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Abstract: Background: Scrub typhus is an important public health issue in Korea. Risk factors
for scrub typhus include both individual-level factors and environmental drivers, and some
are related to the increased density of vector mites and rodents, the natural hosts of the mites.
In this regard, deforestation is a potential risk factor, because the deforestation-induced secondary
growth of scrub vegetation may increase the densities of mites and rodents. To examine this
hypothesis, this study investigated the association between scrub typhus and deforestation. Methods:
We acquired district-level data for 2006–2017, including the number of cases of scrub typhus reported
annually, deforestation level, and other covariates. Deforestation was assessed using preprocessed
remote-sensing satellite data. Bayesian regression models, including Poisson, negative binomial,
zero-inflated Poisson, and zero-inflated negative binomial models, were examined, and spatial
autocorrelation was considered in hierarchical models. A sensitivity analysis was conducted using
different accumulation periods for the deforestation level to examine the robustness of the association.
Results: The final models showed a significant association between deforestation and the incidence
of scrub typhus (relative risk = 1.20, 95% credible interval = 1.15–1.24). The sensitivity analysis
gave consistent results, and a potential long-term effect of deforestation for up to 5 years was
shown. Conclusion: The results support the potential public health benefits of forest conservation
by suppressing the risk of scrub typhus, implying the need for strong engagement of public health
sectors in conservation issues from a One Health perspective.
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1. Introduction

Scrub typhus is a mite-borne disease caused by Orientia tsutsugamushi that is transmitted mainly
by trombiculid mites, such as Leptotrombidium pallidum and Leptotrombidium scutellare, in Korea [1].
In the transmission dynamics, rodents play an important role, because the mites are mainly parasitic on
rodents and become infected by feeding on infected rodents. The burden of the disease is higher than
that of other vector-borne diseases in South Korea [2]. According to the national passive surveillance
system established by the Korea Centers for Disease Control and Prevention (KCDC), 110,070 scrub
typhus cases were reported between 2001 and 2017 (56,677 confirmed cases and 53,393 suspected cases),
with approximately 10,000 cases reported annually between 2013 and 2017 (Figure 1). The increasing
vigilance of the surveillance system might have affected the upward trend to some degree. However,
the expansion of the geographic distribution of vectors and their increasing density associated with
climate change is suspected to be a major contributor to the trend [3]. Various interventions have
been implemented every fall, the peak season for scrub typhus in Korea, including public awareness
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campaigns, especially in endemic rural regions. However, the number of cases has not decreased as
expected. Rather, concerns have been growing due to recent evidence of the disease’s urbanization [4].
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Figure 1. The number of cases of scrub typhus reported annually in Korea.

Previous studies identified both individual- and environmental-level risk factors associated with
the transmission dynamics of scrub typhus [5]. Older age was reported to be associated with a
higher incidence [1,6,7]. Agriculture-related work activities [8,9] and awareness of the disease among
farmers [8] are also significant risk factors, related to the exposure level. Climate factors [10–12],
including temperature, precipitation, the amount of sunshine, atmospheric pressure, and other
environmental factors such as latitude [13] have been investigated as possible drivers or effect modifiers
of the increasing scrub typhus incidence, by affecting mite or rodent densities [12].

Deforestation, defined as land cover change from forest to non-forest regions, could be another
risk factor. The deforestation-induced secondary growth of scrub vegetation would provide a suitable
environment for rodents, which are the natural hosts of vector mites [14], and may increase the
density of mites. To the best of our knowledge, there is no empirical evidence of an association
between deforestation and scrub typhus. However, significant associations with other vector-borne
diseases, such as malaria, have been found [15–18], implying that similar associations could be found
in scrub typhus.

This study investigated the effects of deforestation on the incidence of scrub typhus. Since
deforestation, as the major explanatory variable, can be evaluated at the aggregate level, we used an
ecological study design in which the analysis units were 250 districts, a second-level administrative
region in Korea. The outcome variable and other covariates were measured at the aggregate level in
each district. The study period was 12 years from 2006 to 2017, based on data availability.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing

This study used data from multiple sources to examine the hypothesis, including the number
of scrub typhus cases reported annually by each district, the annual deforestation level, and other
covariates that are considered to be associated with scrub typhus (Table 1).
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Table 1. Data acquired in this study.

