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1  | INTRODUC TION

Previous genome‐wide association studies (GWASs) have identi‐
fied a large number of SNPs associated with complex traits and 
diseases.1‐3 A big challenge after GWAS is to explain the functions 
of the identified SNPs, and to illustrate the mechanisms underly‐
ing the associations. Notably, only 7% of the identified variations 

are located in protein‐coding regions,4,5 and the majority of dis‐
eases‐associated variations are unlikely to affect the protein func‐
tions by changing the amino acid sequence. DNA methylation 
plays an important role in regulating expression of target gene. 
DNA methylation at promoter is dynamically linked to gene ac‐
tivity, and could directly influence the patterns of gene expres‐
sion and cellular differentiation.6 Aberrant DNA methylation in 
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Abstract
Genetic variants have potential influence on DNA methylation and thereby regu‐
late mRNA expression. This study aimed to comprehensively reveal the relationships 
among SNP, methylation and mRNA, and identify methylation‐mediated regulation 
patterns	in	human	peripheral	blood	mononuclear	cells	(PBMCs).	Based	on	in‐house	
multi‐omics datasets from 43 Chinese Han female subjects, genome‐wide associa‐
tion trios were constructed by simultaneously testing the following three association 
pairs: SNP‐methylation, methylation‐mRNA and SNP‐mRNA. Causal inference test 
(CIT) was used to identify methylation‐mediated genetic effects on mRNA. A total 
of 64,184 significant cis‐methylation quantitative trait loci (meQTLs) were identified 
(FDR	<	0.05).	Among	the	745	constructed	trios,	464	trios	formed	SNP‐methylation‐
mRNA regulation chains (CIT). Network analysis (Cytoscape 3.3.0) constructed multi‐
ple complex regulation networks among SNP, methylation and mRNA (eg a total of 43 
SNPs	simultaneously	connected	to	cg22517527	and	further	to	PRMT2,	DIP2A	and	
YBEY).	The	regulation	chains	were	supported	by	the	evidence	from	4DGenome	da‐
tabase, relevant to immune or inflammatory related diseases/traits, and overlapped 
with previous eQTLs from dbGaP and GTEx. The results provide new insights into 
the regulation patterns among SNP, DNA methylation and mRNA expression, espe‐
cially for the methylation‐mediated effects, and also increase our understanding of 
functional mechanisms underlying the established associations.
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cancer was associated with abnormally regulated expression of 
normal cellular genes.7 Recently, disrupted DNA methylation pat‐
terns were established as a contributor to metabolic syndrome,8,9 
schizophrenia10,11 and inflammatory or autoimmune disorders.12,13 
The feature and distribution of DNA methylation have been stud‐
ied in a variety of tissues/cells, and these genome‐wide maps of 
DNA methylation have revealed interesting features and provided 
important insights into its potential functions in genome regula‐
tion.14,15 However, the functional mechanism underlying the vari‐
ation in DNA methylation itself is still largely unknown. Previous 
studies have revealed that DNA methylation at specific loci can be 
influenced by sequence variations.16‐19 So far, how these genetic 
variations exert their effects was largely unknown, for example, it 
is unknown whether the SNPs exert their effects on DNA methyl‐
ation and ultimately affects the gene expression.

Genome‐wide expression quantitative trait locus (eQTL) analysis 
is a well‐known method to explore genetic effect of SNP on gene 
expression. This approach has extensively been used to investi‐
gate the associations between SNP and other target phenotype 
(eg methylation level11,16‐19) or between two phenotypes (eg DNA 
methylation and gene expression15).	Methylation	quantitative	 trait	
locus (meQTL) analysis is a kind of improved eQTL method that has 
been used to investigate the associations between SNPs and the 
methylation levels.16‐19 Another study has assessed the associations 
between DNA methylation and gene expression, that is, expression 
quantitative	trait	methylation	(eQTMs).15 However, such QTLs stud‐
ies were largely limited to testing one single pair of association only. 
Because of lack of multiple‐omics data from the same set of samples, 
the complex triangle relationship between SNP, DNA methylation 
and mRNA expression was undefined yet.

