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The search for reliable indicators of biological age, rather than chronological age, has been ongoing for over three
decades, and until recently, largely without success. Advances in the fields of molecular biology have increased
the variety of potential candidate biomarkers that may be considered as biological age predictors. In this review,
we summarize current state-of-the-art findings considering six potential types of biological age predictors: epi-
genetic clocks, telomere length, transcriptomic predictors, proteomic predictors,metabolomics-based predictors,
and composite biomarker predictors. Promising developments consider multiple combinations of these various
types of predictors, which may shed light on the aging process and provide further understanding of what con-
tributes to healthy aging. Thus far, themost promising, new biological age predictor is the epigenetic clock; how-
ever its true value as a biomarker of aging requires longitudinal confirmation.
pidem
.
cy.pede

. This i
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Aging
Biomarker
Prediction
Epigenetic clock
Telomere length
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2. Search Strategy and Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1. Epigenetic Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.1. DNAmAge and Mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2. DNAmAge and Aging Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3. DNAmAge and Diseases of Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.4. DNAmAge and Other Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.5. Potential Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2. Telomere Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3. Transcriptomic Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4. Proteomic Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5. Metabolomics-based Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6. Composite Biomarker Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. Biological Age Predictors in Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4. Conclusions and Future Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Funding Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Conflicts of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Author Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
iology and Biostatistics,

rsen@ki.se

s an open access article under
1. Introduction

Chronological age is a major risk factor for functional impairments,
chronic diseases andmortality. However, there is still great heterogene-
ity in the health outcomes of older individuals (Lowsky et al., 2014).
Some individuals appear frail and require assistance in daily routines
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Fig. 1. The concept of biological age predictors. A biological age predictor could be defined
as a biomarker correlated with chronological age (black line), which brings additive
information in the risk assessments for age-related conditions on top of chronological
age. Hence, adult individuals of the same chronological age could possess different risks
for age-associated diseases as judged from their biological ages (x's in figure). Usually,
the positive predictive value (red line) of a biological age predictor decreases from mid-
life and onwards due to the increased biological heterogeneity at old age (confidence
interval described by dashed lines increases at old age).
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already in their 70′s whereas others remain independent of assistance
and seem to escape major physiological deterioration until very ex-
treme ages. In keeping with the unprecedented growth rate of the
world's aging population, there is a clear need for a better understand-
ing of the biological aging process and the determinants of healthy
aging. Towards this aim, a quest for (biological) markers that track the
state of biophysiological aging and ideally lend insights to the underly-
ing mechanisms has been embarked upon.

During the past decades, extensive effort has been made to identify
such aging biomarkers that, according to the stage-setting definition
(Baker and Sprott, 1988), are “biological parameters of an organism
that either alone or in somemultivariate composite will, in the absence
of disease, better predict functional capability at some late age, thanwill
chronological age”. Later on, the American Federation for Aging Re-
search (AFAR) formulated the criteria for aging biomarkers as follows
(Johnson, 2006; Butler et al., 2004):

1. It must predict the rate of aging. In other words, it would tell exactly
where a person is in their total life span. It must be a better predictor
of life span than chronological age.

2. It must monitor a basic process that underlies the aging process, not
the effects of disease.

3. It must be able to be tested repeatedly without harming the person.
For example, a blood test or an imaging technique.

4. It must be something that works in humans and in laboratory ani-
mals, such as mice. This is so that it can be tested in lab animals be-
fore being validated in humans.

However, to date, no such marker or marker combination has
emerged.Moreover, the existence of suchmarkers has been questioned,
because the effects of many chronic diseases are inseparable from nor-
mal aging. The rate of biological aging can also vary across different tis-
sues, and hence it may not be feasible to assume a measurable overall
rate. On the other hand, as consensus around the definition is missing,
the term “aging biomarker” has been widely used in the literature as
reviewed in (Lara et al., 2015; Johnson, 2006; Engelfriet et al., 2013).

Recently, several new biomarkers for biological aging have come
into play. They can be separated into molecular- (based on DNA, RNA
etc.) or phenotypic biomarkers of aging (clinical measures such as
blood pressure, grip strength, lipids etc.), although we include both
types. The focus of this review is on novel biological age predictors,
and we define them as markers that predict chronological age, or at
least can separate “young” from “old”. They should also be associated
with a normal agingphenotype or a non-communicable age-related dis-
ease independent of chronological age in humans (Fig. 1). A list of the
final biological age predictors discussed in the paper can be found in
Table 1.

