dataset 1, if its raw

P value of enrichment with hypermethylated genes for dataset 2

was lower than 0.05, then it was defined to be tentatively

significant in dataset 2. If K2 of the N hypermethylated terms

extracted from dataset 1 were significant or tentatively significant

in dataset 2, the POE score of the two term lists (from dataset 1 to

dataset 2) was calculated as K2/N. Finally, we performed random

experiments to demonstrate that the observed POE score was

unlikely to be produced by chance. From dataset 2, we randomly

extracted genes as ‘‘hypermethylated genes’’, with the same

number of hypermethylated genes extracted from dataset 2, and

then performed the functional analysis and calculated the random

POE scores. This process was repeated 10,000 times, and the P

value of the observed score from dataset 1 to dataset 2 was

calculated as the percentage of the random scores exceeding the

observed score. The same analysis was performed for the

hypomethylated terms.

Results

Extensive Hypermethylation and Hypomethylation of
Gene Promoters in Cancers
We selected DM genes using the Mann-Whitney U test with an

FDR ,5%. As shown in Figure 1, approximately one third of all

the measured genes for each dataset were found to be differentially

Table 1. The methylation data analyzed in this study.

Cancer type Sample size (cancer vs. normal) Batch number Data sources

Colon adenocarcinoma 22:22 – GEO:Gse17648 [50]

Kidney renal clear cell carcinoma 50:50 64 TCGA

Stomach adenocarcinoma 47:47 48 TCGA

Lung adenocarcinoma 24:24 58 TCGA

Breast invasive carcinoma 20:20 93 TCGA

doi:10.1371/journal.pone.0044822.t001
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methylated. On average, 56% of the DM genes were hypomethy-

lated in the five cancer types (Figure 1).

Functional Consistency of Methylation Alterations Across
Different Cancer Types
For each dataset, with an FDR of 5%, the GO-function

algorithm [21] was used to identify GO terms that were

significantly enriched with hypermethylated genes, called hyper-

methylated terms. The hypermethylated terms extracted from

different datasets appeared to have low PO scores (Figure 2A). For

example, only 22 to 24 of the 43 hypermethylated terms extracted

from the dataset for kidney carcinoma could be found in the

datasets for the other cancer types, with PO scores of 51–55%.

However, even for the same cancer type, the significant

hypermethylated (or hypomethylated) terms extracted from

different datasets tended to have low PO scores due to the

inherent limitations of the statistical decision [21]. To address this

problem, we proposed the POE score to evaluate the functional

consistency of the hypermethylated terms extracted from different

datasets (see Materials and Methods). For example, 41 to 43 of the

43 hypermethylated terms extracted for kidney carcinoma had raw

enrichment P values less than 0.05 in all of the datasets for the

other cancer types, with POE scores of 95–100%. However, an

average of less than two of the terms extracted for kidney

carcinoma had an enrichment P value less than 0.05 in 10,000

randomized datasets for each of the other cancer types (see

Materials and Methods), which is significantly fewer than the

number observed in the original dataset (P,0.0001). These results

suggested that the re-occurrence in the other four cancer types was

not random for the majority of the hypermethylated terms for

kidney carcinoma. Similar results were observed for hypermethy-

lated terms extracted for the other four cancer types (Figure 2B).

Thus, hypermethylated genes for different cancer types are highly

consistent in their function.

With an FDR ,0.05, we identified 117 terms that were

consistently hypermethylated across the five cancer types. Each of

these terms was significant in at least one cancer type and

tentatively significant (P,0.05) in all of the other four cancer types,

which was unlikely to be observed by chance (binomial test,

P,6.25E–06). As shown in Table S1, these terms are mainly

related to ‘‘developmental process’’ (including ‘‘cell differentia-

tion’’ and ‘‘cell development’’), ‘‘transport’’ (including ‘‘calcium

ion transport’’ and ‘‘neurotransmitter transport’’), ‘‘response to

stimulus’’ (including ‘‘response to chemical stimulus’’ and

‘‘behavior’’) and the ‘‘regulation of biological process’’ (including

‘‘regulation of transcription, DNA-dependent’’ and ‘‘regulation of

signaling’’). Notably, when a term and one of its offspring terms

are both detected to be significant, researchers are often interested

in the specific offspring term, assuming that specific GO terms

might be more biologically relevant [21]. However, in some cases,

the general parent term could be globally disturbed. Taking the

term ‘‘cell differentiation’’ (GO:0030154) as an example, the genes

remaining after the removal of the genes in its four significant

offspring terms were still significantly enriched with hypermethy-

lated genes in the dataset for colon adenocarcinoma (hypergeo-

metric test, P=7.98e-005). This result suggested that ‘‘regulation

of cell differentiation’’ might be widely disturbed in this cancer.