This study conducted multi‐omics integrative analyses as well 
as causal inference test (CIT)20 to reveal the complex connections 
among SNP, DNA methylation and mRNA expression, and identified 
DNA methylation‐mediated regulation effects in peripheral blood 
mononuclear	cells	 (PBMCs),	a	commonly	used	target	cell	 in	 immu‐
nity studies.

2  | MATERIAL S AND METHODS

2.1 | Subjects and PBMC isolation

The study was approved by the Institutional Research Ethic Board at 
Soochow University. Table S1 showed the basic characteristics of 43 
study subjects. The human subjects included 43 unrelated Chinese 
Han adult females from Suzhou city of China, which were recruited 
originally for identifying risk molecules of rheumatoid arthritis. 
Subjects were excluded from serious diseases involving vital organs 
(brain, liver, kidney, heart or lung). All subjects signed informed con‐
sent forms before entering this project. A total of 15 ml peripheral 
blood was collected and stored in sodium‐citrate‐supplemented 
vacuum	tubes.	PBMCs	were	isolated	using	density	gradient	centrifu‐
gation	 using	 Lymphoprep	 (Sigma,	 life	 science,	 USA).	 PBMCs	were	
divided into two equal parts, one for DNA extraction, and the other 

for RNA extraction after treatment of Trizol reagent (Invitrogen, 
Carlsbad, CA) to avoid RNA degradation.

2.2 | Genome‐wide SNP genotyping, DNA 
methylation profiling and transcriptome profiling

DNA	was	extracted	from	the	isolated	PBMCs	using	phenol‐chloroform	
extraction and ultrapurification method.21 The quality of extracted 
DNA was first tested by 0.8% agarose gel electrophoresis to check the 
integrity (usually > 10KB main band). The OD260/280 of 1.7‐1.9 by 
NanoDrop ND‐1000 (Thermo Scientific, Wilmington, Delaware) spec‐
trophotometer was the QC cutoff of the DNA purification. Affymetrix 
Genome‐Wide Human SNP Array 6.0 chips were used for SNP geno‐
typing by following the protocol recommended by the manufacturer. 
The experiments were performed in the laboratory of CapitalBio 
Corporation (Beijing, China). We used the contrast QC greater than 
0.4 for quality control. A total of 909,622 SNPs in each subject were 
genotyped. After excluded the SNPs with a minor allele frequency less 
than 5%, or a call‐rate less than 95%, 551,745 SNPs were finally used 
in further analysis. All analyses are based on human reference genome 
37 version assembly annotations.

DNA methylation profiling was performed with Illumina 450K 
Infinium	 Methylation	 BeadChip	 according	 to	 the	 manufacturer's	
instructions in the laboratory of CapitalBio Corporation (Beijing, 
China). DNA methylation data quality control consist of sample QC 
(subjects with more than 5% probes with a detection P > 0.05 were 
removed) and probe QC (probes with a detection P > 0.05 more than 
5% subject were excluded). DNA methylation data normalization con‐
tains background adjustment, colour‐bias adjustment, quantile nor‐
malization	and	beta	mixture	quantile	(BMIQ)	method	normalization.	
The background adjustment was performed in GenomeStudio. Then, 
colour‐bias adjustment and quantile normalization were performed in 
the	R	package	lumi,	followed	by	the	BMIQ	normalization	to	eliminate	
the bias between probe types. The methylation level was measured 
as beta (β)	=	M/(M	+	U),	in	which	M	was	the	methylated	signals	and	U	
was the unmethylated signals. The β value ranges continuously from 
0 (unmethylated) to 1 (fully methylated). After normalization, 416 285 
methylated sites were left for further data processing.