2. Search Strategy and Selection Criteria

PubMedwas used as the search enginewhereMedical SubjectHead-
ings (MeSH) terms “Aging” and “Humans” and the specific term for each
of the six marker categories: 1) Epigenetic clock, 2) Telomere length, 3)
Transcriptomics, 4) Proteomics, 5) Metabolomics, and 6) Multi-bio-
marker, were combined. Cited papers in the selected publications and
papers that referenced the selected publications were also considered.
We also searched in bioRxiv using a combination of the following search
terms: “aging”, “biomarker”, “humans” and each of the six marker cate-
gories described above. The searches were performed between 22nd of
November 2016 and 16th of January 2017.

We limited the discussion to those predictors that have been
trained/identified in a discovery population of human adults, and then
validated in a separate cohort. Only scores derived from multiple mea-
surements, such as different probe signals, were considered (except
for telomere length due to its classical role as benchmark biomarker),
and studies published in English from2010 and onwardswere included.
2.1. Epigenetic Clock

A number of recent studies have identified a measure of DNAmeth-
ylation age (DNAmAge), also referred to as the epigenetic clock, as a vi-
able biological age predictor. Two of these clock measures, (Horvath,
2013) and (Hannum et al., 2013) calculators, are currently perhaps
the most robust predictors of chronological age. Both of them show
high age correlations (r = 0.96 for Horvath and r = 0.91 for Hannum)
and small,meandeviations fromcalendar age (3.6 and 4.9 years, respec-
tively) in their corresponding validation cohorts (Hannum et al., 2013;
Horvath, 2013). Both algorithms have been developed in large samples
(n = 8000 for Horvath and n = 656 for Hannum) covering the entire
adult life span and different ethnic populations. The Horvath clock is a
multi-tissue predictor based on methylation levels of 353 CpG sites on
the Illumina 27 k array, whereas the Hannum clock uses only 71 CpG
sites from the Illumina 450 k array and performs best using whole
blood samples. Selection of the CpG sites for both predictors was done
using a similar penalized regression model, yet they only have six CpG
sites in common. Nevertheless, the correlations between the clocks ap-
pear to vary from fairly strong (r=0.76) (Chen et al., 2016) tomoderate
(r = 0.37) (Belsky et al., 2016) in independent studies.
2.1.1. DNAmAge and Mortality
Themost striking feature of the Horvath and Hannum clocks is their

ability to predict all-cause mortality independent of classic risk factors.
A recent meta-analysis in 13 different cohorts with a total sample size
of 13,089 demonstrated that the epigenetic clock was able to predict
all-cause mortality independent of several risk factors such as age,
body mass index (BMI), education, smoking, physical activity, alcohol
use, smoking and certain comorbidities (Chen et al., 2016). When the
authors divided the samples into subgroups by race, sex, follow-up
time, BMI, smoking status, physical activity and given comorbidities
they could, with some exceptions, observe largely similar mortality as-
sociations across subgroups (Chen et al., 2016). Furthermore, they
showed that a weighted average of the Hannum clock based on distinct



Table 1
Summary of biological age predictors.

Predictor Method Studies,
N

Age-associated outcome References

DNAmAge DNA methylation 100+ Mortality, frailty, cognition, physical function, self-rated health, AD, PD,
cancer

Horvath (2013), Hannum et al.
(2013)

Telomere length qPCR (T/S-ratio), Sothern blot
(bp)

1000+ Mortality, cancer, CVD, AD, physical function, cognition Blackburn et al. (2006)

Transcriptomic
age

Gene expression 2 IL-6, urea, albumin, muscle strength, blood pressure, lipids, glucose,
BMI, smoking

Holly et al. (2013), Peters et al.
(2015)

Glycan age Glycans, proteomics 1 Fibrinogen, HbA1c, BMI, triglycerides, uric acid Kristic et al. (2014)
Protein-derived
age

Proteomics 1 Low birth weight, Framingham risk score Menni et al. (2015)

C-glyTrp Metabolomics 1 Lung function, hip bone mineral density Menni et al. (2013)
Metabolic age
score

Metabolomics 1 Mortality, kidney function, HbA1c, hyperglyceridemia Hertel et al. (2016)

Composite
biomarker

10 biomarkers combined 3 Mortality, IQ, physical function Levine (2013), Belsky et al.
(2015)

