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Abstract: In this paper, the sensitivity to the type of loads (axial and bending loading) of selected
construction materials (AW6063 T6 aluminum alloy, S355J2+C structural steel, and 1.4301 acid-resistant
steel) in high-cycle fatigue was verified. The obtained S-N fatigue characteristics were described by
a probabilistic model of the 3-parameters Weibull cumulative distribution function. The main area of
research concerned the correct implementation of the weakest link theory model. The theory is based
on a highly-stressed surface area and a highly-stressed volume in the region of the highest stresses.
For this purpose, an analytical model and a numerical model based on the finite element method were
used. The model that gives the lowest error implemented in specific test conditions was determined
on the basis of high-cycle fatigue analysis. For the analyzed materials, it was a highly-stressed volume
model based on the weakest link theory.

Keywords: Weibull distribution; axial loading; rotary bending; high-cycle fatigue

1. Introduction

The fatigue strength/fatigue life must be determined while designing new components for
machines subject to loads variable in time. The fatigue characteristic (stress—life S-N, strain—life
ε-N) for the material (unnotched specimens) is multiplied by appropriate coefficients (e.g., cyclic
strength, surface finishing, size, shape, cycle asymmetry, and ductility coefficients) to determine the
characteristic for a structural component [1–4]. The procedure for determining the fatigue properties is
carried out from testing to analytical and/or numerical models [5,6]. It is a continuously growing field,
even in the case of experimental tests [7,8].

The tests are conducted on testing machines, because the specimens are subject to rotary bending or
tension/compression loading. The tests under rotary bending loading yield higher loading frequencies
(up to 200 Hz) in comparison to axial loading where a standard testing machine reaches up to 20 Hz
(for example in [9] 10 Hz was applied). Rotary bending testing machines are less expensive due to
their simple design. Rotary bending loading also requires lower loading forces. At 200 MPa, under
rotary bending loading with a 46 mm arm and a 5 mm dia. specimen, 578 N is required, whereas in
the case of a tensile test, the required force amounts to 2454 N. In both loading cases, normal stress
occurs in the specimen, and the difference lies in the loading gradient. The fatigue life determined
experimentally was compared in [10]. The fatigue limit for axial loading was 75% to 87% lower than
for rotary bending loading.

One of the most commonly used methods to estimate the fatigue limit is the Weibull weakest
link theory [11]. Main assumption of the theory is the occurrence of material defects (unevenness,
inclusions, cracks, defects) statistically distributed per unit volume. Cracks are initiated in specific units
with the most dangerous defects or the weakest links. The propagation of fatigue cracks is independent
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in different areas. An analyzed area has a finite number of links. Any damage to the links results in
damage to the entire component. The size of the defects is smaller than the distance between them.
The theory was generalized to the fatigue limit by Kugnel in [12]. In the theory, the fatigue strength is
characterized by the Weibull probability distribution defined in [13]. The distribution is characterized
by three parameters: a scale parameter β, a location parameter ξ, and a shape parameter α. The shape
parameter α and the location parameter ξ are used as a material constant used to differentiate the ratio
of fatigue strength for rotary bending and axial loading.

The effects of non-uniform stress distribution on material fatigue properties is determined using
a surface area method (highly-stressed surface area An%) or a volume method (highly-stressed volume
Vn%). In this region, the probability of cracking initiation or propagation of an existing defect is higher.
An%/Vn% is defined as the ratio of surface area to volume of material subject to at least n% of the
maximum stress. Calculation of these parameters is carried out using the finite element method [6,7].
The stress distribution map determined numerically for the analyzed load provides information on the
number of highly stressed finite elements.

Analytical methods can be found in literature, which are based on estimation of the ration of the
fatigue strengths for the axial and bending stress to calculate the fatigue strength/life for not tested
type of loading ϕ. Such models can be found in [14–16]. A comparison of these models is presented
in [17]. It should be mentioned that the estimated values of ϕ by these models are less than the results
estimated in experiments. A 50% probability characteristic was estimated by using such models, but
experimental results were different for the scatter band of fatigue life for axial and rotary bending load,
which was presented in [18]. This is why authors decide to implement a new approach of the weakest
link theory, which changes the fatigue strength and the scatter band of the fatigue life.