Total	RNA	was	extracted	from	PBMCs	according	to	the	instructions	
recommended	by	the	manufacturer.	The	OD260/280	of	≥1.8	was	the	
QC cutoff of the RNA purification (NanoDrop ND‐1000 spectrophotom‐
eter). RNA integrity was determined with 1% formaldehyde denaturing 
gel electrophoresis and Agilent 2100 Bioanalyzer. 28S/18S rRNA ratio 
of	≥1.5	and	RIN	>7	were	used	as	the	eligible	criteria.	The	transcriptome‐
wide	mRNA	expression	was	profiled	using	lncRNA&mRNA	Human	Gene	
Expression	Microarray	V4.0	(CaptialBio	Corp,	Beijing,	China).	The	data	
were	extracted	by	Agilent	Feature	Extraction	(V10.7).	The	data	summary,	
normalization and quality control were performed with GeneSpring GX 
program	(V12.0).	The	log2	transformation	was	applied	using	the	Adjust	
Data function. The probes with less than 80% of detection rate and/
or	 incomplete	 annotation	 information	 were	 filtered	 (Multiexperiment	
Viewer	(MeV)	software	(http://www.tm4.org)).	Subsequently,	a	total	of	
17,566 unique mRNA probes were used for further analysis.

http://www.tm4.org
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2.3 | Quantitative trait locus analyses for three pairs 
(SNP & methylation, SNP & mRNA and methylation 
& mRNA

All the three quantitative trait locus (QTL) analyses were performed 
with	the	MatrixEQTL	package	modelled	in	R	software	(freely	avail‐
able at http://cran.r‐proje ct.org/).15,22‐25 Here, we defined the QTL 
analyses	 for	 three	 association	 pairs	 (SNP	 &	 methylation,	 SNP	 &	
mRNA	and	methylation	&	mRNA)	as	meQTL,	eQTL	and	eQTM,	re‐
spectively.	Multivariate	linear	regression	analysis	was	conducted	for	
each QTL analysis after adjusting for age and disease states of rheu‐
matoid arthritis. Compared to trans‐effects, cis‐effects were much 
larger and be more stable.26‐30 So, in order to enhance the reliabil‐
ity of the results, this study focused on the cis‐effect. SNPs located 
within	1	megabase	(Mb)	on	either	side	of	methylation	sites	was	sup‐
posed	to	exert	local	effect	(cis‐meQTLs).	For	the	cis‐eQTL	analysis,	
SNPs	were	also	confined	within	1	Mb	distant	from	the	transcription	
start	site	(TSS)	or	transcription	end	site	(TES)	of	mRNAs.	For	the	cis‐
eQTM	analysis,	methylation	sites	were	confined	within	1	Mb	distant	
from TSS or TES of mRNAs. Benjamini‐Hochberg false‐discovery 
rate	(FDR)	was	used	to	correct	for	multiple	testing.

2.4 | CIT for DNA methylation‐mediated genetic 
effect on mRNA expression

To identify DNA methylation‐mediated effect on mRNA expression, 
we first constructed the associated trios according to the analysis 
results of the above three pairs. The associated trios were gener‐
ated according to the physical positions of SNPs and methylation 
sites in genes with known official names. Herein, CIT31,32 was ap‐
plied to identify methylation‐mediated association between SNPs 
and mRNAs. Briefly, the causal inference simultaneously requires 
the following four criteria: SNP and mRNA expression is associated; 
SNP is associated with methylation level after adjusting for mRNA; 
Methylation	 is	 associated	 with	 mRNA	 after	 adjusting	 for	 SNP;	
and SNP is independent of mRNA expression after adjusting for 

methylation level.31,32 The covariates, age and disease status, were 
adjusted in the above four tests. The maximum of the test P‐values 
was reported as the CIT P‐Value.	CIT	was	performed	in	SAS	9.2	soft‐
ware (SAS Institute Inc, Cary, North Carolina).