Composite
biomarker

19 biomarkers in a clustering
approach

1 Mortality, cancer, CVD, T2D, physical function, cognition Sebastiani et al. (2017)

AD, Alzheimer's Disease; PD, Parkinson's Disease; CVD, cardiovascular disease; T2D, type 2 diabetes; IL-6, interleukine 6; BMI, body mass index.
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aging-associated blood cell counts outperformed the other clock mea-
sures in terms of statistically significant associations with mortality
(Chen et al., 2016). Recently, two studies addressed cause-specific mor-
tality predicted by the epigenetic clock, where the clock is a stronger
predictor for cancer mortality than cardiovascular disease (Perna et al.,
2016; Zheng et al., 2016). In the study by Zheng et al., the results sug-
gested a dose-responsive relationship between increased DNAmAge
and cancer incidence and mortality; for each one-year increase in the
difference between chronological and epigenetic age (the Δage), there
was a 6% increased risk of developing cancer within three years and a
17% increased risk of dying of cancer in the next five years. The fact
that the DNAmAges were measured in blood and not in the cancer tis-
sue itself makes these results intriguing. As the authors speculated, the
actual link could be attributed immune (blood) cells' role in tumor de-
velopment via inflammatory mechanisms and pro-apoptotic processes,
both of which themselves may accelerate epigenetic aging. Perna and
colleagues showed similar results for cancer mortality, however, they
concluded that DNAmAge also predicted cardiovascular mortality,
even though the cardiovascular analysis had less power and was only
significant for the Horvath clock. Furthermore, in line with the sex dif-
ferences in overall mortality ages, consistent observations of men hav-
ing higher DNAmAges compared to women have been seen (Horvath
et al., 2016; Hannum et al., 2013; Horvath and Ritz, 2015; Marioni et
al., 2016; Marioni et al., 2015a). Nevertheless, despite the strong epide-
miological evidence, the major issue is the functional role, if any, of
DNAmAge in mortality. Longitudinal studies are missing which could
shed light on changes of the predictive value over time.

2.1.2. DNAmAge and Aging Phenotypes
Several associations with different aging phenotypes and diseases

have been demonstrated. When considering analyses in blood, the
clocks correlate with certain blood cell types that also show age-related
changes (Marioni et al., 2015a; Chen et al., 2016). Hence, only the cell
type-adjusted DNAmAges yield the “pure” clock estimates independent
of the changes in cells. Marioni and colleagues were the first to report
associations between blood DNAmAge and fitness measures of aging.
They observed that age and sex-adjustedHorvath's clockwas cross-sec-
tionally associated with poorer cognitive performance (fluid intelli-
gence), lower grip strength and poorer lung function at baseline
(Marioni et al., 2015b). The baseline DNAmAge at ∼70 years did not,
however, predict the rate of change of these fitness measures nor was
its change correlated with the changes in the fitness measures during
the 6-year follow-up. In a cohort of 38 years-old adults, Belsky and co-
authors observed that increased blood-based Hannum's clock, but not
Horvath's, was associatedwith poorermetrics in balance, motor coordi-
nation, self-reported physical limitations, cognitive abilities, self-rated
health and facial aging but not in grip strength (Belsky et al., 2016). In
a recent study of epigenetic age and age-related frailty – a state of vul-
nerability measured as deficits in multiple bodily systems – Breitling
and colleagues discovered that the Horvath clock was directly associat-
ed with increased number of deficits (i.e., frailty index) in two cohorts-
even after accounting for several risk factors and blood cell counts
(Breitling et al., 2016). Both the Horvath and the Hannum clock have
also demonstrated associationswith an increase in BMI andwith indica-
tors of the metabolic syndrome (Quach et al., 2017). Based on these
findings it seems that the epigenetic clock can indeed reflect aging in
different bio-physiological domains and across a wide age range, most
notably in cross-sectional settings.