Category 1 Category 2 Variables Data Source Reference

Response variable Outcome Scrub typhus incidence KCDC a [2]
Explanatory variable Deforestation Deforestation GFC b [19]

Covariates

Sociodemographics Population density of KOSIS c [20]
farmers KOSIS

Economy Budget dependency KOSIS

Meteorology

Average temperature KMA ASOS d [21]
Precipitation KMA ASOS

Relative humidity KMA ASOS
Total sunlight time KMA ASOS

Land cover

Agriculture (paddy) KOSIS
Agriculture (all) KOSIS

Urban area KOSIS
Forest GFC

Geography Elevation SRTM e [22]
Extent KOSIS

a KCDC: Korea Centers for Disease Control and Prevention, b GFC: Global Forest Change, c KOSIS: Korean Statistical
Information Service, d KMA ASOS: Korea Meteorological Administration Automatic Synoptic Observation System,
e SRTM: Shuttle Radar Topography Mission. Note: The total extent area and agricultural land cover (all) were
excluded from the model because the variance inflation factor was greater than 10.

The numbers of scrub typhus cases reported annually by each district were obtained from the
infectious disease portal [2] of the KCDC. According to KCDC notification guidelines [23], the reported
cases included both suspected and confirmed cases. The suspected case was defined as a patient who
presented clinical signs of scrub typhus (acute febrile illness, lymphadenopathy and/or skin eschar)
and showed epidemiological evidence. The confirmed case was defined as a patient who met both
clinical and laboratory confirmation (equal or more than 4-fold increase in the antibody titer in paired
serum sample, antigen detection in blood or skin eschar by polymerase chain reaction, equal or higher
single antibody titer measured at 1:256 (IgG) or 1:16 (IgM) by indirect immunofluorescent antibody
(IFA) test). Although KCDC provided the number of confirmed and suspected cases separately at the
national level, the categorized data was not accessible at the district level. In this regard, the outcome
measurement in this study included both confirmed and suspected cases. While the reported cases for
each district were used as an outcome variable, we also included the expected numbers of cases in
each district in the analysis as an offset for sex and age standardization.

Forest cover and annual deforestation levels were acquired from the website provided by
Hansen et al. [19], and derived from satellite images (Global Forest Change, http://earthenginepartners.
appspot.com/science-2013-global-forest). Using satellite images obtained during the growing seasons
between 2000 and 2017, Hansen et al. used a classification algorithm that categorized the captured
terrestrial surface into forest and non-forest regions, and assessed forest presence in 2000 and annual
deforestation levels from 2001 to 2017 [19]. The authors provided the two variables as raster type data,
which were composed of pixels containing values. Each pixel measured approximately 30 × 30 m for
both variables. The forest cover variable was provided for the year 2000 and ranged from 0% to 100%,
indicating the probability of forest being present within each pixel. Pixels with ≥50% forest cover were
considered to indicate forest presence in our study. We estimated the forest cover size for each district
by using the number of pixels defined as forest within each district. Deforestation was provided as a
dichotomous variable based on whether there were tree-loss events during each year from 2001 to 2017.
We assessed the deforestation level as the number of pixels indicating deforestation events within each
district (Supplementary Figure S1), following a previous study [24]. To examine the possible long-term
effects of deforestation, we calculated the 3-year cumulative deforestation level for each district as the
main explanatory variable.

The total population and number of farmers by year and district were obtained from the Korean
Statistical Information Service (KOSIS) [20], to adjust the association between deforestation and scrub
typhus incidence. Meteorological factors, including the annual average temperature, annual average
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relative humidity, total sunlight time, and total precipitation, were obtained from the Automatic
Synoptic Observation System of Korea Meteorological Administration [21], which can be accessed
from the website. Because the meteorological data were provided by each observation site with their
location information, the data would not entirely represent each district. Therefore, ordinary kriging
was used to generate interpolated values for the entire surface of Korea, and then average (temperature
and relative humidity) or summed (sunlight time and precipitation) values were extracted for each
district. Elevation data were obtained from Shuttle Radar Topography Mission data v4.1 [24], which
provide 90-m-scale global elevation data in raster format, and we extracted the average altitudes of
each district. The total area of each district was obtained from the KOSIS website [20].