Similarly, the lists of hypomethylated terms extracted for

different cancer types with an FDR of 5% had low percentages

of overlap (Figure 3A). For example, only 6 to 11 of the 21

hypomethylated terms extracted from the dataset for colon

adenocarcinoma were also found in the datasets for the other

cancer types, with PO scores of 28–52%. However, 19 of the 21

hypomethylated terms for colon adenocarcinoma had raw

enrichment P values less than 0.05 in all of the other four cancer

types, and the other two terms had raw enrichment P values less

than 0.05 in at least one of the other cancer types, all with POE

scores greater than 90%. In 10,000 randomized experiments for

each cancer type (see Materials and Methods), less than one of the

terms, on average, extracted for colon adenocarcinoma had

enrichment P values less than 0.05 in all of the other four cancer

types, which was significantly fewer than the corresponding

number observed in the original dataset (P,0.0001). Thus, most

of the hypomethylated terms for colon adenocarcinoma could be

non-randomly found in the datasets for the other four cancer

types. Similar results were observed for hypomethylated terms

extracted for the other four cancer types (Figure 3B). Therefore,

hypomethylated genes for different cancer types were also highly

consistent in their function.

Finally, we identified 41 terms that were consistently hypo-

methylated across the five different cancer types (Table S2). Each

of these terms was significant in at least one cancer type and

tentatively significant (P,0.05) in all of the other cancer types,

which was unlikely to be observed by chance (binomial test,

P,6.25E–06) (see Materials and Methods). These terms were

mainly related to ‘‘response to stimulus’’ (including ‘‘immune

response’’, ‘‘defense response’’ and its offspring terms ‘‘inflamma-

tory response’’, ‘‘cellular defense response’’ and ‘‘defense response

to bacterium’’), and epidermis development (including ‘‘keratino-

cyte differentiation’’ and its offspring ‘‘keratinization’’). Taking the

term ‘‘defense response’’ as an example, the genes remaining after

exclusion of the genes of its three significant offspring terms were

still significantly enriched with hypomethylated genes in colon

adenocarcinoma (hypergeometric test, P=1.30E–04). Thus, ‘‘de-

fense response’’ might be widely hypomethylated in cancer. As the

hypomethylation of genes in ‘‘immune response’’ and ‘‘inflamma-

tory response’’ could be induced by infiltration of lymphocytes in

cancer tissue [23], we needed to evaluate the effect of infiltrated

lymphocytes on the epigenetic changes of genes annotated in these

two terms. Here, we only analyzed the dataset for invasive breast

cancer as the data of lymphocyte infiltration in cancer and

adjacent normal tissues was available just for this cancer type. We

focused on analyzing 7 pairs of tumor and adjacent normal tissues

Figure 1. Distributions of DM genes in the five datasets. This
figure illustrates the number of DM genes in the datasets for all five
cancer types. The x-axis denotes the cancer type, and the y-axis denotes
the percentage of DM genes in all detected genes. The light grey and
dark grey areas represent hypomethylated and hypermethylated genes,
respectively.
doi:10.1371/journal.pone.0044822.g001
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with an equal percentage of lymphocytes in each pair of samples

and found that hypomethylated genes were still significantly

enriched in ‘‘immune response’’ (P=2.41E–05) but not in

‘‘inflammatory response’’ (P=3.74E–01) which could be due to

the low power of detecting hypomethylated genes with an FDR

,5% for ‘‘inflammatory response’’ [24]. As the functional

enrichment analysis is rather robust to the false discoveries of

DM genes [25], we selected hypomethylated genes with an

FDR,10% and found that ‘‘inflammatory response’’ was also

enriched with hypomethylated genes (P=1.92E–02). These results

indicated that the methylation changes in ‘‘immune response’’ as

well as in ‘‘inflammatory response’’ could not be explained by the

infiltration of lymphocytes in cancer tissue.