2.1.3. DNAmAge and Diseases of Aging
Several studies addressing associations between age-related dis-

eases and DNAmAge have been conducted. Specifically, acceleration of
the Horvath clock in Alzheimer's Disease (AD) patients' prefrontal cor-
tex was associatedwith the presence of plaques, amyloid load and a de-
cline in global cognitive functioning, episodic memory and working
memory (Levine et al., 2015b). However, no associationswith cognition
and memory were observed in non-demented individuals in the same
study. The latter finding is in line with the results of a recent study in
middle-aged twins where no associations between blood DNAmAge
and cognitive abilities were found (Starnawska et al., 2017). However,
when cognitionwas assessed using psychometric measures direct asso-
ciations were observed (Belsky et al., 2016; Marioni et al., 2015b). In
Parkinson's Disease (PD) patients, although they exhibit markedly ele-
vated (computationally estimated) granulocyte counts, their DNAmAge
is still elevated compared to controls after adjusting for blood cell com-
position (Horvath and Ritz, 2015). The results of this study thus support
the hypothesis that peripheral immunoinflammatory characteristics,
observed as accelerated methylome aging of blood cells, are involved
in PD. As regards to cancer, the Hannum clock shows increased epige-
netic age in the tested tumor tissues (Hannum et al., 2013), whereas
the Horvath clock assigns increased DNAmAges only to certain cancer
types (Horvath, 2013). Nevertheless, increased blood DNAmAge has
been shown to predict the incidence of lung cancer (Levine et al.,
2015a), other cancers as well as cancer mortality (Zheng et al., 2016;
Perna et al., 2016). Lastly, in osteoarthritis the Horvath clock in the
joint of the affected cartilage, but not in nearby bone or blood, was asso-
ciated increased epigenetic age (Vidal-Bralo et al., 2016).

2.1.4. DNAmAge and Other Biomarkers
Correlations between DNAmAge and telomere length, as well as

with clinical measures, have generally been low or non-significant
(Belsky et al., 2016; Marioni et al., 2016; Breitling et al., 2016).
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DNAmAge and telomere length are associated with age and mortality
independently of each other (Marioni et al., 2016). In addition, the
cell-type adjustedHorvath clock is not associatedwith common disease
risk factors such as alcohol use, smoking, diabetes, hypertension, and
the levels of high- and low density lipoproteins, insulin, glucose, triglyc-
erides, C-reactive protein (CRP) and creatinine (Horvath et al., 2016).
Another interesting feature of the epigenetic clock is that offspring of
semi-supercentenarians exhibit lower epigenetic age than age-matched
controls (Horvath et al., 2015). As centenarians are an excellent exam-
ple of successful, healthy agers who managed to escape or postpone
the onset of major aging diseases, their offspring's youthful DNAmAge
could indicate that common (genetic or shared environmental) factors
matters for protection from aging diseases and DNAmAgemaintenance.

2.1.5. Potential Mechanisms
Currently it is not entirely clear what aspect(s) of physiological or

cellular aging the epigenetic clocks represent. Although the original
paper on the epigenetic clock (Horvath, 2013) demonstrated that the
clock estimate is close to zero in embryonic and induced pluripotent
stem cells, it correlates with cell passage number, and the ticking rate
is highest during organismal growth, it is not purely a mitotic clock
since it tracks chronological age in non-proliferative tissue such as
brain as well. Recent experimental work in primary endothelial cells
demonstrated that cells that were forced into replicative senescence
and oncogene-induced senescence exhibited increased epigenetic
aging, measured using the Horvath clock, whereas cells whose senes-
cencewas induced byDNAdamage did not. Hence, the authors conclud-
ed that epigenetic aging is an intrinsic property of the cells that is
uncoupled from senescence per se (Lowe et al., 2016). This conclusion
is somewhat in line with the interpretation by Horvath (Horvath,
2013) that the DNAmAgemeasure represents the function of the epige-
netic maintenance system. Hormonal factors may also play a role as late
menopause is associated with lower DNAmAge and menopause itself
also seems to accelerate epigenetic aging (Levine et al., 2016). To date
only one genome-wide association study (GWAS) has reported genetic
associations for the epigenetic clock. The results of this GWAS suggest
that variants near an mTOR complex2 gene (MLST8) and in a putative
RNA-helicase (DHX57) are associated with epigenetic age, yet only in
the cerebellum (Lu et al., 2016). Moreover, the intrinsic Horvath clock
has been suggested to represent overall frailty in the body while the
Hannum clock is more related to immune responses (Horvath and
Ritz, 2015).

Taken together, the epigenetic clock appears to be associated with a
wide spectrum of aging outcomes, most consistently mortality. Its pre-
dictability is observable in several different tissues, suggesting a perva-
sive, systems-level mechanism. However, as the epigenetic clock
concept is still in its infancy, it is likely that many negative findings
have remained unreported. Furthermore, there is a lack of evidence
for mortality prediction by the epigenetic clock in tissues other than
blood. Lastly, the epigenetic aging rate in one tissue can be quite differ-
ent from that of another and for biomarker purposes, it is not realistic to
obtain a combination of epigenetic age estimates in several tissues.With
advances in technologies and increased coverage of arrays, it is likely
that a better understanding of DNA methylation will soon be achieved.
The remaining unresolved questions are if, and if so how, the clock's
ticking rate is modifiable and whether the methylation changes seen
with age and aging phenotypes actually drive the phenotypes, or
whether they merely represent the work of other genomic control
mechanisms, such as histone regulation.