The data described above were acquired for each year and district, and were modified to reflect the
dynamic changes in administrative boundaries during the study period from 2006 to 2017. For example,
three districts of Bucheon were united in 2016, whereas two new districts were introduced in Cheonan
in 2008: Dongnam-gu and Seobuk-gu. For practical purposes, the different geographical classifications
of administrative regions between years needed to be standardized, and we used the 2017 classification
to this end. For instance, the populations in the three districts of Bucheon before 2016 were summed to
give the population of Bucheon, and those of Dongnam-gu and Seobuk-gu in Cheonan before 2008
were estimated based on their area and that of Cheonan before 2008.

2.2. Analysis

A descriptive analysis was performed to overview the differences between districts with higher
and lower incidences of scrub typhus from 2006 to 2017, based on the median value. The means and
standard deviations were provided.

Although the covariates were selected based on the previous findings which reported associations
with scrub typhus, not all covariates were included, and a variable selection process was implemented to
avoid the issue of multi-collinearity. As previous studies suggested, variables with a variance inflation
factor value greater than 10 [25] or one-to-one correlation coefficients greater than 0.8 were excluded.

Bayesian regression models using an Integrated Nested Laplace Approximation (INLA)
approach [26] were used to examine the association between deforestation and scrub typhus. Assuming
that the annual incidence of scrub typhus followed a Poisson distribution, we included a Poisson
model. Negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB)
models were also employed to consider possible overdispersion, excessive zeros and both factors,
respectively. Beside the four models, we additionally employed hierarchical Bayesian models [27] to
reflect possible spatial autocorrelations in the residuals. These hierarchical models also comprised
Poisson, NB, ZIP and ZINB models. Among the eight models, we determined the best fit model based
on the deviance information criterion (DIC) [28]. The analyses were implemented using the INLA
package [29,30] in R ver. 3.5.0 [31], and the results from all models were described with relative risks
(RR) and 95% credible intervals (95% CI).

We also conducted a sensitivity analysis according to the time period to define the deforestation
level. Although we used the 3-year cumulative deforestation level as the main explanatory variable,
the appropriateness of the 3-year period needs to be assessed. In this regard, we repeated the analysis
using periods of 1 to 6 years, to examine the robustness of the study results.

3. Results

3.1. Descriptive Analysis

Table 2 presents the descriptive statistics for the 250 districts for the variables used in this study,
stratified by incidence above and below the median. Deforestation level, number of farmers, annual
mean temperature, precipitation, relative humidity, paddy field, and urban area land cover were higher
in the high incidence districts (7.11 km2, 15,840, 13.40 ◦C, 1288 mm, 68.46%, 9700.58 m2, and 88.77 km2,
respectively) than in the others.
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Table 2. Descriptive analysis of the variables used in the models by the incidence of scrub typhus.

Variables Districts with Higher Incidence
(>Median a, n = 125) Mean (±SD)

Districts with Lower Incidence
(≤Median a, n = 125) Mean (±SD)

Scrub typhus cases (all cases; 2006–2017) 628.22 ± 314.8 97.98 ± 59.7
Deforestation (2006–2017, sum, km2) 7.11 ± 9.5 6.45 ± 11.0

Population density (103 per km2) 1.87 ± 3.5 6.19 ± 7.5
Farmers (103) 15.84 ± 10.9 7.43 ± 8.0

Budget dependency (%) 24.09 ± 12.7 34.92 ± 17.6
Mean temperature (◦C) 13.40 ± 0.9 12.20 ± 0.8

Precipitation (mm) 1288.17 ± 133.4 1274.31 ± 104.4
Relative humidity (%) 68.46 ± 3.4 66.98 ± 1.4
Total sunlight time (h) 2132.03 ± 40.3 2157.14 ± 21.1

Agriculture (paddy, m2) 9700.58 ± 8158.0 3875.44 ± 5150.8
Urban area (km2) 88.77 ± 87.4 55.52 ± 56.6

Forest (km2) 198.07 ± 194.0 222.24 ± 354.1
Elevation (mean, m) 158.33 ± 117.0 182.41 ± 175.8

Note: All variables in this table were used in the regression models in this study. a Among the 250 districts, the
median incidence of scrub typhus was 263.5 cases during the period 2006–2017.