2.5 | Construction of SNP‐methylation‐mRNA 
interaction network

Based on CITs, the fulfilled association trios (SNP‐methylation‐
mRNA) were selected to construct gene regulatory network. All 
network data were visualized using open source bioinformatics soft‐
ware Cytoscape 3.3.0 (Institute of Systems Biology in Seattle).33

2.6 | Linkage disequilibrium analysis

Since multiple nearby SNPs from SNP‐methylation‐mRNA regula‐
tory chains were simultaneously connected to single methylation 
site, we conducted linkage disequilibrium (LD) analysis for those 
nearby	 SNPs	 in	 HaploView	 4.2	 using	 the	 data	 of	 1000	 Genomes	
Project34 (2504 volunteer donors from various ethnic populations). 
We also obtained the LD measure r2, which represents the statistical 
correlation between two SNPs of interest and is frequently used in 
LD mapping because of its statistical advantages and strong theo‐
retical basis for population genetics. When r2 = 0, it shows that the 
two loci are completely independent, and r2 = 1 means SNPs at the 
two loci sharing the same frequency.

2.7 | The identified SNP‐methylation‐mRNA chains 
overlapped with previous results

To find whether the identified associations in significant SNP‐
methylation‐mRNA chains were reported by previous studies, 
we searched the databases of Phenotype‐Genotype Integrator 
(PheGenI) (www.ncbi.nlm.nih.gov/gap/PheGe nI/), National Human 
Genome Research Institute (NHGRI) Catalog of published GWAS 
(GWAS Catalog), GTEx Portal (https ://www.gtexp ortal.org/), and 

meQTLs eQTMs eQTLs

Test SNP	&	methylation Methylation	&	
expression

SNP	&	expression

Window size 1	MB 1	MB 1	MB

FDR 5% 5% 5%

Number of tests 144 470 159 10 944 256 5 880 162

Maximum	P‐value 2.22E‐05 1.28E‐05 4.39E‐06

Cis‐effect pairs 64 184 2 795 525

SNP 40 896 — 471

Methylation 16 033 2 090 —

mRNA — 837 140

eQTLs, Expression quantitative trait loci, the association between SNP and gene expression; 
eQTMs,	Expression	quantitative	trait	methylation,	the	associations	between	DNA	methylation	and	
gene	expression;	FDR,	Benjamini‐Hochberg	false‐discovery	rate;	meQTLs,	Methylation	quantita‐
tive trait loci, the association between SNPs and methylation level.

TA B L E  1   Summary of associations in 
meQTLs,	eQTMs	and	eQTLs

http://cran.r-project.org/)
http://www.ncbi.nlm.nih.gov/gap/PheGenI/
https://www.gtexportal.org/
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the 4DGenome, a general repository for chromatin interaction data 
(https ://4dgen ome.resea rch.chop.edu/).

3  | RESULTS

3.1 | Cis‐meQTL identification and distribution 
characteristics

A total of 551 745 genotyped SNPs and 416 285 methylation lev‐
els were tested. Among the 144 470 159 tested cis‐meQTL pairs, 
64	184	pairs	were	significant	(FDR	<	0.05),	which	corresponded	to	
40 896 unique SNPs and 16 033 unique methylation sites (Table 1 
and	Table	S2).	As	shown	in	Figure	1,	the	plots	significantly	deviated	
from the reference line for both cis‐meQTLs and trans‐meQTLs, but 
more rapidly for cis‐meQTLs, suggesting that the significant regu‐
lation effects of SNPs on methylation were relatively stronger for 
cis‐meQTLs than for trans‐meQTLs in general.