2.2. Telomere Length

Telomeres are repetitive DNA sequences capping chromosomes,
which shorten every time cells divide; thus, telomere length is a popular
marker of biological aging (Blackburn et al., 2006). Today, N6000 publi-
cations exist on the topic “telomere length”. Many excellent reviews
have been written on basic function (Blackburn et al., 2015), associa-
tions with aging (Sanders and Newman, 2013), on the trade-off be-
tween cellular senescence and regeneration (Stone et al., 2016), and
the article by Passos in this special issue on aging, just to mention a
few. Hence, this review will focus only on summarizing what is
known from large-scale and meta-analysis studies on associations be-
tween telomere length and age-associated traits, aswell as address telo-
mere length in relation to other biological markers. To start with, a
meta-analysis on 36,230 participants (Gardner et al., 2014), and the
largest population-based telomere length study to date (n = 105,539)
(Lapham et al., 2015), concluded that women on average have longer
telomeres than men. Hence, women have a lower biological age than
men as judged from the telomere lengths, which is in accordance with
measures of the DNAmAge. This observation might be related to the in-
creased longevity seen in women, all discussed in detail elsewhere
(Barrett and Richardson, 2011), but important to keep in mind when
looking at associations between telomere length and disease. Thus, as-
sociations reported below were found in analyses adjusted for age and
sex.

Although no meta-analysis on mortality has been reported yet, the
association between short telomeres and increased mortality risk has
been shown repeatedly in many studies (Needham et al., 2015;
Bakaysa et al., 2007; Deelen et al., 2014), and recently in a large cohort
study (n=64,637) (Rode et al., 2015). Unlike the epigenetic clock, telo-
mere length seems to work equally well for cancer and cardiovascular
mortality predictions, and as alluded to above, the effect is independent
of the epigenetic clock. However, a meta-analysis on telomere length
and overall cancer risk (23,379 cases and 68,792 controls) showed a
null result, indicating that telomeres may play different roles for differ-
ent cancers (Zhu et al., 2016). Short telomereswere found to be risk fac-
tors for gastrointestinal, head and neck cancers only. Furthermore, short
telomere length has been described as a risk factor for coronary heart
disease as judged from a meta-analysis of 43,725 participants (8400
events) (Haycock et al., 2014), and from a large-scale observational
study (Scheller Madrid et al., 2016). In fact, this relationship has been
suggested to be causal by inferring genetic information (Scheller
Madrid et al., 2016; Codd et al., 2013). Likewise, in ADpatients, telomere
lengths have been shown to be shorter, both in observational (Forero et
al., 2016a) and causal Mendelian Randomization (Zhan et al., 2015)
studies. For PD, only small studies exist with inconclusive results
(Forero et al., 2016b). Telomeres have also been associated with many
age-related traits such as cognition and physical function. However,
studies, and even meta-analysis efforts, are often small with limited
conclusions (Gardner et al., 2013). Technical bias in the measurement
of telomere lengthsmay also contribute to the lack of consistent results.
For further reading on telomeres and traits related to aging we suggest
another review (Mather et al., 2011). To conclude, the suggestive epide-
miological evidence for a causal role of telomeres in aging diseases is
challenging current knowledge and needs to be further investigated,
preferably in longitudinal studies. The discussion around cause or con-
sequence is valid not only for telomeres, but for all biomarkers of
aging and is important for future perspectives of healthy aging.

2.3. Transcriptomic Predictors

To date, two blood-based sets of gene expression profiles have been
developed that fulfill our criteria for a transcriptomic age predictor. The
first profile is a five-transcript predictor presented by Holly and col-
leagues (Holly et al., 2013) who developed it by truncating their previ-
ous six-transcript model that could distinguish young individuals
(b65 years) from old (≥75 years) in the InCHIANTI cohort (Harries et
al., 2011). The five-transcript predictor was tested in two additional co-
horts (Exeter 10,000, n = 95) and the San Antonio Family Heart Study
(SAFHS, n = 1240) together with the InCHIANTI data set (n = 698)
(Holly et al., 2013). The authors demonstrated that lower levels of inter-
leukin-6 (IL-6) and blood urea, aswell as higher levels of serumalbumin
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and muscle strength, were found in the biologically young group com-
pared to the rest. However, no differences were observed for physical
function, CRP, systolic blood pressure, and hematocrit.