3.2. The Association between Deforestation and Scrub Typhus

Tables 3 and 4 show the results of the non-spatial and spatiotemporal models. In terms of the
association between scrub typhus and deforestation level, the main explanatory variable in this study,
all models showed significant positive associations, and the point estimates ranged between 1.15 and 1.22.

As the ZINB model that considered the spatial autocorrelation structure had the lowest DIC, we
selected it as the best model. The RR of the interquartile range (IQR) increase in deforestation level
was 1.20, and the 95% CI was 1.15–1.24. The annual mean temperature (RR = 2.28, 95% CI = 2.10–2.47),
relative humidity (1.29, 1.21–1.38), amount of sunlight (1.18, 1.02–1.36), paddy field land cover (1.48,
1.37–1.59), and elevation (1.28, 1.19–1.38) showed significantly positive associations. Conversely,
population density (RR = 0.70, 95% CI = 0.66–0.74), number of farmers (0.89, 0.81–0.99), budget
dependency (0.81, 0.75–0.87), and forest land cover (0.75, 0.69–0.81) had significant negative associations.

Table 5 shows the results of the sensitivity analysis. All variables related to cumulative deforestation
levels between 1 and 6 years in the past had significant associations, and the point estimates tended to
increase with time up to 5 years.

Table 3. Relative risks of scrub typhus by interquartile range increase for each explanatory variable
from the non-spatial models.

Variables
Relative Risk (95% Credible Interval)

Poisson ZIP a NB b ZINB c

Deforestation 1.20 (1.20–1.21) 1.19 (1.19–1.20) 1.22 (1.17–1.27) 1.22 (1.18–1.26)
Population density 0.57 (0.57–0.58) 0.56 (0.55–0.57) 0.67 (0.64–0.70) 0.66 (0.63–0.69)

Farmers 0.76 (0.75–0.77) 0.73 (0.72–0.74) 0.94 (0.84–1.04) 0.93 (0.84–1.03)
Budget dependency 0.86 (0.85–0.87) 0.90 (0.89–0.92) 0.77 (0.72–0.82) 0.79 (0.74–0.84)
Mean temperature 1.97 (1.95–2.00) 1.98 (1.96–2.01) 2.43 (2.27–2.61) 2.47 (2.30–2.64)

Precipitation 1.02 (1.00–1.03) 1.02 (1.00–1.03) 0.97 (0.90–1.04) 0.97 (0.90–1.03)
Relative humidity 1.15 (1.14–1.16) 1.16 (1.15–1.17) 1.32 (1.25–1.40) 1.32 (1.25–1.40)
Total sunlight time 1.04 (1.01–1.08) 1.05 (1.02 -1.08) 1.10 (0.96–1.26) 1.11 (0.97–1.26)

Agriculture 1.51 (1.50–1.53) 1.50 (1.49–1.52) 1.46 (1.35–1.58) 1.44 (1.34–1.56)
Urban area 0.98 (0.98–0.99) 0.97 (0.97–0.98) 0.99 (0.96–1.02) 0.99 (0.96–1.02)

Forest 0.72 (0.71–0.74) 0.74 (0.73–0.76) 0.67 (0.62–0.73) 0.68 (0.63–0.73)
Elevation 1.27 (1.25–1.29) 1.30 (1.28–1.32) 1.30 (1.21–1.41) 1.31 (1.21–1.41)

DIC d 65,791.8 62,488.92 24,522.27 24,498.22

Note: Bayesian regression models with Integrated Nested Laplace Approximation (INLA) were used and the time
variable (year) was included as a random walk structure, but spatial structure was not considered in the model. a

Zero-inflated Poisson; b Negative binomial; c Zero-inflated negative binomial; d Deviance information criterion.



Int. J. Environ. Res. Public Health 2019, 16, 1518 6 of 10

Table 4. Relative risks of scrub typhus by interquartile range increase for each explanatory variable
from spatiotemporal models.