Notably, we found that some typical cancer-associated functions

such as ‘‘cell cycle’’ and ‘‘apoptosis’’ were not enriched with

hypermethylated genes or hypomethylated genes. Oppositely,

some of these functions were significantly depleted of both

hypermethylated and hypomethylated genes for all five cancer

types. For example, ‘‘cell cycle’’ was significantly depleted of both

hypermethylated and hypomethylated genes for all five cancer

types (all P,2.09E–10). This result could be partially due to the

strong target gene specificity of methylation alternations [26,27].

On the other hand, we still observed some genes in these functions

Figure 2. Functional consistency between hypermethylated terms from different cancer types with PO and POE scores. (A) The PO
scores of the hypermethylated genes from different cancer types. (B) The POE scores of the hypermethylated genes from different cancer types. Each
row represents the scores between the hypermethylated terms for one cancer type and the hypermethylated terms for the other cancer types. A POE
score of 1 is shown in red and 0 is indicated in blue.
doi:10.1371/journal.pone.0044822.g002

Figure 3. Functional consistency between hypomethylated terms from different cancer types with PO and POE scores. (A) The PO
scores of the hypomethylated genes from different cancer types. (B) The POE scores of the hypomethylated genes from different cancer types. Each
row represents the scores between the hypomethylated terms for one cancer type and the hypomethylated terms for the other cancer types. A POE
score of 1 is shown in red and 0 is indicated in blue.
doi:10.1371/journal.pone.0044822.g003
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that were consistently differentially methylated across the five

cancer types. For example, 80 genes associated with cell cycle

showed consistent hypermethylation or hypomethylation changes

across the five cancer types, indicating that they are also common

targets of methylation alternations in these cancer types.

Hypermethylation- and Hypomethylation-specific
Functions
From the 117 terms consistently hypermethylated across the five

cancer types, we defined hypermethylation-specific functions as

those that were not significantly enriched with hypomethylated

genes in any of the cancer types and significantly depleted of

hypomethylated genes in at least one cancer type. The depletion

analysis was performed using a one-sided hypergeometric distri-

bution test [28]. We found 58 hypermethylation-specific functions,

most of which are related to ‘‘regulation of biology process’’ and

‘‘developmental process’’. Table S3 contains a complete list of

hypermethylation-specific functions.

Similarly, from the 41 terms consistently hypomethylated across

the five cancer types, we defined hypomethylation-specific

functions as those that were not significantly enriched with

hypermethylated genes in any of the cancer types and significantly

depleted of hypermethylated genes in at least one cancer type

(Table S4). We found 24 hypomethylation-specific functions, the

majority of which are related to response to stimulus (including

‘‘immune response’’, ‘‘response to fungus’’, ‘‘defense response’’

and its offspring ‘‘inflammatory response’’), immune system

process and cell killing (Table 2). Considering that immune cells

affect malignant cells through the production of various types of

cytokines, we found that cell cytokines collected in the KEGG

database were significantly hypomethylated in each of the five

cancer types (P=3.72E–13, 5.11E–11, 6.60E–08, 2.44E–08 and

5.94e–09 for colon, kidney, stomach, lung and breast cancers,

respectively). Specifically, we found that the hematopoietin, TNF,

IL1, IL10 and IL17 families of cytokines had a significant tendency

to be hypomethylated in all five cancer types. For example, an

average of 70.0% of genes in the IL10 family, which promote

innate immune responses from tissue epithelia to limit the damage

caused by infection or inflammation [29], were hypomethylated in

all five cancer types (Figure 4).

We noticed that hypermethylation- and hypomethylation-

specific functions are related to different types of ‘‘response to

stimulus’’, as shown in Figure 5. The hypomethylation-specific

functions are mainly related to ‘‘immune response’’, ‘‘response to

fungus’’ and ‘‘defense response’’ (including its offspring ‘‘in-

flammatory response’’), which are mainly performed by immune

cells in an organism in response to a potential threat (such as

cancer cells and bacteria); in these processes, cells communicate

with each other through the use of signal molecules, such as

cytokines [30]. In contrast, the hypermethylation-specific functions

are mainly related to ‘‘signal transduction’’ within the cell and

‘‘behavior’’ (specific actions or reactions) of an organism in

response to external or internal stimuli (Figure 5).

