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Metabolic rates reflect the energetic cost of living but exhibit remarkable vari-

ation among conspecifics, partly as a result of the constraints imposed by

environmental conditions. Metabolic rates are sensitive to changes in tempera-

ture and oxygen availability, but effects of food availability, particularly

on maximum metabolic rates, are not well understood. Here, we show in

brown trout (Salmo trutta) that maximum metabolic rates are immutable but

minimum metabolic rates increase as a positive function of food availability.

As a result, aerobic scope (i.e. the capacity to elevate metabolism above base-

line requirements) declines as food availability increases. These differential

changes in metabolic rates likely have important consequences for how organ-

isms partition available metabolic power to different functions under the

constraints imposed by food availability.
1. Introduction
Whether migrating thousands of kilometres or diving towards the deep ocean

bottom, animals are capable of accomplishing remarkable aerobic feats. Not all

organisms, however, are endowed with such high metabolic power. Maximum

rates of aerobic metabolism are typically reached during or following exhaus-

tive exercise but can differ by up to threefold among individuals [1] and

greater than an order of magnitude across species [2]. The origins and scope

of this diversity are due in part to the energy demands associated with the

different ecological roles of organisms (e.g. [2,3]), but environmental conditions

can also constrain metabolic processes and contribute to observed variation.

Aerobic metabolism uses oxygen to convert food into more usable forms of

energy and, as such, is sensitive to both acute and long-term changes in both

temperature and oxygen availability [4–6]. However, we know little about

whether maximum metabolic rates are affected by food availability.

Changes in maximum metabolic rate (MMR) may have important conse-

quences for an organism’s ability to cope with variable food conditions. This is

because MMR not only defines the upper boundary to aerobic capacity, but

together with standard metabolic rate (SMR, the minimum oxygen consumption

required to maintain homeostasis) also determines an organism’s aerobic scope

(AS). AS is the absolute difference between maximum and SMR and is a measure

of the degree to which metabolism can be increased above baseline requirements

to finance important functions such as digestion, locomotion, growth and repro-

duction. SMR is thought to reflect the cost of maintaining the metabolic

machinery needed to finance MMR [7,8] and is known to be a flexible trait,

typically changing as an increasing function of food availability [9,10]. As such,
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Table 1. Results from linear models testing the effects of food level and
measurement time on the maximum metabolic rate (MMR), standard
metabolic rate (SMR), and aerobic scope (AS) measured before and after
juvenile brown trout (Salmo trutta) had been kept on low, intermediate or
ad libitum rations for one month.

trait parameter F d.f. p-value

MMR food 0.29 2,113 0.746

time 0.08 1,112 0.782

food � time 1.50 2,112 0.227

body mass 349.80 1,112 ,0.001

SMR food 2.83 2,113 0.063

time 1.18 1,113 0.279

food � time 9.08 2,113 ,0.001

AS food 1.04 2,113 0.357

time 0.37 1,112 0.545

food � time 4.24 2,112 0.017

body mass 245.18 1,112 ,0.001
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food-induced shifts in SMR may also affect MMR in parallel.

However, if MMR does not increase with food intake then

AS would be expected to become more constrained at higher

food availabilities, but this remains untested. Here, we use a

food manipulation experiment to examine flexibility in the

standard and maximum metabolic rates of juvenile brown

trout (Salmo trutta) in response to food availability and its

consequences for AS.
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Figure 1. Change in maximum metabolic rate (MMR), standard metabolic
rate (SMR), and aerobic scope (AS) of juvenile brown trout as a function
of changing food availability. SMR and MMR were first measured after fish
had been on an intermediate ration for 28 days and then again after they
had been switched to either a lower, intermediate (i.e. the same as pre-
viously), or higher ad libitum ration for an additional 28 days. AS is
defined as the difference between SMR and MMR for each fish. Plotted
are back-transformed metabolic rate values (+ 95% CI) standardized
for a 10 g fish; positive/negative values indicate an increase/decrease in
metabolic rate relative to initial values. Change in maximum metabolic
rate (MMR), standard metabolic rate (SMR), and aerobic scope (AS) of
juvenile brown trout as a function of changing food availability. SMR
and MMR were first measured after fish had been on an intermediate
ration for 28 days and then again after they had been switched to
either a lower, intermediate (i.e. the same as previously), or higher
ad libitum ration for an additional 28 days. AS was defined as the differ-
ence between SMR and MMR for each fish. Plotted are back-transformed
metabolic rate values (+ 95% CI) standardized for a 10 g fish; positive/
negative values indicate an increase/decrease in metabolic rate relative to
initial values.
2. Material and methods
Juvenile wild-caught brown trout were collected and brought into

the laboratory, housed in individual compartments in a flow-

through stream system, and fed ad libitum for three months while

they acclimated to the temperature controlled room (11.5+
0.58C) and its 12 L : 12 D cycle. Fish (n ¼ 116) were then placed

on an intermediate food ration (see below). After 28 days, their

standard and maximum metabolic rates were measured. At this

time, the fish ranged in body mass from 5.37 to 12.67 g (mean+
1 s.e.: 8.45+0.13 g). The fish were then placed on one of three

rations: one-third of the fish remained on the intermediate ration,

while the other two-thirds were placed on either a low or an ad libi-
tum ration until their metabolic rates were measured again 28 days

later. Rations (in calories) for each fish were calculated as a function

of its body mass (W, g) and the water temperature (T, 8C) for the

three food levels as follows: low food¼ 2.04 W0.73e(0.10T ), inter-

mediate food¼ 2.91 W0.737e(0.154T ) and ad libitum food¼ 4.29

W0.767e(0.21T ) [11]. The daily ration (mg trout pellets) for each fish

was then determined by converting the required daily caloric

intake into trout pellets (mg) using values for the energetic content

of the trout pellets (Inicio Plus from BioMar Ltd, Grangemouth,

UK). Body mass was measured half way in between respirometry

trials to adjust food rations as the fish grew.