The second transcriptomic predictor was based on the expression
levels of 1497 transcripts in European ancestry populations (Peters et
al., 2015). The model was trained in 7074 human blood samples from
six independent cohorts. The analyseswere adjusted for sex, cell counts,
smoking and fasting status (where available), as well as for technical
array variables. The predictor was replicated in 7909 blood samples
from seven independent cohorts, and a high agreement (r = 0.972)
was observed between the results of the discovery and replication
sets. Correlations between transcriptomic age and chronological age
within the cohorts ranged from to 0.348 to 0.744 and the average abso-
lute differences between the predicted transcriptomic age and chrono-
logical age ranged from 4.84 to 11.21 years (mean = 7.8 years).
However, there was only partial overlap in the direction of change in
the 1497 transcripts among cerebellum, frontal cortex and distinct
blood cell sub-types, as well as with blood samples from other ances-
tries. This is not surprising given that gene expression profiles tend to
be tissue-specific. In the combined analysis of all cohorts, Peters and
co-authors observed higher Δage, which reflects increased biological/
transcriptomic aging, directly associated with higher systolic and dia-
stolic blood pressure, total cholesterol, HDL cholesterol, fasting glucose
levels and BMI (Peters et al., 2015). Current smokers also exhibited
higher Δages even after adjusting for BMI. Interestingly, the authors
also examined the correlations between their transcriptomic predictor
and Horvath's and Hannum's epigenetic clocks in two of the cohorts.
The correlations between the transcriptomic and the epigenetic predic-
tors ranged from 0.10 to 0.33, and besides the waist-to-hip ratio they
did not show similar associations with the examined aging phenotypes.
Hence, it appears that the transcriptomic age and the epigenetic clock
describe different aspects of biological aging. When simultaneously ex-
amining multiple cohorts that have their transcriptomic profiles pro-
duced using different array platforms, it is critical to control for
technical variables and probe design to ascertain whether the signa-
tures are truly platform-independent. Nevertheless, the transcriptomic
age predictors still await broader validation in independent cohort
studies.
2.4. Proteomic Predictors

Over the last two decades, several studies have shown effects of
aging on protein glycosylation as measured from human serum or plas-
ma (Pucic et al., 2011; Ruhaak et al., 2010; Parekh et al., 1988; Ruhaak et
al., 2011; Knezevic et al., 2010). However, most studies were based on
non-targeted approaches in single cohorts, making validation across
studies impossible. Recently, Kristic´ and colleagues made an effort of
combining four European cohorts to study IgG glycosylation in aging
(Kristic et al., 2014). A prediction model for age based on three individ-
ual glycans, the GlycanAge, was built in one cohort, and replicated well
in the others (among which TwinsUK was included). The GlycanAge
index was associated with health variables such as fibrinogen, HbA1c,
BMI, triglycerides and uric acid after correction for age and sex.

Likewise, individual studies for investigating the effect of age on the
proteome have been conducted in human plasma and cerebrospinal
fluid (Zhang et al., 2005; Ignjatovic et al., 2011; Lu et al., 2012; Baird
et al., 2012). The only attempt thus far to develop an age predictor
was done by Menni and co-workers who calculated a protein-derived
age variable from four age-associated proteins found in plasma (PTN,
CHRDL1, MMP12, and IGFP6) (Menni et al., 2015). The predictor
(trained in TwinsUK data) was validated in independent cohorts, and
one of the proteins, CHRDL1, was associated with low birth weight,
the Framingham risk score and other cardiometabolic risk factors after
adjustment for age. However, the protein-derived age variable itself
was not tested for associations with health outcomes.
2.5. Metabolomics-based Predictors

Relatively few studies have analyzed associations with age on the
metabolome (also referred to as the metabonome), and they were con-
ducted using different measurement techniques (Ishikawa et al., 2014;
Yu et al., 2012; Menni et al., 2013; Hertel et al., 2016; Collino et al.,
2013; Lawton et al., 2008). Yu and colleagues used a targeted mass-
spectrometry method identifying 131 metabolites in fasting serum,
where 11 were independently associated with age in females, both in
discovery (KORA F4) and replication (TwinsUK), after BMI adjustments
(Yu et al., 2012). Later, the same groups combined analyses of non-
targeted mass-spectrometry and age using the Metabolon platform
(Menni et al., 2013). Here, TwinsUK was the discovery cohort where
22 independent age-associated metabolites, mostly lipids and amino
acids, were found. One selected metabolite, C-glyTrp, was further repli-
cated in KORA F4, and associated with age-related traits such as lung
function and hip bone mineral density after adjustments for age.