Specifically, for the methylation sites in CpG regions, we iden‐
tified 42 131 (65.64%: 42 131/64 184) significant cis‐meQTL pairs. 
These corresponding methylation sites were distributed at CpG is‐
land (N = 15 738, 24.52%), CpG shore (N_shore and S_shore, 0‐2 Kb 
from CpG island) (N = 19 005, 29.61%) and CpG shelf (N_shelf and 
S_shelf,	2‐4	Kb	from	CpG	island)	 (N	=	7	388,	11.51%)	 (Figure	2A).	
The shores and shelves were annotated according to their chro‐
mosome orientation from the p‐ to q‐arms as in N‐ and S‐shores, 
respectively.	 As	 presented	 in	 Figure	 2B,	 according	 to	 annotation	
of gene region feature category by UCSC (http://www.genome.
ucsc.edu), the corresponding SNPs were distributed in gene body 
(39.76%),	TSS	1500	(−1500	to	−200	bp	to	TSS)	region	(17.79%),	TSS	

200	(−200	bp	to	TSS)	region	(8.72%),	5′‐UTR	(8.40%),	as	well	as	1st	
exons (3.30%).

The distribution of the physical distance from SNPs to their associ‐
ated	methylation	sites	for	all	the	significant	cis‐meQTLs	(FDR	<	0.05)	
was	presented	 in	Figure	2C.	An	obvious	peak	 in	frequency	around	
the methylation sites was observed, suggesting that the SNPs from 
the significant meQTLs were enriched around methylation sites. 
Similarly, the most effective SNPs were enriched around the methyl‐
ation sites, indicating that the closer to methylation sites, the greater 
effects	of	the	SNPs	on	methylations	in	general	(Figure	2D).

3.2 | Identification of the SNP‐methylation‐mRNA 
regulation chain

We further tested the associations of the following two pairs, methyla‐
tion‐mRNA	by	eQTMs	and	SNP‐mRNA	by	eQTLs.	As	shown	in	Table	1,	
we identified 2,795 local significant methylation‐mRNA associations (cis‐
eQTMs)	(FDR	<	0.05),	and	525	significant	local	effect	SNP‐mRNA	pairs	
(cis‐eQTLs)	(FDR	<	0.05).	According	to	the	physical	positions	of	SNPs	and	
methylation sites in the corresponding genes with official names, the 
significant pairs from the above three association tests were matched 
and the overlapped pairs were selected to construct SNP‐methylation‐
mRNA association trios. Consequently, 745 trios were generated, which 
corresponded to 272 unique SNPs, 65 unique methylations and 47 
unique target mRNAs. In‐depth CIT analysis showed that 464 trios ful‐
filled significant causal inference. Specifically, 191 SNPs were associated 
with mRNA expressions of 37 genes, which were dependently through 
56 methylation sites. Notably, 21 SNPs were simultaneously associated 
with the same methylation site (cg22517527) and the same gene expres‐
sion	(PRMT2).	The	statistical	results	for	the	464	methylation‐mediated	
genetic effects on mRNA expressions were detailed in Table S3, includ‐
ing effect directions and P‐values under all the tested conditions.

3.3 | Construction of SNP‐methylation‐mRNA 
interaction network

Figure	 3	 demonstrated	 the	 epi‐genetic	 regulation	 patterns	 among	
171 SNPs, 56 methylation sites and 37 target genes from 464 causal 
trios. We found a primary network and several small separate net‐
works, which showed their complex regulation patterns. Notably, 
it was common that multiple SNPs are connected to a few limited 
methylation	sites	or	mRNAs.	For	example,	43	SNPs	simultaneously	
influenced methylation at cg22517527 and further regulated mRNA 
expression	of	PRMT2	(protein	arginine	methyltransferase	2),	DIP2A	
(disco‐interacting	 protein	 2	 homolog	 A)	 and	 YBEY	 (ybeY	metallo‐
peptidase).	 Besides,	 20	 SNPs	 regulated	 YBEY	 expression	 through	
methylation	at	 the	cg20399509,	and	30	SNPs	 regulated	YBEY	ex‐
pression by methylation at the cg12516959.