In the present paper, a model based on the weakest link theory (surface area and volume approach)
was verified. The analyses were carried out for the results of the authors’ own experimental test results
for selected materials (S355J2+C structural steel, 1.4301 acid-resistant steel, and AW6063 T6 aluminum
alloy). High-cycle fatigue tests were performed under axial and bending loading conditions. The aim
of the paper was to determine the results of an analytical model similar to experimental test results.

2. Materials and Methods

2.1. Analytical Model

Due to the different ratio of volume under load and the number of fatigue cracking initiation and
propagation points, the fatigue strength for rotary bending loading is higher than for axial loading
(tension/compression). Fatigue tests for rotary bending are shorter and more cost-efficient. S-N
characteristics for rotary bending were used as a basis for the analysis. The fatigue limit for axial
loading was estimated on the basis of those results. The probability of failure for any stress level
(P = 0.1; 0.5; 0.9) was used to extend the relationship between the stress and the number of cycles.
The spread of fatigue strength in the high cycle range decreased with increasing stress amplitude, which
did not describe the Basquin model with normal distribution presented in the normative document [19].
The Weibull distribution function was used to describe this spread. A graphic representation of the
calculations and the Weibull distribution function parameters is pictured in Figure 1. A correction
coefficient ϕ was used to evaluate the effects of the loading mode:

ϕ =
Sax

Srb
, (1)

where Sax is the fatigue strength for axial loading and Srb is the fatigue strength for bending loading.



Materials 2020, 13, 1148 3 of 14

Materials 2020, 13, x FOR PEER REVIEW 3 of 13 

 

where V0 is the reference volume, V is the volume of material that is subjected to stress, N is the fatigue 

life, ξ is the location parameter, σ is the scale coefficient, and α is the shape parameter in the S-N 

characteristic equation. Equations (3)–(8) kept the same description of the variables. 

 

Figure 1. Scheme for S-N characteristics estimation taking into account the probability of failure P and 

the corresponding fatigue life N0.1, N0.9 for constant stress amplitude Sa. 

For uniform stress distribution (subscript 0) (equation axial loading for a round specimen): 

𝐹𝑉0
 = 1-exp [- (

𝑁0−𝜉0

σ0
)

𝛼0
]. (3) 

For nonuniform stress distribution (subscript 1), it can be written [20,21]: 

𝐹 𝑉1
= 1-exp [-

𝑉1

𝑉0
 (

𝑁1−𝜉1

σ1
)

𝛼1
]. (4) 

Assuming that shape and location parameters are in common and only differ in the scale 

parameter for two stress distributions, which is the variable allowing the following to be written: 

𝐹 𝑉1
= 1-exp [-

𝑉1

𝑉0
 (

𝑁1−𝜉0

σ1
)

𝛼0
]. (5) 

To satisfy the assumption that the probability of failure is the same for two different stress 

distributions, we have: 

1-exp [- (
𝑁0−𝜉0

σo
)

𝛼

] = 1-exp [-
𝑉1

𝑉0
 (

𝑁1−𝜉0

σ1
)

𝛼

]. (6) 

From Equation (6), the scale parameter for nonuniform stress distribution and uniform stress 

distribution at the same probability of failure satisfy: 
𝑁0−𝜉0

σo
 =

𝑁1−𝜉0

σ1∙(
𝑉1
𝑉0

)

1
α

. 
(7) 

It is assumed that the fatigue life is the same (N1 = N0), because the fatigue strength changes for 

the different types of loading. Then, Equation (6) takes the following form: 

σo = σ1 ∙ (
𝑉1

𝑉0
)

1

α
. (8) 