In a study from2016 byHertel and colleagues, a protonnuclearmag-
netic resonance (H1 NMR) spectroscopy investigation in human urine
samples quantified 59 metabolites (Hertel et al., 2016). Construction
of a Metabolic Age Score included all metabolites as predictors and age
as the outcome. The metabolic age score was validated and replicated
in two independent cohorts, and found to associate with clinical out-
comes independent of age, e.g., kidney malfunction, high HbA1c levels,
and hyperglyceridemia. Importantly, survival analysis showed that indi-
viduals in the first tertile of the score (lower biological age) had higher
all-cause survival rates, and that the prediction added value over com-
monly known risk factors.

2.6. Composite Biomarker Predictors

Other attempts to identify age-related biomarkers focus on combin-
ing multiple biomarkers into a biological age predictor. In a study by
Levine from 2013, ten biomarkers significantly associated with chrono-
logical age (CRP, serum creatinine, glycated hemoglobin, systolic blood
pressure, serum albumin, total cholesterol, cytomegalovirus optical
density, serum alkaline phosphatase, forced expiratory volume, and
serum urea nitrogen) were combined into a biological age predictor in
the NHANES III study (n = 9389) (Levine, 2013). Most of the bio-
markers were also significant in sex-stratified analyses and no sex dif-
ferences for the age predictor were reported. Using Cox proportional
hazards, thefinal ten-biomarker age predictorwas associatedwithmor-
tality independent of chronological age. The same predictor model was
further validated in the Dunedin study, which is a younger birth cohort
(n = 1037) followed longitudinally (Belsky et al., 2015). In cross-sec-
tional analyses at age 38, participants with higher biological age scored
worse on IQ-tests and physical function measures such as balance,
strength andmotor coordination. Similar resultswere found for longitu-
dinal changes of biological age, as measured over 12 years, and health
outcomes. A somewhat different approach was recently presented by
Sebastiani et al., where 19 biomarkers correlated with age were used
to cluster 4704 participants of the family-based LLFS cohort into 26 dif-
ferent clusters independent of age and sex. Validation was done in the
FHS study where classification of the 26 clusters had a sensitivity rang-
ing from 36% to 100%, which was better than random. Moreover, corre-
lations of the biomarker signatures with longitudinal changes in
physical function and cognition, aswell as proportional hazards for inci-
dent diseases and mortality, were found significant (Sebastiani et al.,
2017).

A follow-up study by Belsky and co-authors included measures on
the epigenetic clock and telomere length in combination with the com-
posite biomarker predictor from Levine in the Dunedin study (Belsky et
al., 2016). The correlations between the composite predictor and
Horvath and Hannum DNAmAge were weak (r= 0.08 and r = 0.15 re-
spectively) but significant. However, no correlation with telomere
length was observed. Health outcomes such as IQ and physical function



Fig. 2. Number of studies versus mortality hazards for the biological age predictors.
Overview of the four biological age predictors telomere length (Rode et al., 2015),
epigenetic clock (Chen et al., 2016), Metabolic Age Score (Hertel et al., 2016), and
composite biomarker (Levine, 2013) which have all been used in survival models. The
hazard ratio per yearly change in biological age (de-)acceleration for each predictor is
presented on the x-axis. The y-axis presents an approximation of the number of studies
on a log-scale where the predictor has been used.
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measured in the Dunedin participants seem to be best predicted by the
composite biomarker age, then by DNAmAge and not at all by telomere
length. Overall, one type of biological age predictor correlates weakly
with other types of predictors, hence indicating that effects are mostly
independent of each other, or at least not measurable with these
methods.

Finally, a study using TwinsUK data applied a multi-omics approach
to investigate relationships between different biomarkers of aging
(Zierer et al., 2016). Several biological age predictors have been investi-
gated in those data, as discussed above, and here epigenetic,
metabolomic, transcriptomic and glycomic measures were combined
into graphical models. Unfortunately, instead of using pre-defined age
predictors,multiple singlemarkers were inferred in themodels,making
comparisons to earlier studies and interpretations difficult. Neverthe-
less, linking many different data types and disentangling the relation-
ship between different biological age predictors may shed light on the
aging process and provide further understanding of what contributes
to healthy aging.