Discussion

Our results showed that genes with promoter hypermethylation

and hypomethylation in different cancer types are highly

consistent in function, respectively. Although different tissues have

specific methylation patterns [31], this high level of consistency

suggests that they have similar methylated functional changes in

different cancer types. Our results also indicated that gene

promoter hypermethylation and hypomethylation tend to target

different biological processes associated with tumor progression.

Hypermethylation-specific functions are mostly associated with

‘‘development process’’ and ‘‘regulation of biology process’’,

whereas hypomethylation-specific functions are mostly related to

‘‘response to stimulus’’ (including ‘‘immune response’’, ‘‘response

to fungus’’, ‘‘inflammatory response’’), ‘‘immune system process’’

and ‘‘cell killing’’. These results suggest that DNA hypermethyla-

tion and hypomethylation might be independent processes in

carcinogenesis [8]. In accordance with previous reports that the

methylation state of genes can be modified by environmental

stimulus [32], our results showed that both hypermethylated and

hypomethylated functions are related to ‘‘response to stimulus’’.

Specifically, our results further revealed that hypermethylation

and hypomethylation are associated with different types of

‘‘response to stimulus’’. Notably, if a function is significantly

enriched with hypomethylated (or hypermethylated) genes, it

indicates that a significant portion of genes in this function are

hypomethylated (or hypermethylated) in cancer, however, it does

not mean that this function cannot include a small number of

hypermethylated (or hypomethylated) genes. For example, in the

hypomethylation-specific function ‘‘immune response’’, IRF4,

which negatively regulates toll-like-receptor signalling that is

central to the activation of innate and adaptive immune systems

[33], was observed to be hypermethylated in all five cancer types.

We also found that the ‘‘G-protein coupled receptor protein

signaling pathway’’ was significantly enriched with both hyper-

methylated genes and hypomethylated genes across all five cancer

types. These results may be due to the hypomethylation of

chemokine receptors and the hypermethylation of genes related to

the signals transduction within the cell, both of which may disturb

pathways contributing to carcinogenesis [34].

Although our results showed that genes with promoter

methylation alternations in different cancer types are highly

consistent in their function, cancer is a highly heterogeneous

disease with respect to different DM genes in different patients.

Even for the same cancer type, unique subtypes are characterized

by distinct epigenetic alternations [35,36,37], which, should also

be consistent in function. For example, we found that the four lists

of hypermethylated genes for the four colon cancer subtypes

Figure 4. Hypomethylation and hypermethylation of six
cytokine gene families. This figure illustrates the percentage of
hypomethylated genes and hypermethylated genes in six cytokine
gene families. The x-axis denotes the gene family, and the y-axis
denotes the percentages of hypomethylated and hypermethylated
genes in each of these gene families. The light and dark grey areas
represent the hypomethylated and hypermethylated genes, respec-
tively.
doi:10.1371/journal.pone.0044822.g004
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(CIMP-H, CIMP-L, cluster 3 and cluster 4) reported by Hinoue et

al [35] were highly consistent in function (Figure S1) although

these subtypes were differ in terms of their hypermethylated genes

[35]. Specifically, for the 117 terms consistently hypermethylated

across different cancer types, we found that 115 terms were

consistently enriched with hypermethylated genes for all four

subtypes (hypergeometric test, P,0.05) and the other two terms

were also marginally significant for all four subtypes (hypergeo-

metric test, P,0.1). Different samples for a particular cancer type

may harbor different methylation alternations which could also be

consistent in function.

To extrapolate the functional consequence of methylation

alternations of gene promoters in cancer genomes, researchers

often investigate the relationship between gene methylation and

gene expression. Hypermethylation of gene promoters is signifi-

cantly correlated with the down-regulation of gene expression but

hypomethylation of gene promoters is not or is only weakly

correlated with gene up-regulation [38,39]. Similar complex

relationships were also observed at the functional level. To

exemplify this, we analyzed 16 of the 20 pairs of samples for

invasive breast cancer that contained both methylation and

expression data. The differentially expressed genes were selected

using the SAM (significance analysis of microarray) algorithm [40]