Variables
Relative risk (95% Credible Interval)

Poisson ZIP a NB b ZINB c

Deforestation 1.16 (1.15–1.17) 1.15 (1.14–1.16) 1.20 (1.15–1.25) 1.20 (1.15–1.24)
Population density 0.63 (0.62–0.65) 0.64 (0.63–0.65) 0.70 (0.67–0.74) 0.70 (0.66–0.74)

Farmers 0.86 (0.84–0.88) 0.83 (0.81–0.84) 0.92 (0.83–1.02) 0.89 (0.81–0.99)
Budget dependency 0.88 (0.87–0.90) 0.93 (0.91–0.95) 0.77 (0.71–0.83) 0.81 (0.75–0.87)
Mean temperature 1.65 (1.62–1.69) 1.69 (1.66–1.73) 2.24 (2.06–2.43) 2.28 (2.10–2.47)

Precipitation 0.93 (0.91–0.95) 0.92 (0.90–0.94) 0.94 (0.86–1.02) 0.92 (0.85–1.00)
Relative humidity 1.09 (1.07–1.11) 1.10 (1.09–1.12) 1.29 (1.20–1.38) 1.29 (1.21–1.38)
Total sunlight time 1.20 (1.14–1.25) 1.16 (1.11–1.22) 1.17 (1.02–1.36) 1.18 (1.02–1.36)

Agriculture 1.41 (1.39–1.42) 1.40 (1.39–1.42) 1.50 (1.39–1.62) 1.48 (1.37–1.59)
Urban area 0.97 (0.82–0.86) 0.97 (0.96–0.97) 1.00 (0.97–1.04) 1.00 (0.97–1.03)

Forest 0.84 (0.82–0.86) 0.88 (0.86–0.89) 0.73 (0.67–0.79) 0.75 (0.69–0.81)
Elevation 1.33 (1.30–1.35) 1.31 (1.28–1.33) 1.29 (1.20–1.39) 1.28 (1.19–1.38)

DIC d 52,380.41 49,848.48 24,187.01 24,109.29

Note: Bayesian regression models with INLA were used and the time variable (year) was included as a random walk
structure, and spatial autocorrelation was also considered with bym models. a Zero-inflated Poisson; b Negative
binomial; c Zero-inflated negative binomial; d Deviance information criterion.

Table 5. The results of the sensitivity analysis using different deforestation accumulation periods.

Accumulation Period for
Assessing Deforestation

Relative Risk (95% Credible
Interval)

Deviance Information
Criterion

One years 1.153 (1.116–1.192) 24,123.36
Two years 1.188 (1.146–1.233) 24,112.64

Three years 1.196 (1.152–1.242) 24,109.29
Four years 1.207 (1.161–1.256) 24,111.03
Five years 1.213 (1.167–1.261) 24,101.32
Six years 1.207 (1.162–1.255) 24,102.20

Note: The relative risks (RR) were for an increase in deforestation level by interquartile range, and the zero-inflated
negative binomial model with spatial autocorrelation, which had the lowest deviance information criterion value,
was used to produce the RR. Other variables were used to adjust for potential confounding effects, including
population density, the number of farmers, budget dependency, temperature, precipitation, relative humidity,
amount of sunlight, agricultural land use, urban land cover, forest land cover, and altitude.

4. Discussion

Using an ecological study design, this study examined the hypothesis that higher deforestation
levels increase the risk of scrub typhus. All of the results, including the sensitivity analysis, showed
that the incidence of scrub typhus tended to increase in the regions with greater deforestation.
Several covariates showed significant associations in the final model, including sociodemographic,
meteorological, and geographical variables.

The significant association between deforestation and scrub typhus was consistent with our hypothesis.
The hypothesis was based on the supposed underlying mechanism that deforestation-induced secondary
growth of scrub vegetation may increase the density of vectors. The finding is also consistent with
studies of other vector-borne diseases [15,32]. Nevertheless, there could be other explanations related
to the loss of diversity in wildlife communities from forest loss or habitat degradation [24]. First,
a decrease in rodent diversity could increase the risk of scrub typhus by loss of the dilution effect [33],
which is the theory that a higher host diversity (diversity of rodents in this case) decreases the risk of
vector-borne diseases in humans by lowering the contact rate between competent natural hosts and
infected vectors. Second, the decreased predator abundance or diversity induced by deforestation may
suppress predatory pressures on rodents, although there is little evidence supporting this explanation.
The association with deforestation seemed to be robust in this study, considering the results of the
sensitivity analysis, which showed consistency among the models using different periods to assess
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the cumulative deforestation level. This also showed that the effects of deforestation would last up to
5 years, because the effect size increased with time up to 5 years.