Assuming that the Weibull distribution presented above describes an S-N characteristic, the 

location parameter and the scale parameter by regression line can be defined. Finally, the equation 

for S-N characteristics is defined by the following formula: 

𝐹(𝑁) = 1 − exp [− (
(𝑁𝑖)−𝜉(𝑆𝑎𝑖)

𝛽(𝑆𝑎𝑖)
)

𝛼

], (9) 

lo
g

S
a

logN1/4

S

N0.9

P. = 0.1   0.9  0.5

N0.1

experimental for bending loading

experimental for axial loading

analytical for axial loadingφ

ξ( ) Sai

α

βax ai( ) S βa ainal( ) S βrb rb( ) S

a 

Figure 1. Scheme for S-N characteristics estimation taking into account the probability of failure P and
the corresponding fatigue life N0.1, N0.9 for constant stress amplitude Sa.

The weakest link theory presented by Weibull in [11] assuming that stressed volume is divided in
a finite number of infinitesimal links. The probability of failure in each link is the same. This probability
of failure can be represented by the 3-parameters Weibull cumulative distribution function for general
volume, and can be expressed by the following [11]:

FV= 1− exp
[
−

1
V0

∫
V

(N − ξ
σ

)α
dV

]
, (2)

where V0 is the reference volume, V is the volume of material that is subjected to stress, N is the fatigue
life, ξ is the location parameter, σ is the scale coefficient, and α is the shape parameter in the S-N
characteristic equation. Equations (3)–(8) kept the same description of the variables.

For uniform stress distribution (subscript 0) (equation axial loading for a round specimen):

FV0= 1− exp
[
−

(
N0 − ξ0

σ0

)α0
]
. (3)

For nonuniform stress distribution (subscript 1), it can be written [20,21]:

F V1= 1− exp
[
−

V1

V0

(
N1 − ξ1

σ1

)α1
]
. (4)

Assuming that shape and location parameters are in common and only differ in the scale parameter
for two stress distributions, which is the variable allowing the following to be written:

F V1 = 1− exp
[
−

V1

V0

(
N1 − ξ0

σ1

)α0
]
. (5)

To satisfy the assumption that the probability of failure is the same for two different stress
distributions, we have:

1− exp
[
−

(
N0 − ξ0

σ0

)α]
= 1− exp

[
−

V1

V0

(
N1 − ξ0

σ1

)α]
. (6)
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From Equation (6), the scale parameter for nonuniform stress distribution and uniform stress
distribution at the same probability of failure satisfy:

N0 − ξ0

σ0
=

N1 − ξ0

σ1·
(V1

V0

) 1
α

. (7)

It is assumed that the fatigue life is the same (N1 = N0), because the fatigue strength changes for
the different types of loading. Then, Equation (6) takes the following form:

σ0 = σ1·

(
V1

V0

) 1
α

. (8)

Assuming that the Weibull distribution presented above describes an S-N characteristic, the location
parameter and the scale parameter by regression line can be defined. Finally, the equation for S-N
characteristics is defined by the following formula:

F(N) = 1− exp
[
−

(
(Ni) − ξ(Sai)

β(Sai)

)α]
, (9)

where α is the shape parameter, Ni is the number of cycles, ξ(S
ai) is the location parameter (ξ(S

ai) =

10n·log(S
ai

)+d), β(S
ai) is the scale parameter (β(S

ai) = 10m·log(S
ai

)+b), d and b are the constant term in the S-N
characteristics equation, m and n is the slope coefficient in the S-N characteristics equation, subscript
i is the stress level ordinal number. Equations (10)–(13), (15)–(17) kept the same description of the
variables. Substituting the scale parameter to Equation (8) gives:

10a·log (Sai)+b0 = 10a·log (Sai)+b1 ·

(
V1

V0

) 1
α

. (10)

In Equation (10), it is assumed that the scale coefficient in the S-N characteristic for different type
loading is the same, which is proven in the following part of this article. The final form of Equation
(10) is:

b0 = b1 + log

(V1

V0

) 1
α
. (11)