3. Biological Age Predictors in Animals

At the outset, we limited our review to studies in humans. Although
the AFAR criteria for aging biomarkers include also working in animal
model systems, this is not yet a reality. For the epigenetic clock, some
evidence exists of its functionality in great apes (Horvath, 2013), but
not in specieswithmore divergent genomes fromhumans. For telomere
length there have primarily been studies in rodents, but also in birds,
wild animals and C. elegans tomention a few. However, inmice the telo-
mere maintenance system works differently compared to in humans
and they have longer telomeres not reaching the same critical lengths
in spite of their short life span (Calado and Dumitriu, 2013).
Transcriptomic studies have been performed extensively in mice and
rat models, some also with the objective of finding genes associated
with aging (Yang et al., 2016). However, as far as we are aware, there
have not been any biological age predictors trained and tested in
those data. Further, comparisons between humans and rodents are al-
ways problematic because of different arrays used and missing homol-
ogous gene sequences. Likewise, most omics-data analyses suffer from
the same challenges. Thus, considering our selection criteria of indepen-
dent validation and prediction of health outcomes, none of our pro-
posed biological age predictors are valid in any type of animal model.
Nevertheless, though not falling within our definition of biological
aging predictors, it should be noted there is a wealth of evidence, for ex-
ample, on themarkers at the insulin/insulin-like growth factor axis that
demonstrate utility as markers of longevity and healthy aging both in
humans and across the animal kingdom.

4. Conclusions and Future Questions

In this review, we have summarized current knowledge on biologi-
cal age predictors and discussed different data types used. There are
several existing predictors, where the most plausible candidates are
the epigenetic clock and telomere length. They have both been tested
in different tissues and validated in many independent cohorts, as indi-
cated by the number of studies in Table 1. However, they all work by
providing additional evidence on individual aging independent of chro-
nological age, and they successfully predict health outcomes such as
physical function, cognition, morbidity and mortality. In an attempt to
make anoverviewof the conclusions, we illustrated the number of stud-
ies versus the strength in mortality prediction by the biological age pre-
dictors where applicable (Fig. 2). Briefly, telomere length is extensively
validated but has low predictive power. The composite biomarker is not
validated enough but has the potential to be a stronger predictor than
telomeres, as is the Metabolic Age Score. The epigenetic clock currently
performs the best considering both aspects. Other biological age predic-
tors may prove to be useful, but would require further independent
validation. Yet others, such as miRNAs and ncRNAs, may emerge as a
new class of aging markers once there is more research; the current
knowledge on these markers rests largely on their regulatory role in
development.

There is no doubt about the escalated interest in predicting biologi-
cal age. Given the global aging phenomenon, this trend is not going to
end anytime soon. It is imperative that we find a validated set of
markers that can predict the health span rather than only focus onmor-
tality and lifespan. This could include marker combinations, e.g. a set of
physiologic, genomic and blood-based determinants, that predict the
years a personwould spend being free from frailty before death. Ideally,
this marker combination would be a useful indicator both in mid- and
late-life. There are, however, a number of challenges in identifying bio-
markers in humans, beyond the technical issues noted above and het-
erogeneity due to cell count. These include our access to longitudinal
data, the vast variability we see among humans, and potential for
confounding.

Nevertheless, we thus far have little clue about the mechanisms by
which biological age predictors work. There have been discussions
around the underlying aspects of the epigenetic clock, whether they
are describing cellular ticking or something else (see earlier discussion
under heading 1). However, we do not yet know what is cause or con-
sequence of the epigenetic clock. A recent study suggested that adipos-
ity causes epigenetic changes and not the contrary (Wahl et al., 2017).
On the other hand, when it comes to other biological age predictors,
telomere length has been suggested to have a causal effect on health
outcomes, and not just being a marker of such (see discussion under
heading 2). Additional longitudinal data are necessary to further con-
firm the causal nature. Moreover, data also suggest that most of the bi-
ological age predictors we have discussed have little or no interaction
with each other. Thus, effects are independent of each other and may
therefore be describing different parts of the aging process. A combina-
tion of markers would increase the predictive power and should be fur-
ther studied in larger samples. In summary, combinations of biological
age predictorsmay be used tomonitor the face of aging, with the overall
goal of increasing the individual health span and decreasing health care
burden.
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