with an FDR ,0.05. Then, for the 117 terms consistently

hypermethylated across the five cancer types, we found that 64

terms were significantly enriched with down-regulated genes

(hypergeometric test with an FDR ,0.05) and 83 terms were

marginally enriched with down-regulated genes (hypergeometric

test with P,0.1). However, for the 41 terms that were consistently

hypomethylated across the five cancer types, we found that none

was enriched with up-regulated genes. Oppositely, 10 hypomethy-

lated terms (including ‘‘inflammatory response’’ and ‘‘leukocyte

migration’’) were even enriched with down-regulated genes. One

possible explanation for this phenomenon is the hypothesis that

hypomethylation of gene promoters must cooperate with other key

activators such as appropriate levels of transcriptional factors

[37,41] to control gene expression. For example, as inflammatory

genes tend to be hypomethylated in inflammatory diseases

[42,43,44], we could hypothesize that hypomethylation of in-

flammatory gene promoters may happen in precancerous in-

flammatory disorders, which together with the activation of the

coupled activators could induce hyperactivation of inflammatory

response in the precancerous conditions. During the development

of cancer, the hypomethylation of inflammatory genes could be

inherited through cell division, whereas the coupled activators

could lose function due to genome instability induced by the pro-

tumorigenic microenvironment [45,46,47]. Thus we could observe

these genes’ down-regulation coexisting with hypomethylation in

cancer. To prove this hypothesis, we need to monitor the

methylation and expression changes during the progression from

precancerous inflammation to cancer, which is a difficult task but

deserves future study.

Insight into the functional roles of DNA methylation alterations

in cancer genomes may help improve the epigenetic therapy of

cancer. Currently, most epigenetic drugs are hypomethylating

agents that target hypermethylated genes in cancer [48]. However,

Table 2. Hypomethylation-specific functions.

Functional classification GO-accession # GO Term

Response to stimulus GO:0006952 defense response

GO:0042742 defense response to bacterium

GO:0006954 inflammatory response

GO:0051707 response to other organism

GO:0009617 response to bacterium

GO:0009620 response to fungus

GO:0006805 xenobiotic metabolic process

GO:0006968 cellular defense response

Immune system process GO:0006955 immune response

GO:0006959 humoral immune response

GO:0045321 leukocyte activation

GO:0002684 positive regulation of immune system process

GO:0002694 regulation of leukocyte activation

GO:0046649 lymphocyte activation

Cell killing GO:0001906 cell killing

GO:0031640 killing of cells of other organism

Others GO:0050867 positive regulation of cell activation

GO:0043903 regulation of symbiosis, encompassing mutualism through parasitism

GO:0052547 regulation of peptidase activity

GO:0050994 regulation of lipid catabolic process

GO:0006909 phagocytosis

GO:0007606 sensory perception of chemical stimulus

GO:0007608 sensory perception of smell

GO:0031424 keratinization

doi:10.1371/journal.pone.0044822.t002
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because promoter hypomethylation of genes may also play an

important role in carcinogenesis, agents targeting hypomethylated

genes in cancer might be useful for cancer therapy. For example,

reversal of the hypomethylation status of urokinase (uPA) promoter

blocks breast cancer growth and metastasis [49]. Considering the

close link between promoter hypomethylation and immunity,

epigenetic therapy and immunotherapy may need to be combined

for the treatment of cancer.

Supporting Information

Figure S1 The POE scores between every two lists of the
hypermethylated functions extracted for the four meth-
ylation-based subtypes of colon cancer. Each row repre-

sents the scores between the hypermethylated terms for one

subtype and the hypermethylated terms for the other subtypes.

The POE score 1 is shown in red and 0 is indicated in blue. The

details of the four subtypes are described in [35].

(TIF)

Table S1 Terms that are consistently hypermethylated
across different cancer types. This table shows the 117 GO terms

that are consistently hypermethylated across different cancer types with the P

values of enrichment for all of the cancer types.

(XLS)

Table S2 Terms that are consistently hypomethylated
across different cancer types. This table shows the 41 GO terms

that are consistently hypomethylated across different cancer types with the P

values of enrichment for all of the cancer types.

(XLS)

Table S3 Hypermethylation-specific functions. This table

shows the 58 hypermethylation-specific functions with the P values of depletion

for all of the cancer types.

(XLS)

Table S4 Hypomethylation-specific functions. This table

shows the 24 hypomethylation-specific functions with the P values of depletion

for all of the cancer types.

(XLS)
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