The weakest link theory model was used to estimate the fatigue strength for axial load. The equation
is presented in [21,22] for axial loading (subscript ax):

Fax(N) = 1− exp
[
−

(
(Ni) − ξ(Sai)

βax(Sai)

)α]
. (12)

For bending loading (subscript rb):

Frb(N) = 1− exp
[
−

Vrb
Vax

(
(Ni) − ξ(Sai)

βrb(Sai)

)α]
. (13)

Implementation of the Weibull weakest link theory assumes comparison of a highly-stressed
volume or a highly-stressed surface area. The surface area was analytically calculated using the
following formula:

Arb =
πD2

4
−
πd2

4
, Aax =

πD2

4
, (14)

where d corresponds to Sg = 0.95 Smax (Figure 2).
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Figure 2. Bending specimen: (a) stress distribution, (b) surface area Arb.

The constant term bax in the S-N characteristics equation for axial loading depends on the type of
load. For an area, it is defined by the following formula:

bax A = brb + log

( Arb
Aax

) 1
α
. (15)

The highly-stressed volume was numerically calculated using the finite element method
(Section 2.2) for rotary bending (Vrb V) and pure bending (Vrb S). The constant term bax for rotary
bending takes the form:

bax V = brb + log

(Vrb V
Vax

) 1
α
, (16)

and for pure bending:

bax S = brb + log

(Vrb S
Vax

) 1
α
. (17)

2.2. Numerical Model

Using the weakest link theory model for the highly-stressed volume required the specimen volume
to be determined at which the stress exceeds 0.95 Smax. Calculations were carried out using the finite
element method software ANSYS Workbench 2020 R1. Figure 3 presents the boundary conditions with
highly-stressed volume for rotary bending (Vrb V), pure bending (Vrb S), and axial loading (Vax).
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Figure 3. Boundary conditions for round specimen under: (a) rotary bending (highly-stressed volume),
(b) pure bending (highly-stressed volume static), (c) axial loading.
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The geometric model was divided into nearly 1500 elements. Twenty nodal solid elements with
three degrees of freedom per node with quadratic displacement behavior (SOLID186) were used.
The analyses of the discretization error showed that the satisfactory accuracy of the obtained results is
for an average element size of 1 mm. In each of the analyzed materials, the load range was below the
yield point. The deformation of the material was in the elastic range. For the tested smooth sample,
local stress concentration (including plastic deformation) was not observed. Therefore, it was decided
to use the isotropic elastic model (steel: E = 2.1 × 105 MPa, ν = 0.33; aluminum alloy: E = 0.7 × 105 MPa,
ν = 0.33; where E is the modulus of elasticity, ν is Poisson’s ratio). Similar linearly elastic analyses
were performed in paper [23]. The stress distribution map was used to calculate the highly-stressed
volume. The calculations were performed in the module of structural analysis with steady loading and
response conditions. The geometry corresponded to the actual dimensions of the specimens.

2.3. Experimental Tests

The analytical models were verified on the basis of experimental data for AW 6063 T6 aluminum
alloy, S355J2+C structural steel, and 1.4301 acid-resistant steel. The mechanical properties were
determined on the basis of monotonic tensile tests according to PN-EN ISO 6892-1:2016 [24]. Table 1
presents the average values.

Table 1. Mechanical properties for selected materials.

Material
Modulus of Elasticity Tensile Strength Yield Strength Reduction of Area Elongation

E, MPa Rm, MPa Re, MPa Z, % A, %

AW 6063 T6 69,556 243 201 75.5 10.5
S355J2+C 206,060 806 678 12 65.1

1.4301 206,553 803 561 78.3 43.8

High-cycle fatigue tests were conducted on a specimen made from a 10 mm drawn bar.
The minimum diameter of the working section of the round specimen with a cross-section was
5 mm (Figure 4).
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Figure 4. Geometry of the round specimen for fatigue testing.