3.4 | LD analysis

LD analyses for the SNPs physically located closely in the same chro‐
mosome	were	performed	by	using	the	HaploView	and	the	genotype	

F I G U R E  1   Quantile‐quantile plots of the associations from 
meQTL analyses. Local P‐value: P‐value from cis‐meQTLs, in 
which	the	SNPs	located	within	1	megabase	(Mb)	on	either	side	of	
methylation sites; Distant P‐value: P‐value from trans‐meQTLs, in 
which	the	SNPs	located	outside	1	megabase	(Mb)	on	either	side	of	
methylation sites

https://4dgenome.research.chop.edu/
http://www.genome.ucsc.edu
http://www.genome.ucsc.edu
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data of 1000 Genomes Project. As we expected, strong LD structure 
was	detected	for	most	of	the	analysed	SNPs.	As	shown	in	Figure	4,	we	
have found 7 LD blocks (3 in Chr21, 2 in Chr1, 1 in Chr11 and 1 in Chr6). 
For	example,	an	SNP	group	(10	SNPs)	in	the	Block	1	of	Chr21	formed	
an	 extremely	 strong	 LD	 block	 (the	 first	 sub‐network	 in	 Figure	 3),	
which simultaneously influenced five methylation sites (cg00612595, 
cg02776659, cg09417038, cg12516959 and cg20399509) and fur‐
ther	 regulated	 mRNA	 expression	 of	 YBEY.	 In	 the	 Block	 1	 of	 Chr1,	
21 SNPs also formed a strong LD block, which correspond to the 21 
SNPs‐cg04982190‐NCF2	regulation	chains	(the	second	sub‐network	
in	Figure	3).	Besides,	another	group	(16	SNPs)	had	strong	LD	in	chro‐
mosome 1, which were simultaneously connected to cg05043910 and 
further regulated mRNA expression of TSGA10 (the third sub‐network 
in	Figure	3).

3.5 | Supported evidence from 4DGenome database 
for the identified SNP‐methylation‐mRNA chains

To find additional evidence to support the identified SNP‐meth‐
ylation‐mRNA chains, we searched the 4DGenome database 
based on their physical positions (hg19). The information of the 

SNP‐Methylation‐mRNA	 chains,	 their	 located	 interactions,	 detec‐
tion methods and the detected cells/tissues were listed in Table S4. 
We found 89 significant interactions that correspond to 38 unique 
SNP‐Methylation‐mRNA	chains	in	23	types	of	cells/tissues	including	
CD4 T cell, an important immunity related cell. Especially for the 
rs8069739‐cg08322244‐VAMP2,	about	33	interactions	were	iden‐
tified in a variety of cells, for example, in the CD4 T cells, rs8069739 
and	VAMP2	were	located	in	Interactor	B	and	cg08322244	was	lo‐
cated in Interactor A.

3.6 | The SNP‐methylation‐mRNA chains relevant 
to immune or inflammatory related diseases/traits

Among the 191 SNPs and 37 genes involved in the identified causal 
trios, 19 SNPs and 7 genes were reported to be significantly associ‐
ated with human diseases/traits (Table S5), as archived in the NHGRI 
database and the database of Genotypes and Phenotypes (dbGaP). 
The associated diseases/traits included rheumatoid arthritis, mul‐
tiple sclerosis, systemic lupus erythematosus, inflammatory bowel 
disease and crohn disease, which are immune or inflammatory re‐
lated diseases/traits.

F I G U R E  2   The distribution of cis‐meQTL associated methylation sites. (A) The distribution according to their positions in the UCSC 
CpG island region. (B) The distribution according to gene region feature category (UCSC). (C) The frequency distribution Note: Distance 
indicates the physical distance from SNP to their associated methylation site. (D) The distribution according to association significance (‐
log10(P‐value)) against the physical distance from SNP to their associated methylation site
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3.7 | The identified SNP‐methylation‐mRNA 
chains overlapped with previous eQTLs from 
dbGaP and GTEx

The identified regulation chains also probably provide functional 
explanations for previous eQTL results. After searched the dbGaP 
according to SNP ID, 16 eQTLs had been reported in lymphoblas‐
toid and liver, which correspond to 13 unique SNPs and 6 genes. 
Meanwhile,	 the	GTEx	Portal	was	also	 retrieved	 for	more	 support‐
ive information, and it was found 112 eQTLs results containing 74 
unique SNPs and 10 genes (Table S6).