Both SMR and MMR were measured at 11.58C. Fish were

fasted for 48 h prior to measurement of their SMR to ensure

that the additional metabolic costs of digestion did not inflate

estimates of their baseline oxygen consumption [12–14]. SMR

was measured over a 20 h period using continuous flow-through

respirometry. Water flowed through the glass respirometry

chambers (400 ml volume) at 1.47 l h21 for the first metabolic

measurement and then at 1.68 l h21 for the second measurement

28 days later to accommodate fish growth. These flow rates
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ensured that oxygen consumption rates were detectable but

oxygen levels remained above 80% saturation. SMR was calcu-

lated by taking the mean of the lowest 10th percentile of

oxygen consumption measurements after excluding the lower

outliers, i.e. those measurements below 2 s.d. from this mean

[1,10]. MMR was then determined using an exhaustive chase

protocol followed immediately by measurement of peak excess

post-exercise oxygen consumption using closed-system respiro-

metry [1,10]. Briefly, each fish was chased to exhaustion (less

than 2 min) against a circular current (600 l h21) in a bucket.

Exhaustion was determined when a fish could no longer swim

and was unresponsive when picked up by hand. It was then

transferred immediately (less than 10 s) to a glass respirometry

chamber (400 ml volume) in a closed system where water circu-

lated at 7.35 l h21 by way of a peristaltic pump. Values of SMR

and MMR for each fish were then used to calculate their AS

(AS ¼MMR 2 SMR).

We used the PROC MIXED procedure in SAS v. 9.3 (SAS Insti-

tute, Cary, NC, USA) to test whether metabolic rates changed with

food availability. Metabolic rates and body mass were log10-trans-

formed prior to analyses. Each model included metabolic rate as the

dependent variable, food level and measurement time and their

interaction as categorical predictors, and fish identity as a

random effect to control for repeated measures. When the inter-

action between food regime and measurement time was

statistically significant, changes in metabolism were further evalu-

ated by testing whether the final metabolic measurement was

significantly different from the initial measurement for each food

regime. There was heterogeneity in the slopes of SMR versus

body mass within but not across measurements, so we used the

model explained above to examine changes in mass-independent

SMR by using the residuals of each metabolic trait as a function

of the body mass of all fish across both measurements. All data

are available in the Dryad Digital Repository [15].
3. Results
MMR did not change in response to food availability (table 1

and figure 1). However, SMR changed over that same treat-

ment period, with the direction of change differing between

food levels (table 1 and figure 1). Fish decreased their

SMR when switched to the lower food level (t113 ¼ 22.66,

p ¼ 0.009), did not change their SMR when kept on the same

intermediate ration (t113 ¼ 1.22, p ¼ 0.23), and increased their

SMR when switched to the higher ad libitum rations (t113 ¼

3.27, p ¼ 0.001). As a result of these shifts in SMR but not

MMR, AS was also influenced by food level (table 1 and

figure 1): it was unaltered in fish switched to the lower food

level (t113 ¼ 1.23, p ¼ 0.223) or kept on the same intermediate

ration (t113 ¼ 0.17, p ¼ 0.869), but decreased in fish switched

to ad libitum rations (t113 ¼ 22.14, p ¼ 0.034).
4. Discussion
The key result from our study is that SMR changed in response

to food intake without any corresponding shift in MMR.

This differential sensitivity among the two components of

metabolism is contrary to the hypothesis that SMR reflects

the idling cost of the metabolic machinery needed to finance

MMR [7,8] and, by extension, its prediction that changes in

SMR should lead to corresponding changes in MMR. Rather,

contrasting responses of SMR and MMR suggest that

they are controlled by different underlying processes. Food

intake is known to affect the masses of organs such as the vis-

cera that contribute to whole organism SMR [16]. By contrast,

skeletal muscle is thought to be the predominant contributor

to MMR [17], but tends to decrease in mass only in response

to prolonged starvation [18]. Thus, MMR may change in

response to these more extreme conditions and warrants

further attention.

Differential changes among SMR and MMR may, in turn,

affect metabolic budgeting decisions because of their conse-

quences for AS. AS represents the overall capacity to fuel

functions above baseline energy expenditure and is known to

have a positive effect on feeding capacity [19], locomotor

ability [20] and growth rate [1]. However, animals cannot

meet the aerobic demands of all of these functions simul-

taneously, so trade-offs can arise [21]. For example, swimming

ability can be sacrificed to prioritize the allocation of aerobic

power to digestion [22–24]. A decrease in AS with increasing

food levels may therefore represent an increasing constraint

on the organism [21]. However, it is important to note that the

effect of food availability on AS that we observed is driven

entirely by a change in SMR which itself can also have positive

effects on growth rate [10] as well as digestion efficiency [25].

As such, the overall impact of metabolic flexibility on organis-

mal performance will likely depend on the costs and benefits

associated with changes in both these metabolic traits.
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