Experimental tests were carried out at axial load on an Instron 8874 hydraulic testing machine and
at rotary bending load on the test stand. A symmetric sinusoidal cycle (R = −1) was used for the axial
load. The tests were carried out in accordance with international standards [19,25,26]. The purpose
was to determine the S-N characteristic for a load-controlled test. The end of the test criterion was
a micro-fracture of the specimen. Figure 7 show a graphic representation of the results. The maximum
likelihood method was used to estimate the parameters for a 3-parameters Weibull distribution and
was described in [27,28]. Linear regression equation parameters for both loading modes are included
in Table 2. A statistical parallelism test was conducted for the characteristics in accordance with [29].
It can be assumed that the characteristics for AW 6063 aluminum alloy are parallel. At this stage,
the assumption for the analytical model to estimate the fatigue strength should allow for the parallelism
of the characteristics, depending on the material.
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Table 2. Fatigue characteristic S-N parameters.

Material
Type of
Loading

Regression Line Described by Equation (9)

α a b n d

AW 6063 T6
Axial 2.31 −6.69 19.45 −0.25 1.02

Bending 2.31 −6.99 20.51 −0.25 1.02

S355J2+C Axial 2.87 −13.21 39.50 −0.64 3.88
Bending 2.87 −9.82 31.24 −0.64 3.88

1.4301
Axial 2.58 −15.32 45.49 −0.74 5.06

Bending 2.58 −10.48 33.07 −0.74 5.06

Correction coefficient ϕ values were determined on the basis of the obtained data. Table 3 presents
the experimental test results. The calculations were conducted for the extreme values of the fatigue
strength for a specific range of tests. Structural steel is more sensitive to changes in loading mode.

Table 3. Coefficient ϕ.

Material ϕ

AW 6063 T6 0.873
S355J2+C 0.855

1.4301 0.889

The analysis of coefficient a of the regression line equation involved comparison of the experimental
values of gamma distribution. The distributions were determined on the basis of the analysis of
the experimental data for the S-N characteristics. The static distribution equation was expressed as
follows [30,31]:

f (m) = λ·
(λ·m)k−1

Γ(k)
·e−λ·m, (18)

where λ, k are the gamma distribution parameters (size, shape), and Γ() is the Euler function.
Table 4 shows the gamma distribution parameters for coefficient a. The fifth and sixth columns

indicate the results of the statistical test χ2 in accordance with the following formula [31]:

χ2 =
∑

r
i=1

(ni − npi)
2

npi
, (19)

where r is the number of classes, ni is the empirical numbers of subsequent classes, pi is the theoretical
frequencies of the class and n is the sample size.

Table 4. Values of gamma distribution parameters for the coefficient a.

Type of Load Parameter
λ

Parameter
k

Number of
Materials

Statistics
Test χ2

Critical Value
of Stat. χ2

kr

Arithmetic
Average Median Dominant

Axial loading 0.667 8.501 36 0.71 7.815 12.7 12.15 9.5
Bending loading 0.654 8.257 55 0.15 7.815 12.6 11.8 11.9

The gamma distribution values were similar for the distribution of coefficient a in the tensile
and bending tests, which may indicate a similar distribution. To verify the null hypothesis on the
uniform distribution in both loading cases, a conformity test for two populations was conducted,
the Mann–Whitney U test [29]. Value of W amounted to 1011.5, and the p-value amounted to 0.8646
(it was assumed that the null hypothesis can be rejected if the p-value is lower than 0.05). This fact
means that there is no basis to reject the null hypothesis. Figure 5 shows the distribution of coefficient
a, taking into account the values obtained experimentally for the steel materials.
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Figure 5. Distribution of coefficient a for steel, smooth specimen: (a) bending loading, (b) axial loading.