4  | DISCUSSION

DNA methylation is known as an important epigenetic regulatory 
factor in mediating the correlations between genetic variants and 
mRNAs.35,36 EQTL analysis is a typical and powerful statistical 
method in explaining the functional link between SNP and disease/
trait.27,37‐39 Several studies have supported that cis‐acting QTLs 

have large effect sizes that can be detected in a relatively small 
sample less than 100 subjects.16,40‐42 A large number of cis‐meQTL 
associations identified in our study have suggested that DNA meth‐
ylation levels were under strong genetic influence. Previous meQTL 
studies also found abundant local effects in other tissues.22,43‐45 
Furthermore,	 an	 obvious	 peak	 observed	 around	 the	 methylation	
sites suggested that the physical distance seemed to have large ef‐
fect on their associations, that is, the more close to methylation site, 
the greater effect for the associations. Our findings suggested that 
methylation sites were typically associated with SNPs in close prox‐
imity. The significant SNPs in our cis‐meQTL analysis were mostly 
located in gene regions, including gene body and the promoter. It is 
because that genetic influence on the human methylome involves 
heterogeneous processes and is predominantly dependent on local 
sequence context at the meQTL sites.45,46

This study represents the first efforts of conducting integrative 
multiple omics analyses by multiple QTL tests and in‐depth CIT to 
more comprehensively reveal methylation‐mediated regulation ef‐
fects. CIT provides a highly interpretable quantitative measure for 
a trio of variables when association between two implies causation 

F I G U R E  3   The constructed networks based on the significant SNP‐methylation‐mRNA regulatory chains. Cytoscape 3.3.0 was used 
to establish the networks. The SNP, DNA methylation and mRNA from significant CIT trios were imported. Purple nodes represent SNPs, 
grey nodes represent DNA methylation and pink nodes represent mRNA. Red dot edges represent negative regulation between two nodes. 
Green solid lines represent positive regulation between two nodes
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F I G U R E  4  Linkage	disequilibrium	(LD)	analysis.	HaploView	4.2	was	used	to	analyse	the	linkage	disequilibrium.	The	SNPs	used	in	LD	
analysis are from the significant SNP‐methylation‐mRNA regulatory chains. The shades of colour represent r2, deeper colour represent the 
higher value of r2. Each number in cell represents r2 between neighbouring SNPs. The black cells without numbers means r2 = 1
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and the third is a potential mediator.32 This method is theoretically 
and computationally accessible in disentangling molecular relation‐
ships,47 and was proposed as a novel statistical framework in which 
existing notions of causal mediation were formalized into a hypoth‐
esis test.

The identified 464 regulation chain of SNP‐methylation‐mRNA 
suggest that DNA methylation can emerges both as marker and de‐
terminant.15	For	instance,	we	found	43	SNPs	further	regulates	gene	
expression	of	PRMT2,	DIP2A	and	YBEY	by	regulating	methylation	
levels of cg22517527. Two SNPs (rs4970774 and rs3814309) neg‐
atively	regulated	the	GSTM1	and	GSTM4	by	negatively	controlling	
seven methylated sites collectively. The SNP rs12484710 positively 
regulated cg26000393, cg25787886 and cg14194956 so that to in‐
fluence the expression of APOBEC3A and APOBEC3B. LD analy‐
sis was conducted in SNPs physically located closely by using the 
HaploView	 and	 1000	 Genomes	 Project.	 Strong	 LD	 structure	 was	
identified for most of the analysed SNPs. Nevertheless, the SNPs 
closest to the significant methylation site is likely to be most effec‐
tive in regulation, but when multiple SNPs are in strong LD in the de‐
tected region, it is challenging to discriminate which SNP within the 
same	LD	region	is	truly	causative.	Moreover,	whether	and	how	the	
SNPs influences the methylation structure and then regulates gene 
expression is unclear yet. These regulatory networks can provide a 
basis for future functional studies. Herein, we propose that some 
DNA sequence variants, through changing the methylation levels, 
hence influences the gene expressions.