The associations with other covariates were also consistent with published results. Annual
mean temperature may increase the risk, possibly due to increasing mite activity [34], as reported
previously [10]. Greater agricultural land use may increase the risk, since agricultural activities
were risk factors, as previous studies have suggested [8,9]. Interestingly, the number of farmers
was negatively associated in the final model, probably because the agricultural land use per farmer
decreased as the number of farmers increased. However, the covariates should be interpreted cautiously
because the variables included in the model were selected to adjust the association with deforestation.
In other words, we may need to include other variables to adjust the effects of the covariates for
proper interpretation.

The results implied that the issue of forest conservation is not limited to environmental sectors;
public health authorities should also consider the problem. Although our results showed only the
potential effect of deforestation on scrub typhus, other vector-borne diseases such as severe fever
with thrombocytopenia syndrome, hemorrhagic fever with renal syndrome, and malaria are also
likely associated with deforestation, because the underlying mechanism is applicable to these diseases.
There is also evidence linking forest conservation to other public health benefits, such as improving
mental health [35], climate change adaptation [36], and reducing the health effect of air pollution [37].
Therefore, public health authorities should be engaged in development issues that include deforestation
and should evaluate their potential health impacts. This is an example of the One Health approach,
which was defined as “the collaborative effort of multiple disciplines—working locally, nationally and
globally—to attain the optimal health of people, animals, and our environment” by the American
Veterinary Medical Association [38].

This study has several limitations. First, it did not include interventions by health authorities,
such as education programs and public campaigns, due to a lack of data. Although adding these
variables could help determine the effects of the interventions, it would not affect the association between
deforestation and the incidence of scrub typhus, because an association between deforestation and the
intervention is unlikely. Second, the measurements of deforestation might not be accurate because they
were estimated from remote-sensing satellite images. However, the data showed reliability as they
were consistent with other data [19] and various studies have used such data [24,39,40], indicating
the acceptable validity of the data. Third, the modifiable areal unit problem [41] would produce bias
in the results, as we used aggregated data throughout the study. In other words, areal classifications
other than the administrative boundaries used in this study, such as rectangular grids with 1 km2

resolution, could give different results. Because the reported number of scrub typhus cases could
only be obtained from each district, follow-up studies with more sophisticated designs are needed
to examine whether the results can be replicated. Fourth, the spatial distribution of scrub typhus
was based on the registered residential address of the patient which would not represent where their
infection was acquired. While the potential bias would be practically inevitable, follow-up studies will
be needed to examine the replicability of the results. Fifth, some false negative scrub typhus cases
would be included in the analysis because we used not only confirmed cases but also suspected cases
to measure scrub typhus incidence. While it was inevitable since KCDC did not provide the specific
number of confirmed cases by district level, including suspected cases may be beneficial to offset the
false negatives by the laboratory tests. For example, although the IFA test shows high sensitivity, it is
costly and needs well trained experts [42]. Consequently, the sensitive test is likely less available in the
rural areas with higher incidence [43]. Nonetheless, interpretation of the study results with the current
case definition should be cautious, and studies using other case definitions (e.g., confirmed only or
categorized by laboratory test methods) should be followed.

Our findings showed that integrating environmental factors as a public health issue is important
for understanding the dynamics of infectious diseases [44], and health authorities should be more
engaged in conservation issues. Although we showed the association between deforestation and scrub
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typhus incidence in South Korea, further studies would be needed for generality of the study results
in other countries. That is because disease ecology varies by different regions. For example, one of
the vectors in Japan is Leptotrombidium akamushi which is mainly distributed in a basin of a river,
not in bush or scrub vegetation as Leptotrombidium pallidum and Leptotrombidium scutellare are
distributed in Korea.

5. Conclusions

In this study, we investigated the association between deforestation and scrub typhus incidence
in South Korea by using an ecological study design. The results showed that districts with higher
deforestation tended to have significantly higher incidence rates. Although the interpretation should
be cautious due to several study limitations, the potential positive association provides a novel
perspective for scrub typhus control and prevention. Follow-up studies are recommended to examine
the replicability of the study results not only in South Korea, but also in other endemic countries.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/9/1518/s1,
Figure S1: Data acquisition and preprocessing for forest cover and deforestation.
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