3. Results

Verification of the results included estimation of the fatigue strength on the basis of analytically
determined coefficients ϕ. The S-N characteristics for the axial loading were calculated in accordance
with the data regarding the rotary bending loading. The calculations were carried out in accordance
with Figure 1. The analyzed range of the fatigue life corresponded to the range of the experimental tests.

Highly-stressed volume calculations were carried out using the finite element method. Figure 6
shows the boundary and a normal stress distribution map for the analyzed loading. The stress and
volume for specific elements were stored in the text file processed in R software, ver. 3.5.1 [32]. Elements
with stress exceeding 0.95 Smax were determined. Furthermore, the volumes of the determined elements
were summed up. An identical procedure was used for three loading cases. Coefficient bax was
calculated according to Equations (16) and (17). The other parameters of the Weibull distribution were
taken from rotary bending. The results of the analysis were included in Tables 5–7.

Table 5. Values of the 3-parameters Weibull models for AW 6063 T6.

Data
AW 6063 T6

α a b n d

Weakest link theory model—Area 2.31 −6.99 20.08 −0.25 1.02
Weakest link theory model—Volume 2.31 −6.99 19.95 −0.25 1.02

Weakest link theory model—Volume static 2.31 −6.99 19.70 −0.25 1.02

Table 6. Values of the 3-parameters Weibull models for S355J2+C.

Data
S355J2+C

α a b n d

Weakest link theory model—Area 2.87 −9.82 30.89 −0.64 3.88
Weakest link theory model—Volume 2.87 −9.82 30.80 −0.64 3.88

Weakest link theory model—Volume static 2.87 −9.82 30.58 −0.64 3.88

Table 7. Values of the 3-parameters Weibull models for 1.4301.

Data
1.4301

α a b n d

Weakest link theory model—Area 2.58 −10.48 32.67 −0.74 5.06
Weakest link theory model—Volume 2.58 −10.48 32.57 −0.74 5.06

Weakest link theory model—Volume static 2.58 −10.48 32.33 −0.74 5.06
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Figure 6. Normal stress distribution map (nominal stress 100 MPa) for round specimen under: (a) rotary
bending (highly-stressed volume), (b) pure bending (highly-stressed volume static), (c) axial loading.

Figure 7 presents the results of the estimated fatigue characteristics for the Weibull model with
different defined highly-stressed regions.
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Figure 7. Fatigue characteristic determined based on experimental tests and analytical models for:
(a) AW 6063 T6, (b) S355J2+C, (c) 1.4301.

For all materials, the model with the highly-stressed volume static gave the lowest fatigue strength,
so it is a conservative approach. However, the highly-stressed area model gave the highest fatigue
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strengths. The estimated fatigue characteristics are on the safe side, i.e., the analytical fatigue strength
is lower than the experimental one. If the highly-stressed volume decreases, the fatigue strength
also decreases. The highly-stressed area model gives the highest fatigue strengths. By using the
highly-stressed volume model, it gets results between the two other models, but it is closer to the
highly-stressed area model.

The results were analyzed to fit the analytical fatigue characteristics to the experimental
characteristics with a 50% probability of failure. For the AW6063 T6 aluminum alloy, the best
fit is for the highly-stressed area model, for the S355J2+C structural steel, it is the highly-stressed
volume model and for the 1.4301 acid-resistant steel, it is the highly-stressed volume static model.
The indicated discrepancies result from the different structure of the analyzed materials and the
mechanisms accompanying the initiation and fatigue crack growth. This shows the correctness of the
selected materials because differences in sensitivity to the type of load are noticeable in the results and
models used. In this case, the procedure for choosing the model for estimating fatigue properties is
dependent on the type of material being analyzed.

As was assumed in Section 2.1, all estimated characteristics are parallel. Only for the AW6063 T6
aluminum alloy, the experimental fatigue characteristics are parallel, but the estimated fatigue strength
by the Weibull model is very close to the experimental results.