To find more evidence to support the identified SNP‐meth‐
ylation‐mRNA regulatory chains, we searched the 4DGenome. 
4DGenome is a public database that archives and disseminates chro‐
matin interaction data. It covers all major experimental technologies 
including chromosome conformation capture (3C), chromosome 
conformation capture‐on‐chip (4C), chromosome conformation cap‐
ture carbon copy, ChIA‐PET, Hi‐C, Capture‐C and a computational 
prediction	 of	 IM‐PET	 for	 detecting	 chromatin	 interactions.	 The	
interaction paired sequence tags archived in this database implies 
the corresponding pair of DNA regions is in close physical proxim‐
ity and probably functionally interacts. We found 89 results includ‐
ing 38 unique SNP‐methylation‐mRNA chains overlapped with the 
4DGenome database. The results from 4DGenome database pro‐
vide additional understanding of chromatin architecture how SNP, 
methylation and mRNA are tightly related.

The identified regulation chains probably provide functional ex‐
planations for the associations of SNPs and diseases. We searched 
for	the	Phenotype‐Genotype	Integrator	and	GWAS	Catalog.	PBMCs	
consist of several important immunity cells, which play a decisive 
role in the process of immune or inflammatory response. It was 
found some SNPs and genes in SNP‐methylation‐mRNA chains were 
related to the immune or inflammatory disease/trait by searching for 
the	database.	For	instance,	RNASET2	regulated	by	rs1819333	is	as‐
sociated with inflammatory bowel diseases and crohn disease, which 
further illustrated that significant association of SNPs and genes 
in SNP‐methylation‐mRNA chains, may play a decisive role in the 
process	 of	 immune	 response	 in	PBMCs.	 These	overlapped	 results	

suggested that the methylation is a probable functional mechanism 
in connecting SNP with the susceptibility to diseases. We further 
validated the associations between SNPs and mRNAs in SNP‐meth‐
ylation‐mRNA chains in dbGAP and GTEx Portal, and found 16 over‐
lap results in dbGAP and 112 overlap results in GTEx Portal.

This	study	had	several	potential	limitations.	First,	the	relatively	
small sample size may offer limited power in detecting minor‐ or 
modest‐effect	 meQTLs/eQTMs/eQTLs.	 Second,	 the	 inferred	 in‐
teraction patterns were based on multi‐omics data, further cellular 
and molecular experiments will be helpful to validate the findings. 
Third,	 it	was	probably	 inappropriate	 to	extend	the	PBMC	expres‐
sion regulatory pattern to other cells or tissues because of the high 
tissue‐	or	cell‐specificity	as	mentioned	above.	Fourth,	the	subjects	
concerning only women may limit the extensions of the results in 
male or mix sample (both male and female) because gender‐spe‐
cific genetic architecture is common in humans. Last, the cross‐
reactive probes and polymorphic CpGs in Illumina 450K Infinium 
Methylation	BeadChip	probably	have	confusing	impacts	on	meth‐
ylation readouts.48,49

In summary, our study comprehensively investigated the (epi‐) 
genetic architecture underlying the variation of methylation expres‐
sion, and illustrated SNP‐methylation‐mRNA regulation pattern by in‐
depth	CIT	analysis	in	human	PBMCs	by	using	multi‐omics	integrative	
strategy. The results provide new insights into the regulation patterns 
among SNP, DNA methylation and mRNA expression, especially for the 
methylation‐mediated effects, and also increase our understanding of 
functional mechanisms underlying the established associations. The 
results	would	further	facilitate	the	investigations	of	PBMC‐related	im‐
mune physiological process and immunological diseases in the future.
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