The characteristics include experimental points approximated to a 50% probability of failure.
The quantitative evaluation of the correspondence of empirical and theoretical data (based on the
analytical model) was carried out based on the standard deviation of the residual Se and residual
variance Ve (Tables 8 and 9). The standard deviation and variance for the analytical methods are in
bold, which are lower than that calculated from the experimental data for rotary bending loading. In
those cases, the results obtained using a specific analytical method are more accurate and can be found
within the scatter range of the experimental data.

Table 8. Values of the standard error and the coefficient of variation for the experimental results.

Data
AW 6063 T6 S355J2+C 1.4301

Se Ve Se Ve Se Ve

Experiment—axial loading 4.3 3.0 10.5 2.4 7.5 1.6
Experiment—bending loading 9.7 6.7 21.3 4.9 31.6 7.2

Table 9. Values of standard error of the estimate and the coefficient of variation for the analytical models.

Data
AW 6063 T6 S355J2+C 1.4301

Se Ve Se Ve Se Ve

Weakest link theory model—Area 5.8 4.1 49.7 11.4 26.8 5.6
Weakest link theory model—Volume 12.3 8.6 40.0 9.2 21.6 4.5

Weakest link theory model—Volume static 24.1 16.8 23.2 5.3 33.0 6.9

Figure 8 presents the correction coefficient ϕ values determined experimentally and analytically
for various models of the weakest link theory. The figure shows that the experimental values of the
coefficient ϕ are in a narrow range of values (0.86–0.89).
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4. Discussion and Conclusions

The S-N characteristics were determined experimentally for axial loading and rotary bending
loading. For the axial loading, the slope of the linear regression a is similar to the arithmetical average
for the histogram. For rotary bending loading, values close to the modal value were obtained. Thus,
the S-N characteristics are similar to the test results presented by other researchers, which can be found
in e.g., [33] and summaries in [34], where it is mentioned that the coefficient a is between 5–20 and
generally 10.

The correction coefficient ϕ for the experimental data is within 0.86–0.89, corresponding to the
general sensitivity of the materials to the loading mode, the proposed value can be found in e.g., [35].
An initial evaluation of the correctness of the implementation of the analyzed models was conducted
on the basis of a comparison of the coefficient ϕ determined experimentally and analytically. It should
be mentioned that the correction coefficient ϕ does not have a constant value. It is change for different
materials. This can be seen in Figure 8.

The analysis involved verification of the weakest link theory from the surface area and volume
perspective. Calculations were carried out using a probabilistic model for the S-N characteristics on the
basis of the Weibull distribution. Conclusions were proposed for the results of the 50% probability of
failure. The best estimation results were obtained for the highly-stressed volume method. For AW6063
T6 aluminum alloy, the surface area weakest link theory method yielded the lowest error compared to
the volume method. This probably occurred, because the slope coefficient a for the bending and axial
loading are very close, see Table 2. In this method, correlating the ϕ to the shape coefficient α from the
Weibull distribution provides a change in value similar to the observed experimental data (Figure 8).
It can be concluded that the closer the value of the coefficient ϕ estimated by analytical method to
the experimental result, the less the error of predicted fatigue strength, which is seen by comparison
in Figure 8 and Table 9. The rationale for the use of the weakest link theory is also supported by the
fact that it is commonly used to determine the effect of element size on fatigue strength [21,36–38].
Additionally, by using the Weibull distribution, the fatigue characteristic for any probability can be
estimated, which is not recommended for a normal distribution. This statement can be found in [39].

A proposed estimation of the parameters of the Weibull distribution for a different type of loading
can be easily adapted to determine the fatigue strength for defining the fatigue life (“fatigue limit”).
For this purpose, the scale and location parameter should be a substitute as a constant value of stress
amplitude. Then, the distribution will describe the fatigue strength. To adopt the proposed method to
low cycle fatigue, it must be submitted to the Basquin equation in the scale and location parameter into
the Mason-Coffin equation. The method presented in this article is a universal method because it can
be adapted to other fatigue life/strength calculations.
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